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Resumo
Nesta tese, calculamos os momentos duplamente truncados, ou seja, em um hiper-retângulo,
para uma classe geral de distribuições assimétricas denominada família de seleção elíptica
multivariada. Essa grande família de distribuições inclui versões assimétricas multivariadas
complexas de distribuições elípticas bem conhecidas como as distributições normal, t de
Student, exponencial potência, hiperbólica, Slash, Pearson tipo II, normal contaminada,
entre outras.

Em quatro capítulos baseados em artigos, apresentamos formulações recorrentes para os
momentos de distribuições multivariadas duplamente truncadas e dobradas, expressões
explícitas para casos particulares como momentos univariados de ordem inferior, condições
suficientes e necessárias para a existência dos momentos truncados, comparação da eficiência
computacional entre modelos, estudos de simