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Abstract. The objective of this paper is to give a concrete interpretation of the dimension of
the first Hochschild cohomology space of a cyclically oriented or tame cluster tilted algebra in
terms of a numerical invariant arising from the potential.

Introduction

In this paper, we present a concrete computation of the first Hochschild cohomology group of
cyclically oriented and tame cluster tilted algebras. Cluster tilted algebras were introduced in [19]
and independently in [20] for type A, as an application of the categorification of the cluster algebras
of Fomin and Zelevinsky, see [17]. Cyclically oriented cluster tilted algebras were defined in [14]
where it is shown to be the largest known class of cluster tilted algebras for which a system of
minimal relations, in the sense of [18], is known.

Our motivation is twofold. First, it can be argued that any (co)-homology theory has for object
to detect and even compute cycles. In cluster tilted algebras, there are cycles which naturally occur
: indeed, any cluster tilted algebra can be represented as the jacobian algebra of a quiver with
potential, the latter being a linear combination of cycles in its quiver [27]. We are interested here
in the relation between the cycles appearing in the potential and the first Hochschild cohomology
group of the given cluster tilted algebra. Our second motivation, more ad hoc, comes from the very
simple formula given in [9, Theorem 1.2], for a representation-finite cluster tilted algebra, allowing
to read the dimension of the first Hochschild cohomology space directly in the ordinary quiver of the
algebra. It is natural to ask for which class of (cluster tilted) algebras does this dimension depend
only on the quiver. Because representation-finite cluster tilted algebras are cyclically oriented, the
latter class is a natural candidate. However, cyclically oriented cluster tilted algebras are generally
representation-infinite, they may be tame or wild. For tame, not necessarily cyclically oriented
cluster tilted algebras, the first Hochschild cohomology group has been studied in [9]. We therefore
investigate this class as well.

We first recall from [3] that an algebra B is cluster tilted if and only if there exists a tilted algebra
C such that B is isomorphic to the trivial extension of C by the C−C-bimodule E = Ext2C(DC, C),
we then say that B is the relation extension of C. As seen in [4], there exists an equivalence relation
on the cycles of the Keller potential W of B. The number NW of equivalence classes is called the
potential invariant of B. If B is cyclically oriented, then it follows from [14] that W , and therefore
NW , only depend on the ordinary quiver of B. This does not hold true if B is a tame cluster
tilted algebra. However, our main result says that if B is a cluster tilted algebra which is cyclically
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oriented or tame of type D̃ or Ẽ, then the potential invariant NW equals the dimension of the first
Hochschild space of B. Moreover E viewed as a C−C-bimodule has NW indecomposable summands
which are pairwise orthogonal bricks so that NW equals also the dimension of the endomorphism
algebra of the bimodule CEC . We thus state our theorem

Theorem A. Let B a cyclically oriented cluster tilted algebra or a cluster tilted algebra of type D̃
or Ẽ, having NW as potential invariant, C a tilted algebra such that B is the relation extension of
C by E = Ext2C(DC, C). Then we have

dimk HH1(B) = NW = dimk EndC−C(E).

Moreover, the indecomposable summands of CEC are pairwise orthogonal bricks.

For a cluster tilted algebra of type Ã, the situation is slightly different: in this case, the dimension
of HH1(B) equals NW + ε, where ε = 3 if B contains a double arrow, ε = 2 if it contains a proper
bypass, and ε = 1 otherwise, see [9, 8] or 3.8, below. Our theorem shows that, if B is a cyclically
oriented tame cluster tilted algebra, then the dimension of HH1(B) depends only on the quiver
of B. The formula of [9, Theorem 1.2] in the representation-finite case is a special case of our
theorem. Furthermore, the last statement proves conjecture 4.6 of [5] for tilted algebras whose
relation extensions are cyclically oriented. Another nice consequence of the theorem is that, in
this case, the number of indecomposable summands of the bimodule CEC , and the dimension of
EndC−C(E) do not depend on C, but only on the quiver of B.

We also present another point of view. It is known that for gentle algebras, a geometric model
allows to compute the Hochschild cohomology group [21, 31]. Of course, not all the cluster-tilted
algebras we are dealing with arise from marked surfaces. This is however the case for cluster-tilted
algebras of type D, which are representation finite and hence cyclically oriented, and those of type
D̃, which are tame and not always cyclically oriented. For the notation below, we refer the reader
to section 4. We prove the following Theorem.

Theorem B. Let B be a cluster tilted algebra of type Dn or D̃n and (S, τ) its geometric realization.
Then

dimk HH1(B) =| 4NRel(p,q) | +mp +mq −mp,q

where 4NRel(p,q) is the subset of internal non-self-folded triangles which are not related to the
puncture p or q and mp,q is equal to one if and only if there exist a triangle 4 ∈ 4Rel(p) ∩4Rel(q)

Recall that the geometric model associated with cluster tilted algebras of type D and D̃ involves
punctures. One of the features of this theorem is that the first Hochschild cohomology group
depends on the triangles incident to punctures.

On the other hand, we also give a geometric description of the notion of admissible cuts of [12],
which complete the previous description of [22, 1].

The paper is organised as follows. Section 1 is devoted to preliminaries, Section 2 to cluster
tilted algebras, Section 3 to the proof or our Theorem A, and section 4 to the proof of Theorem B.

1. Preliminaries

1.1. Notation. Let k be an algebraically closed field. It is well-known that any basic and
connected finite dimensional k−algebra C can be written as C ' kQ/I, with Q a finite connected
quiver and I an admissible ideal of kQ. The pair (Q, I) is then called a bound quiver, and the
isomorphism C ' kQ/I is a presentation of C see [10]. We denote by Q0 the set of points of Q and
by Q1 its set of arrows. Following [16], we sometimes consider an algebra C as a category of which
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the object class C0 is Q0 and the set of morphisms from x to y is C(x, y) = exCey, where ex, ey
are the primitive idempotents of C associated to x and y respectively. A full subcategory D of C is
convex if for any x, y ∈ D0, and any path x = x0 → x1 → · · · → xt = y in the category C, we have
xi ∈ D0 for all i. An algebra C is constricted if for any arrow α : x→ y we have dimk C(x, y) = 1.

A relation from x ∈ Q0 to y ∈ Q0 is a linear combination ρ =
∑m
i=1 λiwi where each λi is a

nonzero scalar and the wi are pairwise different paths in Q of length at least two from x to y. If
C ' kQ/I, then the ideal I is always generated by finitely many relations. A system of relations
for a bound quiver algebra C ' kQ/I is a subset R of I consisting of relations such that R but no
proper subset of it generates I as an ideal [15]. A relation ρ =

∑m
i=1 λiwi is monomial if m = 1

and minimal if, for every nonempty proper subset J of {1, . . . ,m} we have ρ =
∑
i∈J λiwi 6∈ I. It

is strongly minimal if, for any subset J as above and every set of nonzero scalars {λ′j |j ∈ J}, we
have ρ =

∑
j∈J λ

′
jw
′
j 6∈ I. We have the following lemma.

Lemma. [9, (1.2)] Let C = kQ/Iwith I generated by a system of relations R = {ρ1, . . . , ρt}. If each
ρi is a linear combination of paths that do not contain oriented cycles, then R can be replaced by a
system of strongly minimal relations R′ = {ρ′1, . . . , ρ′t} such that each ρ′i is a linear combination of
the paths appearing in ρi.

Two paths u, v in a quiver Q are parallel if the have they same source and the same target, and
antiparallel if the source (or the target) of u is the target (or the source, respectively) of v. A quiver
is acyclic if it contains no oriented cycles. Algebras with acyclic quivers are called triangular. For
more notions or results of representation theory, we refer the reader to [10].

1.2. Hochschild cohomology. Let C be an algebra and E a C − C-bimodule which is finite
dimensional over k. The Hochschild complex is the complex

0 E Homk(C, E) · · · Homk(C
⊗i, E) Homk(C

⊗i+1, E) · · ·b1 b2 bi+1 bi+2

where C⊗i is defined inductively by C⊗1 = C and C⊗i = C⊗(i−1) ⊗k C for i > 1. The map
b1 : E → Homk(C, E) is defined by (b1x)(c) = cx− xc for x ∈ E, c ∈ C, and bi+1 is defined by

(bi+1f)(c0 ⊗ · · · ⊗ ci) = c0f(c1 ⊗ · · · ⊗ ci) +
i∑

j=1

(−1)jf(c0 ⊗ · · · ⊗ cj−1cj ⊗ · · · ⊗ ci)

+ (−1)i+1f(c0 ⊗ · · · ⊗ ci−1)ci

for a k-linear map f : C⊗i → E and elements c0, . . . , ci ∈ C.
The ith cohomology group of this complex is the ith Hochschild cohomology group of C with

coefficients in E, denoted Hi(C, E). If CEC =C CC we write HHi(C) instead of Hi(C, C). For
instance, HH0(C) is the centre of the algebra C.

Let Der(C, E) be the vector space of all derivations, that is, k-linear maps d : C → E such that
for any c, c′ ∈ C we have

d(cc′) = cd(c′) + d(c)c′.

A derivation is inner if there exists x ∈ E such that d(c) = cx − xc for any c ∈ C. Letting
Inn(C, E) denote the subspace of Der(C, E) consisting of all inner derivations, we have

H1(C, E) =
Der(C, E)

Inn(C, E)
.
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Further, given a complete set of primitive orthogonal idempotents {e1, . . . , en} of C, a derivation
d : C → E is called normalised if d(ei) = 0 for all i. Let Der0(C, E) be the subspace of Der(C, E)
consisting of the normalised derivations, and Inn0(C,E) = Der0(C, E) ∩ Inn(C, E). Then we also
have (see [26]).

H1(C, E) =
Der0(C, E)

Inn0(C,E)
.

When we deal with a derivation, we may always assume implicitly that it is normalised.
Finally, we recall that an algebra C is simply connected if it is triangular and every presentation

of C as a bound quiver algebra has a trivial fundamental group. It is strongly simply connected if
for any full convex subcategory D of C one has HH1(D) = 0. This is equivalent to requiring that
any full convex subcategory of C is simply connected [30].

2. Cluster tilted algebras

2.1. Bound quivers. Cluster tilted algebras were originally defined as endomorphism rings of
tilting objects in the cluster category [19]. We use the following equivalent definition [3]. Let C
be a triangular algebra of global dimension at most two. Its trivial extension C̃ = C n E by the
so-called relation bimodule E = Ext2C(DC, C) with the natural C-actions, is called the relation
extension of C. If C is tilted of type Q, then C̃ is called cluster tilted of type Q. Assume C = kQ/I
and R = {ρ1, . . . , ρk} is a system of relations for I, then the quiver Q̃ of C̃ is as follows:

(a) Q̃0 = Q0,
(b) For x, y ∈ Q0, the set of arrows in Q̃ from x to y equals the set of arrows of Q from x to

y, called old arrows plus, for each relation ρi from y to x, an additional arrow αi : x → y
(called new arrow), see [3, Theorem 2.6].

A potential on a quiver is a linear combination of oriented cycles in the quiver. The Keller
potential on Q̃ is the sum

W =

k∑
i=1

αiρi

where αi, ρi are as in (b), above. Oriented cycles are considered up to cyclic permutation : two
potentials are cyclically equivalent if their difference lies in the k-vector space generated by all
elements of the form β1β2 · · ·βm−βmβ1 · · ·βm−1, where β1 . . . βm is an oriented cycle in Q̃. For an
arrow β, the cyclic partial derivative ∂β is the k-linear map defined on an oriented cycle β1β2 . . . βm
by

∂β(β1β2 . . . βm) =
∑
β=βi

βi+1 · · ·βmβ1 · · ·βi−1

and extended by linearity to W . Thus ∂β(W ) is invariant under cyclic permutations. The jacobian
algebra J (Q̃,W ) is the one given by the quiver Q̃ bound by all cyclic partial derivatives of the
Keller potential with respect to each arrow of Q̃. If C is a tilted algebra, so that C̃ = C n E is
cluster tilted, then C̃ ' J (Q̃,W ), see, for instance, [27].
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Clearly, the Keller potential W depends on the relations, and thus on the presentation of the
algebra. For instance, if C is given by the quiver Q

1 2 3α
β

γ

and we consider the two sided ideals I1 = 〈αβ〉 and I2 = 〈αβ − αγ〉, then kQ/I1 ' kQ/I2. In the
first case C̃ is given by the quiver Q̃

1 2 3α
β

γ

η

with potential W1 = αβη, and in the second case by the same quiver Q̃ but with potential
W2 = αβη − αγη.

2.2. Sequential walks. Let C = kQ/I be a tilted algebra and w = uw′v a reduced walk in Q.
We say that the subwalks u, v point to the same direction if both u, v or both u−1, v−1 are paths in
Q. A reduced walk w = uw′v with u, v pointing to the same direction is a sequential walk if there
is a relation ρ =

∑
i λiui with u = u1 or u = u−11 , there is a relation σ =

∑
j µjvj with v = v1

or v = v−11 respectively, and no subpath of w′ or (w′)−1 is involved in (is a branch of) a relation
ν =

∑
l ξlwl.

Let C̃ be the relation extension of C. A walk w = αw′β is C−sequential if w′ consists of old
arrows, α, β are new arrows corresponding to old relations ρ =

∑
i λiui and σ =

∑
j µjvj such that

for any i, j the walk uiw′vj is sequential. We need essentially the following result.

Lemma. [9, (2.5)] Let C be a tilted algebra. Then the bound quiver of its relation extension C̃
contains no C−sequential walk.

2.3. Tame cluster tilted algebras. Because of lemma 1.1, if C = kQ/I is a tilted algebra
having B = C̃ = kQ̃/Ĩ as relation extension, then one may choose a system of strongly minimal
relations as generating set for Ĩ. Moreover, if ρ =

∑
λiwi is a strongly minimal relation lying in

Ĩ but not in I, then each of the wi contains exactly one new arrow αi, because of lemma 2.2, and
each new arrow appears in this way. If this is the case, then we write αi|wi.

This bring us to our next definition. We define a relation ≈Q on the set Q̃1 \Q1 of new arrows
by setting α ≈Q β if α, β are equal or else there exists a strongly minimal relation ρ =

∑
λiwi

in Ĩ and indices i, j such that α|wi and β|wj . We next let ∼Q be the least equivalence relation
containing ≈Q, that is, its transitive closure. The relation invariant NB,C of B = C̃ with respect
to C is the number of equivalence classes of new arrows with respect to ∼Q.

Assume now that B is tame. Because of [19], the tame representation-infinite cluster tilted
algebras are just those of euclidean type, and the representation-finite are those of Dynkin type.
We have the following theorem.

Theorem. Let C be a tilted algebra, and B its relation extension. Then :
(a) [5, (6.3)], [6, (5.7)] There exists a short exact sequence of vector spaces

0 H1(B, E) HH1(B) HH1(C) 0.
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(b) [9, 5.5] H1(B, E) ' H1(C, E) ⊕ EndC−C(E), where the endomorphisms of E are the C − C-
bimodule endomorphisms.

(c) [9, (1.1)] If B is tame, then H1(B, E) = kNB,C .
(d) [9, (3.2)(3.8)] If B is of type Ã and R is a system of relations for C, then NB,C = |R| and does

not depend on the choice of C.
(e) [9, (4.3)(5.6)(5.7)] If B is of type D̃ or Ẽ, then one can assume that C is constricted and then

H1(C, E) = 0 and H1(B, E) = EndC−C(E) = kNB,C .

In particular, in the latter case, E is, as C−C-bimodule, the direct sum of NB,C pairwise orthogonal
bricks.

2.4. Cyclically oriented cluster tilted algebras. Let Q be a quiver. A chordless cycle in Q
is the full subquiver generated by a set of points {x1, x2, . . . xt} which is topologically a cycle, that
is , the edges between the xi’s are precisely those of the form xi — xi+1 (with xt+1 = x1), see [13].
The quiver Q is cyclically oriented if each chordless cycle in Q is an oriented cycle, see [14]. A
cluster tilted algebra is cyclically oriented if it has a cyclically oriented quiver.

In particular, cyclically oriented cluster tilted algebras contain no multiple arrows in their quiver.
For instance, as shown in [18], the representation-finite cluster tilted algebras are cyclically oriented.

We now give an example of a family of cyclically oriented cluster tilted algebras which can be
representation-finite, tame or wild.

Example. Consider the algebra Ct given by the quiver

1

2

0
... t+ 1

t

β1

β2

α1

α2

αt βt

with t > 1 bound by the relation
∑t
i=1 αiβi = 0. If t 6 2, then Ct is a representation-finite tilted

algebra. If t = 3, then it is tame concealed of type D̃4, while if t > 3, then Ct is wild concealed of
type

0

1 2 . . . t+ 1.
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Thus, Ct is tilted for any t. Its relation extension C̃t is given by the quiver

1

2

0
... t+ 1

t

β1

β2

α1

α2

αt

γ

βt

If t > 3, it is cluster concealed, tame for t = 3, wild if t > 3. It has Keller potential

W =

t∑
i=1

γ(αiβi).

It is easily seen to be cyclically oriented.

Before stating the main properties of cyclically oriented cluster tilted algebras we recall from [18]
that a system of minimal relations on a bound quiver (Q, I) is a system of relations whose elements
belong to I but not to FI + IF , where F is the ideal of kQ generated by the arrows. The set
of relations described in Section 2.1 for cluster tilted algebras is usually not a system of minimal
relations, see [14]. The problem of finding a system of minimal relations for cluster tilted algebras
is still open in general. It is only solved for representation-finite cluster tilted algebras [18], for
cluster tilted algebras of type Ã, see [2], and for cyclically oriented cluster tilted algebras [14].

Let Q be a cyclically oriented quiver. A subset of Q1 consisting of exactly one arrow from each
chordless oriented cycle of Q is called an admissible cut of Q. If Q is equipped with a potential W ,
then the algebra of the cut is the quotient of the jacobian algebra J (Q,W ) which is obtained by
deleting the arrows of the cut, see [12]. Finally a path γ in Q which is antiparallel to an arrow ξ is
called a shortest path if the full subquiver generated by the oriented cycle ξγ is chordless.

Theorem. [14] Let B be a cyclically oriented cluster tilted algebra, then :
(a) (4.2) The arrows of Q occurring in a chordless cycle are in bijection with elements of a system

of minimal relations for any presentation of B. Let ξ be such an arrow and γ1, . . . , γt be the
shortest paths antiparallel to ξ. Then the corresponding relation is of the form

∑t
i=1 aiγi where

the ai are nonzero scalars. Moreover the subquiver of Q restricted to the points involved in the
γi looks as follows :

· · · ·

· · · · · ·

γ1

γt

ξ

In particular, the paths γiξ share only the endpoints
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(b) (3.4) Any chordless cycle is of the form ξγ where ξ is an arrow and γ a shortest path antiparallel
to ξ.

(c) (4.7)(4.8) Assume C has global dimension two. Then B ' C̃ if and only if C is the quotient
of B by an admissible cut. Moreover, any such C is strongly simply connected.

We warn the reader that in (c) above, the algebra of the cut C is not necessarily tilted : as
pointed out in [14, 12] it may be iterated tilted of global dimension 2.

It follows from (a) above that if ξ is an arrow and ρξ is the relation corresponding to it, then the
Keller potential is

W =
∑
ξ∈Q1

ξρξ.

Because of (b), it is the sum of all chordless cycles. Thus, it is completely determined by the
quiver.

Finally, it follows from the last statement of (c) above that any admissible cut of a cyclically
oriented cluster tilted algebra does not contain a bypass, see [14, 3.9]. We recall that a bypass is a
pair (α, p) where α is an arrow and p a path parallel to α. It is a proper bypass if the length of p is
at least two.

2.5. Direct decomposition of the potential. Let (Q,W ) be a quiver with potential. Following
[4], we define an equivalence relation ∼W between the oriented cycles which appear as summands
of the potential as follows. If γ, γ′ are two summands of W , we set γ ≈W γ′ in case there exists
an arrow which is common to γ and γ′. Then ∼W is defined to be the least equivalence relation
containing ≈W . Thus, ∼W is the transitive closure of ≈W . The number NW of equivalence classes
of cycles in the potential under ∼W is called the potential invariant of (Q,W ).

A sum decomposition of the potential

W =W ′ +W ′′

is called direct if, whenever γ′ is a cycle in w′, γ′′ a cycle in W ′′, then we have γ′ 6∼W γ′′. In this
case we write W =W ′⊕W ′′. Thus NW equals the number of indecomposable direct summands of
the potential.

The motivation for introducing these concepts is their relation with the direct sum decompositions
of the C − C-bimodule E = Ext2C(DC, C) when C is a tilted algebra.

Theorem. [4] Let C be a tilted algebra, E = Ext2C(DC, C) and B = C nE. Further, let W be the
Keller potential of B.
(a) (1.2.2) Assume W = W ′ ⊕W ′′ and denote by E′, E′′ the C − C-bimodules generated by the

classes of new arrows appearing in a cycle of W ′,W ′′ respectively. Them E = E′ ⊕ E′′ as
C − C-bimodules.

(b) (1.3.1) Conversely, if B is cyclically oriented or of type Ã and E = E′⊕E′′ as C−C-bimodules,
then there is a decomposition W = W ′ ⊕W ′′ of W such that E′, E′′ are the C − C-bimodules
generated the classes of arrows belonging to W ′,W ′′ respectively.

As an easy consequence of (a), there is an injection from the set of equivalence classes of cycles
into the set of indecomposable direct summands of CEC .

Actually, it is easy to see that this injection is actually a bijection. Indeed, assume E = ⊕si=1Ei,
where the Ei are indecomposable C-C-bimodules. For each i, with 1 ≤ i ≤ s, topEi 6= 0, hence Ei
contains a new arrow αi in its support. Denoting by ρi the relation on C corresponding to αi, the
cycle wi = αiρi is a summand of the Keller potential, and the equivalence class of wi maps into Ei
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under the injection. This indeed follows from the concrete description of this injection, see [4]. In
particular, the number s of indecomposable direct summands of E as a C-C-bimodule is equal to
the relation invariant NW .

2.6. A lower bound. As a consequence of Theorem 2.3 and the remarks following it, we deduce a
lower bound for the dimension of the first Hochshchild cohomology group of a cluster tilted algebra.

Proposition. Let C be a tilted algebra, and B its relation extension by E = Ext2C(DC,C). Then
we have

(a) dimk HH1(B) ≥ dimk HH1(C) +NW
(b) if B is not hereditary, then dimk HH

1(B) 6= 0.
(c) We have dimk HH1(B) = dimk HH1(C) +NW if and only if:

i) H1(C ′, E) = 0
ii) E decomposes as a direct sum of pairwise orthogonal bricks.

Proof. Because of Theorem 2.3 (a) and (b), we have dimk HH1(B) = dimk HH1(C)+dimk H
1(C,E)+

dimk End(E).
Now, let E = ⊕NW

i=1Ei be a direct sum decomposition of the C−C-bimodule E into indecompos-
able summands. Because the identity morphism on each Ei induces an endomorphism of E, we have
dimk EndC−C(E) ≥ NW and equality holds if and only if E is the direct sum of pairwise orthogonal
bricks, thus dimk HH1(B) ≥ dimk HH1(C)+NW and equality holds if and only if H1(C,E) = 0 and
dimk EndC−C(E) = NW , that is, if and only if E is the direct sum of pairwise orthogonal bricks.
This proves (a) and (c). Finally, if B is not hereditary, then its Keller potential W contains at least
a nonzero summand, so that NW 6= 0 which implies HH1(B) 6= 0, thus proving (b).

�

It follows from the results of [9] that if B is a tame cluster tilted algebra, then the two conditions
of (c) are satisfied, see [9] (5.6), (5.8) and (5.9). As we shall now see, they are also satisfied if B is
cyclically oriented. So, for both of these classes, the equality (c) between the dimensions holds.

2.7. Cycle and arrow equivalences. We now prove that the potential invariant NW equals the
relation invariant NB,C defined in 2.3.

Lemma. Let C be a tilted algebra, and B its relation extension. If W is the Keller potential of B,
then NW = NB,C . If moreover B is tame, then NW equals the number of indecomposable summands
of E = Ext2C(DC, C).

Proof. Because of lemma 2.2, each cycle γ of W contains exactly one new arrow αγ . The corre-
spondence γ ↔ αγ is actually bijective, because each new arrow lies on a cycle of W . We first
claim that γ ≈W σ implies αγ ≈Q ασ. Indeed, the hypothesis says that the cycles γ and σ share
an arrow, say α. If α = αγ , then, because of lemma 2.2 we also have α = ασ. If α 6= αγ then, for
the same reason α 6= ασ. Then the cyclic derivatives of the cycles containing α yield a minimal
relation ρ =

∑
aiwi and two indices i, j such that αγ |wi, ασ|wj . Because of lemma 1.1 there exists

a strongly minimal relation having the same property. Therefore αγ ≈Q ασ, as required.
Conversely, assume now αγ ≈Q ασ. Then there exists a strongly minimal relation ρ =

∑
aiwi

from x to y, say, and indices i, j such that αγ |wi and ασ|wj . This implies the existence of an
arrow η : y → x (actually in C) so that the summand of W corresponding to ρ is actually ηρ =
ai(ηwi) + aj(ηwj) +

∑
k 6=i,j ak(ηwk). Therefore γ = ηwi and σ = ηwj and these two cycles γ, σ

share the arrow η. Hence γ ≈W σ.
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As a consequence, if γ, σ are two cycles in W , then we have γ ∼W σ if and only if αγ ∼Q ασ.
Therefore NW = NB,C .

If B is tame, then it follows from theorem 2.3(e) that NBC equals the number of indecomposable
summands of E, hence the last statement.

�

3. Proof of Theorem A

3.1. The cyclically oriented case. Let C be a tilted algebra and E = Ext2C(DC, C) be such
that B = CnE is cyclically oriented. Because of theorem 2.3(a) there exists a short exact sequence
of vector spaces

0 H1(B, E) HH1(B) HH1(C) 0.

This gives HH1(B) ' HH1(C)⊕H1(B, E) as vector spaces. Because of theorem 2.4 above, C is
strongly simply connected, so HH1(C) = 0.

Moreover, [6, 4.8] gives H1(B, E) ∼= H1(C, E) ⊕ EndC−C(E), so that HH1(B) ∼= H1(C, E) ⊕
EndC−C(E). We start by proving that H1(C, E) = 0. This will imply that HH1(B) ∼= EndC−C(E).
We shall complete the proof of the main theorem by proving that the indecomposable summands
of E are pairwise orthogonal bricks, in 3.3 and 3.4, respectively.

Lemma. Let C be a tilted algebra such that B = CnE is cyclically oriented. Then H1(C, E) = 0.

Proof. It suffices to show that Der0(C, E) = 0. Let thus δ ∈ Der0(C, E) be nonzero. Then, there
exists an old arrow α from i to j, say, such that δ(α) 6= 0. We show that this leads to a contradiction.

Because δ is normalised, we have

δ(α) = δ(eiαej) = eiδ(α)ej ∈ eiEej .
Then there exist old paths u : i  x and v : y  j as well as a new arrow β : x → y such that

δ(α) = uβv. Indeed, u and v consist solely of old arrows, because E2 = 0. If both u, v are trivial
paths, then αβ−1 is a chordless cycle in the quiver of B, contradicting the fact that B is cyclically
oriented. Hence, u or v is nontrivial. On the other hand, u and v do not intersect each other,
otherwise the old arrow α would be a bypass of a path in C, and this is impossible because C is
strongly simply connected, see Theorem 2.4, (c). We then have a closed walk uβvα−1 in B with
u, v old paths and β a new arrow. Without loss of generality we may assume that this closed walk
is of minimal length among all the closed walks of the form u′β′v′α−1 in B with u′, v′ old paths
and β′ a new arrow.

i j

·

·

x y

α

u γ

v′′

v

β

v′
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Because βvα−1uβ is not a C− sequential walk in B, there is a subpath of vα−1u which is involved
in (is a branch of) a relation on C. Because α points to the opposite direction to u or v, this is a
subpath of v or of u. The absence of C−sequential walks in B implies that there is at most one,
hence exactly one such subpath that lies either on v or on u.

Assume that this subpath lies on v and γ is the corresponding new arrow. Then there exist
subpaths v′ and v′′ of v such that v′γ−1v′′ is parallel to v. We claim that the cycle βv′γ−1v′′α−1u
is chordless, which will give a contradiction to the fact that B is cyclically oriented. Indeed, if his
is not the case, then there exists a chord η : a→ b with a, b points on the cycle βv′γ−1v′′α−1u.

We have several possibilities.
(1) Both a, b lie on u. Assume that η is parallel to a subpath of u. Then η cannot be a new

arrow for, otherwise, there exists a relation in C from b to a, and, in this case, the subpath
of u parallel to η together with one branch of the relation constitute an oriented cycle
entirely consisting of old arrows which contradicts the triangularity of C. Then η is an old
arrow. But then, it is a bypass to a subpath of u, which contradicts Theorem 2.4(c).

Assume now that η is antiparallel to a subpath of u. Then η cannot be an old arrow,
because C is triangular. Hence, η is a new arrow. Consequently, there exists a subpath u1
of u such that we have a C−sequential walk ηu−11 α(v′′)−1γ in B, a contradiction.

(2) The proof is entirely similar if a, b lie on v′, v′′.
(3) Assume a lies on u and b lies on v. If η is an old arrow, then α would be a bypass of a path

of the form u1ηv1, with u1, v1 subpaths of u, v respectively. Because this path consists only
of old arrows, this yields a contradiction to theorem 2.4 (c). Therefore η is a new arrow.
But we may replace the cycle uβvα−1 by the shorter one u1ηv1α−1, a contradiction to the
minimality (again here u1 or v1 is non trivial for, otherwise, we have a double arrow).

(4) Assume a lies on v and b lies on u. If η is a new arrow, then there is a relation in C from
b to a hence a path w in C from b to a. But then α is a bypass to u1wv1, where u1, v1
are subpaths of u, v respectively. Because u1wv1 consists only of old arrows, this is a path
in C, hence we get a contradiction to theorem 2.4 (c). Consequently η is an old arrow.
We thus have a cycle of the form u1η

−1v1α
−1 with u1, v1 subpaths of u, v respectively,

and the cycle consisting entirely of old arrows. Take a cycle of minimal length of the form
u′1η
′−1v′1α

−1 with u′1, v′1 subpaths of u, v respectively and the cycle consisting entirely of old
arrows. Notice that u′1 or v′1 is nontrivial, because otherwise the cycle u′1η′−1v′1α−1 would
reduce to an oriented cycle η′α−1 in C, a contradiction to triangularity. But then the cycle
u′1η
′−1v′1α

−1 is chordless but not oriented.This contradiction completes the proof.
�

3.2. Indecomposable summands of CEC . The previous lemma implies that, if B is cyclically
oriented, then HH1(B) = EndC−C(E). We thus turn to the computation of the latter.

Because B is cyclically oriented, its Keller potential W is the sum of all chordless cycles in the
quiver of B. Two chordless cycles γ′, γ′′ are equivalent if and only if there exists a sequence of
chordless cycles γ′ = γ1, γ2 . . . γt = γ′′ such that for each i, the cycles γi and γi+1 share an arrow.
Because of the last statement of Theorem 2.4 (a), γi and γi+1 cannot share more than one arrow,
so they share exactly one.

Lemma. The number of indecomposable summands of E as a C −C-bimodule equals the potential
invariant NW .

Proof. WriteW =W1⊕W2⊕· · ·⊕Ws where theWi are the indecomposable summands ofW . Each
Wi is the sum of equivalent chordless cycles and no cycle which is a summand of Wi is equivalent
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to a cycle which is a summand of Wj for j 6= i. Therefore the number s of summands of W equals
the number of equivalence classes of cycles, which is precisely the potential invariant NW . Because,
as pointed out at the end of section 2.5, there is a bijection between the indecomposable summands
of the potential and those of CEC , we infer the statement. �

We have proven in lemma 2.7 that the same statement holds true for tame cluster tilted algebras.

3.3. Endomorphisms of E. Let thus E1, . . . , ENW
denote the indecomposable summands of

CEC . In order to prove that HH1(B) ∼= EndC−C(E) is NW−dimensional, we need to prove that
the Ei are pairwise orthogonal bricks in the category of C − C-bimodules. We start with the
following lemma.

Lemma. With the above notation, for every nonzero δ ∈ HomC−C(Ei, E) and every new arrow α
in Ei, we have

δ(α) = λαα

for some scalar λα ∈ k

Proof. Denote by {α1, . . . , αt} the set of new arrows and by {ρ1, . . . , ρt} the corresponding relations
in C, so that the Keller potential is

W =

t∑
i=1

αiρi

We may assume that the equivalence class of the chordless cycle α1ρ1 contains as new arrows
α1, . . . , αr with r 6 t For δ as in the statement and any i with 1 6 i 6 r we have

δ(αi) =
∑
j

λijuijαjvij

where the λij are scalars and uij , vij are paths such that αi and uijαjvij are parallel. Note that
the absence of double arrows in B implies that, for each j, the path uij or the path vij is nontrivial.
Moreover, the fact that E2 = 0 implies that uij , vij are paths in C.

We claim that λij = 0 when i 6= j and this implies that δ(αi) = λiiαi (for otherwise, the
nontriviality of uij or vij would imply a contradiction to the triangularity of C). We may assume
without loss of generality that i = 1 so that j 6= 1. The paths u1j , v1j do not intersect for, otherwise,
we have an oriented cycle in C, a contradiction. We consider the cycle u1jαjv1jα−11 . This is a cycle
which we may assume of minimal length among all cycles of the form u′αjv

′a−11 with u′, v′ paths
in C. If it is chordless, then we are done because it is not oriented. Therefore we may assume that
it has a chord β : a → b. We study the different possibilities for b. For ease of notation, we set
u = u1j , v = v1j .

(1) Both a and b lie on u. Assume that β : a → b is an old arrow. If β is parallel to u then it
is a bypass of a subpath of u, a contradiction to Theorem 2.4 (c). If β is antiparallel to u,
then it generates with the subpath of u from b to a an oriented cycle in C, a contradiction
to its triangularity. Therefore β is a new arrow. If β : a → b is parallel to u, then it
corresponds to a relation from b to a and so generates an oriented cycle in C, a contradiction
to triangularity. But then β is antiparallel to u and β together with α1 yield a C−sequential
walk in B, another contradiction.

(2) The situation is exactly similar if β is an arrow between two points of v.
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(3) Assume a lies on v and b lies on u. If β : a → b was a new arrow, then it would form
with α1 (or αj) a C−sequential walk in B. Therefore it is an old arrow. But then this
is a C−sequential walk of the form α1v

−1
1 βu−11 α1 with u1, v1 subpaths of u, v respectively.

Therefore there is no such chord β.
(4) The only possibility left is that a lies on u and b lies on v. If β : a→ b is an old arrow, then

there is an oriented cycle in C consisting of β, a subpath of v, a branch of the relation ρ1
corresponding to α1 and a subpath of u. This contradiction implies that β is a new arrow.
But then we have a cycle of the form u′βv′α−11 with u′, v′ paths in C and β, α1 new arrows,
a contradiction the the assumed minimality of the cycle uαjvα−11 .

�

This proof resembles that of lemma 3.1. The essential difference is that in 3.1 the arrow α is old
while the arrow β is new, but here both of the arrows α1 and αj are new.

3.4. Pairwise orthogonal bricks. We now prove that the indecomposable summands of CEC
are pairwise indecomposable bricks.

Lemma. With the above notation, we have

dimk HomC−C(Ei, Ej) =

{
0 if i 6= j,

1 if i = j.

Proof. Assume first that i 6= j. Then HomC−C(Ei, Ej) = 0 follows directly from lemma 3.3.
Therefore we just need to prove that for each i with 1 6 i 6 NW we have

EndC−C(Ei) ' k.

As C−C-bimodule, Ei is generated by those new arrows α1, . . . , αr which occur in the chordless
cycles in the equivalence class corresponding to Ei. It follows from Lemma 3.3 that for every
δ ∈ EndC−C(Ei), and every j with 1 6 j 6 r we have

δ(αj) = λjαj

for some scalar λj . We claim that λj = λ1. This will establish the statement.
The new arrow α1 belongs to a cycle in the potential. Because there are no loops in the quiver

of B, each arrow appearing in the potential is antiparallel to a relation. Therefore there exists a
relation in B involving the arrow α1. Because of lemma 1.1, we may assume this relation to be
strongly minimal, that is a relation of the form

ρ =

r∑
l=1

µl(wlαlw
′
l)

where wl, w′l are old paths, the µl are nonzero scalars and, for every proper subset J ⊂ {1, . . . , r}
and every set of nonzero scalar µ′l with l ∈ J , we have

ρ =
∑
l∈J

µ′l(wlαlw
′
l) 6= 0.

Applying δ to the relation ρ yields

0 = δ(ρ) =

r∑
l=1

µlλl(wlαlw
′
l)
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subtracting from this expression λ1ρ we get∑
l 6=1

µl(λl − λ1)(wlαlw′l) = 0.

The strong minimality of ρ and the fact that µl 6= 0 for every l imply that λl = λ1 for every l.
�

The previous two lemmata can be interpreted as saying that every derivation of B is diagonal-
isable.

3.5. Proof of the main theorem in the cyclically oriented case. For the benefit of the
reader we repeat the statement of the theorem in the cyclically oriented case.

Theorem. Let B be a cyclically oriented cluster tilted algebra having NW as potential invariant,
C a tilted algebra such that B is the relation extension of Cand E = Ext2C(DC, C). Then we have

dimk HH1(B) = NW = dimk EndC−C(E).

Moreover, the indecomposable summands of CEC are pairwise orthogonal bricks.

Proof. The proof was outlined at the beginning of section 3. It follows from lemma 3.1 that
H1(C, E) = 0. On the other hand, lemmata 3.3 and 3.4 show that the indecomposable summands
of CEC are pairwise orthogonal bricks. The fact that their number equals the potential invariant
follows from lemma 3.2. �

3.6. The representation-finite case. Let Q be the quiver of a representation-finite cluster
tilted algebra. An arrow in Q is called an inner arrow if it belongs to two chordless cycles. We
deduce from our main result above the following corollary, which is [9, Theorem 1.2].

Corollary. Let B be a representation-finite cluster tilted algebra and Q its quiver. Then the di-
mension of HH1(B) equals the number of chordless cycles in Q minus the number of inner arrows
in Q.

Proof. In the representation-finite case, relations are monomial or binomial relations. Two chord-
less cycles γ′ and γ′′ are equivalent if and only if there is a sequence of chordless cycles γ′ =
γ1, γ2, . . . , γt = γ′′ such that for every i, the cycle γi shares exactly one arrow with γi+1. That is,
γi is connected to γi+1 by an inner arrow. Therefore, the total number of equivalence classes equals
the number of chordless cycles minus the number of inner arrows. �

3.7. Relation with the fundamental group. For the definition and properties of the funda-
mental group of a bound quiver, we refer, for instance, to [30].

Corollary. Let B = kQ̃/Ĩ be a cyclically oriented cluster tilted algebra. Then
(a) The fundamental group π1(Q̃, Ĩ) does not depend on the presentation of B,
(b) We have HH1(B) ∼= Hom(π1(Q̃, Ĩ), k+).

Proof. (a) This follows from the fact that, up to scalars, the presentation of B is determined by its
quiver, see [14, (4.2)].

(b) In lemma 3.3 we established that any derivation is diagonalizable. The conclusion then follows
from [23, Corollary 3].

�
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3.8. The tame case. Let C be a tilted algebra of euclidean type, E = Ext2C(DC, C) and B = C̃
have Keller potential W . It follows from Lemma 2.7 that NW = NB,C and that this common value,
that we denote by N , is the number of indecomposable summands of CEC . The following theorem,
of which part (a) was already proven in [9] and [8] gives the dimension of the first Hochschild
cohomology space.

Theorem. Let B be a cluster tilted algebra, and C a tilted algebra such that B = C̃, then
(a) If B is of type Ã, then dimk HH1(B) = N + ε where

ε =


3 if and only if B contains a double arrow,
2 if and only if B contains a hereditary proper bypass,
1 otherwise.

(b) If B is of type D̃ or Ẽ, then dimk HH1(B) = N .

Proof. (a) Assume B is of type Ã. Because of theorem 2.3 we have HH1(B) ' HH1(C)⊕ kN . If B
is constricted, so is C and then HH1(C) ' k. Otherwise, B contains either a double arrow or a
hereditary bypass, an thus is of one of the two forms of [9, (4.3)] or their respective duals. In
the first case, HH1(C) ' k3 and in the second, HH1(C) ' k2.

(b) Assume now that B is of type D̃ or Ẽ. Then C is a tilted algebra of type D̃ or Ẽ. Because
of [11], C is simply connected. Because of [7], see also [29], we have HH1(C) = 0. Therefore,
Theorem 2.3(c) yields in this case HH1(B) ' kN .

�

3.9. Invariants are invariant. The following obvious corollary arises from the fact that dimk HH1(B)
depends only on B.

Corollary. Let B be a tame cluster tilted algebra, C1, C2 be tilted algebras such that B ' C̃1 ' C̃2.
For each i = 1, 2, let Ei = Ext2Ci

(DCi, Ci) and Wi the Keller potential arising from the relations
of Ci. Then
(a) NB,C1

= NB,C2
.

(b) NW1 = NW2 and does not depend on the presentation.
(c) The C − C-bimodules E1 and E2 have the same number of indecomposable summands.
(d) dimk EndC1−C1

(E1) = dimk EndC2−C2
(E2).

3.10. Examples.
(a) Consider the tilted algebra C given by the quiver

1 8

7

4

2 6

5 10

3 9

ωθ

κ

β α

γδ

µ

ρ

λ
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bound by ωθ = 0, κβ = 0, αβ + γδ = 0, ρδ = 0, ρµ = 0. It is representation-infinite of
(euclidean) type Ẽ8 and its relation extension C̃ is given by the quiver

1 8

7

4

2 6

5 10

3 9

φ

ωθ

κ

β

ξ

ε

η

α

γ

δ

µ ρ

σ

λ

with Keller potential

W = ωθϕ+ κβξ + αβε+ γδε+ ρδη + ρµσ.

It is easily seen to be cyclically oriented.
Further, there are 2 equivalence classes of chordless cycles, namely S1 = {ωθϕ} and S2 =

{κβξ, αβε, γδε, ρδη, ρµσ}. These may be represented in the diagram below. The bottom line
represents the intersection of the corresponding cycles

ωθϕ κβξ αβε γδε ρδη ρµσ

β ε δ ρ

Applying our theorem, we get dimk HH1(C̃) = 2.
The connected components of the diagram are precisely the equivalence classes. Accordingly,

the bimodule CEC has two indecomposable summands E = E1⊕E2, with Ei corresponding to
Si. Then E1 = CϕC is a simple module while E2 is 13−dimensional with top corresponding to
the new arrows ε, η and σ.

(b) Consider the tilted algebra C given by the quiver

5 4

1 2 3

δ β

ε

α

γ
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bound by εγ = 0, δαβ + δγ = 0. It is representation-infinite of euclidean type D̃4 and its
relation extension C̃ is given by the quiver

5 4

1 2 3

δ

β

ε

α

γ

λ

µ

with Keller potential W = λδαβ + λδγ + µεγ. It is not cyclically oriented, because it contains
the nonoriented chordless cycle given by the parallel paths (γ, αβ).

In this case, the same diagram as in example (a) show that we have just one equivalence
class

λδαβ λδγ µεγ

λδ γ

so that dimk HH1(C̃) = 1.
In contrast to the cyclically oriented case, the two cycles λδαβ and λδγ have more than one

arrow in common.

4. Proof of Theorem B

In this section, we give a geometric version of the main Theorem for cluster tilted algebras of
type Dn and D̃n, therefore we shall work with the geometric model of those algebras, namely the
triangulation of a n-polygon with one puncture and two punctures, respectively. Recall that a
triangulation T is any maximal collection of non-crossing arcs, which are isotopic classes of curves
with endpoints in the vertices of the n-polygon or the punctures and which are not isotopic to a
point or a boundary segment. We refer to the pair (S,T), as a triangulated punctured n-polygon.
Recall that the valency valτ (x) of a puncture x is the number of arcs in T incident to x, where each
loop at x is counted twice.

4.1. Unreduced potential for Dn and D̃n. In this case, any triangulation of a punctured
n-polygon S cuts the surface into ideal triangles, but also into a decomposition of puzzle pieces
[25], those puzzle pieces are fundamental to construct the quiver with potential of the triangulated
surface (S,T). In this decomposition, there are seven different triangles which are not self-folded
(boundary segments are coloured in grey), the first four types appears on type D and the last five
type could appear on type D̃.

Therefore the unreduced adjacency quiver Q̂(T) (as defined in [25]) is built by gluing blocks
corresponding to each kind of triangle, these identifications are allowed only in vertices of type •.

Following [28], the unreduced potential Ŵ (T) associated to T depends on the blocks of type II,
IV, V, and the cycles surrounding punctures. To fix notation, for each non self-folded triangle 4
of type II, IV or V, we denote by C4 the 3-cycle αβγ in the block of type II, IV or V respectively,
we denote by Cx the cycle surrounding the puncture x and by Cpq the 3-cycle α′β′γ′ in the block
of type V, which is surrounding both punctures p and q. Since there is a bijection between blocks
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Figure 1. Non self-folded triangles

• •

I

• •

•

II

α

βγ

2

•

2

IIIa

2

•

2

IIIb

2

• •

2

IV

γ′β′

β

α

γ

•

2 2

2 2

V

α′α

β

β′

γ′

γ

Figure 2. Quivers blocks.

and non self-folded triangles, we write the unreduced potential in terms of non self-folded triangles,
as follows:

Ŵ (T) =
∑

4 of type II, IV or V

C4 + Cp + Cq + Cpq.

In order to obtain the reduced quiver with potential (QT,WT) of the triangulated surface (S,M,T),
one needs an algebraic procedure to delete 2-cycles from the (non-necessarily 2-acyclic) quiver with
potential (Q̂T, ŴT). Such algebraic procedure is provided by Derksen-Weyman-Zelevinsky’s Split-
ting Theorem, see [24]. Recall that the unreduced quiver with potential (Q̂T, Ŵ (T) is already
reduced if and only if valT(x) 6= 2 for every puncture x, otherwise the reduction affects the 2-cycle
Cx surrounding x and the 3-cycles that share an arrow with the 2-cycle. Observe that a puncture
x of valency 2 could be involved in three different type of configurations depicted on Figure 3.

We give a geometric interpretation of relation ∼W in cycles in the reduced potential in terms
of internal triangles related to a puncture. Notice that not every cycle of a potential arises from
triangles and not every internal triangle gives a cycle in the reduced potential. In this section,
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A B C

Figure 3. Configurations of punctures with valency 2.

we work with two quivers with potential coming from the same surface, the reduced one and the
unreduced one.

Definition. Let (S,M,T) be a punctured triangulated surface. We said an internal triangles 4 is
related to a puncture x if one of the following conditions holds:

a) a side of 4 is incident to the puncture x;
b) the triangle 4 is part of a block of type IV, and x is the puncture of the digon;
c) the triangles 4 is part of a block of type V, and x is one of the puncture of the monogon.

Denote by 4Rel(x) the subset of internal triangles related to the puncture x and by 4Rel(x) the
subset of non self-folded internal triangles related to the puncture x. We set 4 ≈ 4′ in case
there exists a puncture x such that 4 and 4′ are related to it. Then ∼ is defined to be the least
equivalence relation containing ≈. Thus, ∼ is the transitive closure of ≈.

Remark. Denote by 4NRel(x,y) the subset of non self-folded triangles not related to x or y.

• By construction of Q̂(τ), the 3-cycles C4 and C4′ do not share arrows, for any pair of non
self-folded triangles 4 and 4′.
• The subset of non self-folded internal triangles is a disjoint union of 4Rel(x,y) t4NRel(x,y).
• If valτ (x) = 1, then | 4Rel(x) |≤ 2 and the equality holds if and only if the triangulation

has a triangle of type VI or V.
• By definition, if 4 is a triangle of type II, IV or V and 4 ∈ Rel(x), then the C4 is cycle

equivalent to Cx in the unreduced potential.

Lemma. Let 4 and 4′ be non self-folded internal triangles and C4 and C ′4 the 3-cycle associated
to each triangle. Then 4 and 4′ are related if and only if C4 and C4′ are cycle-equivalent in the
unreduced potential.

Proof. First of all, observe that if a triangle 4 of type V is part of the decomposition of puzzle
pieces induced by T, then the equivalence class [C4] is the set of the four 3-cycles of the block V,
therefore there is no other triangle 4′ such that 4 ∼ 4′. Assume that the decomposition of puzzle
pieces induced by T has no triangles of type V.

By definition 4 ≈ 4′ if and only if C4 ≈Ŵ (T) Cx ≈Ŵ(T)
C4′ , then it is clear that if 4′ ∼ 4,

then C4 ∼Ŵ (T) C4′ .
Now, suppose C4 and C4′ are cycle-equivalent. Let C4 = C0 ≈Ŵ (T) C1 ≈Ŵ (T) . . . Ck−1 ≈Ŵ (T)

Ck = C4′ be a sequence of cycles related by a common arrow such that Ci 6= Cj if and only if
i 6= j. Since no pair of 3-cycles associated to triangles of type II, IV or V shares arrows, the cycles
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C1 and Ck−1 are Cp or Cq, therefore 4 and 4′ are related to a puncture. If C1 = Ck−1, then both
triangles 4 and 4′′ are related to the same puncture, and by definition 4 ∼

Ŵ (T) 4
′.

Now suppose C1 6= Ck−1, without loss of generality suppose C1 = Cp and Ck−1 = Cq. We claim
there is a non self-folded internal triangle 4′′ related to p and q. By the minimality conditions over
the sequences of cycles and that no pair of 3-cycles associated to non self-folded internal triangles
shares arrow, then the sequences are either C4 = C0 ≈Ŵ (T) Cp ≈Ŵ (T) Cq ≈Ŵ (T) Ck = C4′ or
C4 = C0 ≈Ŵ (T) Cp ≈Ŵ (T) C4′′ ≈

Ŵ (T) Cq ≈Ŵ (T) Ck = C4′ where 4′′ is a non self-folded internal
triangle.

Suppose C4 = C0 ≈Ŵ (T) Cp ≈Ŵ (T) Cq ≈Ŵ (T) Ck = C4′ , then Cp and Cq share an arrow, and as
a consequence there is a non self-folded internal triangle 4′′ with two sides incident to p and q, as
we claim. Finally if C4 = C0 ≈Ŵ (T) Cp ≈Ŵ (T) C4′′ ≈

Ŵ (T) Cq ≈Ŵ (T) Ck = C4′ , and by definition
4′′ is related to p and q.

�

4.2. Reduced potential and proof of Theorem B. Until now, we have been working with
the equivalence classes of cycles of the unreduced potential Ŵ (T), it is easy to see that the number
of equivalence classes of cycles in the unreduced potential is less than or equal to the number of
equivalence classes of cycles in the reduced potential. This subsection is devoted to study unreduced
potentials and state and proof Theorem B.

Definition. Let (S,T) be a triangulated punctured n-polygon and x a puncture in (S,T).
We define the coefficient mx of x as follows

mx =

{
1 if valτ (x) ≥ 3 or | 4Rel(x) |≥ 2

0 otherwise

The following Lemma shows that the coefficient of a puncture is related to the number of equiv-
alence classes of cycle in the reduced potential. In the following lemma, we use right equivalence of
cycle in the sense of [24].

Lemma. Let (S,T) be a triangulated punctured n-polygon, x a puncture in (S,T) and

ϕ : P(Q̂T, ŴT)→ P(QT,WT)⊕ P(Qtriv,Wtriv)

the isomorphism of k-algebras induced by the Splitting Theorem. Then mx = 1 if and only if ϕ(Cx)
is right-equivalent to a cycle in WT.

Proof. Recall that Cx is by definition the cycle surrounding the puncture x, therefore Cx = 0 in
Ŵ (T) if and only if valT(x) = 1 and x in the puncture of a digon of type IIIa or IIIb, and in this
case mx = 0. Suppose Cx 6= 0.

Suppose mx = 0, by definition valT(x) ≤ 2 and | 4Rel(x) |≤ 1, then either x is in a configuration
IIIa or IIIb, and in this case Cx = 0 or x is in a configuration of type B, see Figure 3, and one of
the triangles is not an internal triangle, and as consequence ϕ(Cx) is right-equivalent to a cycle in
Wtriv.

Now suppose Cx 6= 0 and ϕ(Cx) is right-equivalent to a cycle in Wtriv, then valT(x) = 2, in this
case x is involved in a configuration of type B, and | 4Rel(x) |≤ 1, then by definition the coefficient
mx of x is zero. �
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Theorem. Let B be a cluster tilted algebra of type Dn or D̃n and (S, τ) its geometric realisation.
Then

dimk HH1(B) =| 4NRel(p,q) | +mp +mq −mp,q

where 4NRel(p,q) is the subset of internal non self-folded triangles which are not related to the
puncture p or q and mp,q is equal to one if and only if there exists a triangle 4 ∈ 4Rel(p)∩4Rel(q).

Proof. Let NW (T) be the number of indecomposable direct summands of the potential W (T) and
N
Ŵ (T) be the number of indecomposable direct summands of the unreduced potential Ŵ (T). We

claim that NW (T) =| 4NRel(p,q) | +mp +mq −mp,q.
By Remark 4.1,

Ŵ (T) =
∑

4 of type II, IV or V

C4 + Cp + Cq + Cpq =
∑

4∈4NRel(p,q)

C4 + Ŵ (T)p,q

where Ŵ (T)p,q =
∑

4∈4Rel(p,q)

C4 + Cp + Cq + Cpq.

Observe that each triangle 4 ∈ 4Nrel(p,q) induces an equivalence class of cycles [C4]Ŵ (T) in

Ŵ (T) of cardinality one, otherwise there exists a cycle C in Ŵ (T) such that C4 ≈W (T) C. Since
no pair of 3-cycle 4 and 4′ of type II, IV or V shares arrows, then C is one of the following
options: Cp, Cq or Cpq, and as consequence 4 is related to a puncture, which is a contradiction.
Moreover, observe that in case one needs to apply a reduction to Ŵ (T), no element of the sum∑
4∈4NRel(p,q)

C4 is affected. Therefore, NW (T) =| 4NRel(p,q) | +N ′W (T), where N
′
W (T) is the number

of indecomposable direct summands in the reduced part of Ŵ (T)p,q. Denote by W (T)p,q be the
reduced part of Ŵ (T)p,q.

Observe that if Cp,q 6= 0, then Ŵ (T)p,q is already reduced and moreover W (T)p,q is the sum of
the four 3-cycles in the block of type V, therefore N ′W (T) = 1 and by definition of the coefficient of
a puncture mp +mq −mp,q as well, as we claim.

Suppose Cp,q = 0, in this case ŴT is not necessarily reduced. Denote by ϕ the isomorphims of
k-algebras induced by the Splitting Theorem. Suppose ϕ(Cx) is right-equivalent to a cycle inW (T),
we claim that ϕ(C4) ∈ [ϕ(Cx)] for every 4 ∈ 4Rel(x). Suppose ϕ(Cx) = Cx then ϕ(C4) = C4 for
every 4 ∈ 4Rel(x) and by Lemma 4.1 {C4 | 4Rel(x)} ⊂ [Cx]. Now suppose ϕ(Cx) 6= Cx, then x is
involved in a configuration of type A or C, see Figure 3, therefore ϕ(Cx) = ϕ(C4) for every triangle
in 4Rel(x). As consequence, observe that mp,q 6= 1 if and only if [ϕ(Cq)] ∩ [ϕ(Cq) 6= ∅, therefore by
Lemma 4.2, NW (T ) is counting the number of equivalence classes in the reduced part of ŴT as we
claim. �

4.3. Geometric interpretation of admissible cuts. We give a geometric interpretation of an
important definition in this work: admissible cuts of quivers. It is known that in the unpunctured
case the quiver with potential of any triangulation admits cuts yielding algebras of global dimension
at most 2, see [22]. In the punctured case, some triangulations do not admit cuts, and even
when they do, the global dimension of the corresponding algebra may exceed 2, in [1] there is a
combinatorial characterisation of each of these two situations for ideal valency ≥ 3-triangulations.
In this work, we show an explicit construction of admissible cuts of quivers of Dynkin type Dn and
D̃n yielding algebras of global dimension at most 2 arising for ideal valency 1-triangulations.

Following [22], an admissible cut of the unpunctured triangulated surface (S,M,T) is a geometric
object which corresponds to cuts of the quiver QT. This construction consists in choosing exactly
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one angle in each internal triangle, and then the set consisting of the opposite arrows to each chosen
angle is an admissible cut of QT. Denote by (S,M,T,T†) the admissible cut of the unpunctured
triangulated surface (S,M,T) and by CT† be the induced algebra of the admissible cut.

Since any internal triangle in the decomposition of puzzle pieces induced by any ideal trian-
gulation of an unpunctured surface is of type II, the definition given in [22] is not enough in the
punctured case, however this definition is easily generalised to the self-folded internal triangles and
non self-folded internal triangles of type IV and V. Notice that any self-folded internal triangles,
which gives rise a cycle in the quiver, shares a side with an internal triangle of type IV or V, there-
fore it is enough to describe cuts in internal triangles of type IV or V. In a similar way, choosing
an angle in a internal triangle of type IV or V implies to consider the opposite arrow as well, but
in this case, this selection implies to choose the closest angle of the self-folded internal triangle,
and as consequence the two arrows facing each angle are elements of the admissible cut of Q(T), as
depicted in Figure 4. Therefore an admissible cut of a triangulated surface is a set of angles, one
for each non self-folded internal triangle.

•

2 2

2 2

2

• •

2

2

• •

2

2

• •

2

Figure 4. Cuts of Blocks

Proposition. Let (S,M,T) be an ideal valency 1-triangulation of a punctured polygon and (S,M,T,T†)
an admissible cut of (S,M,T). Then the algebra CT† induced by the admissible cut (S,M,T,T†) is
an admissible cut of BT. Moreover, CT† is anof global dimension at most two.

Proof. Let (S,M,T) be an ideal valency 1-triangulation of a punctured n-polygon and (S,M,T,T†)
an admissible cut of (S,M,T). As we mention before, the unreduced quiver with potential (Q̂(T), Ŵ (T))
is already reduced, and moreover, in this case, any oriented cycle in Q(T) is fully contained in a
block of type II, IV or V, and therefore also each term of the potential W (T). To prove that CT† is
an admissible cut it is enough to observe that any chordless oriented cycle in each block is cut just
once, see Figure 4.

Because the quiver Q(T) is built by gluing blocks corresponding to each kind of internal triangles
and these identifications are allowed only in vertices of type •, by definition the quiver Q(T†) is also
built by gluing the cut blocks, and the induced relations are either monomial relations or binomial
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relations fully contained in each cut block, therefore there are no consecutive relations, and as a
consequence the global dimension of CT† is at most two. �
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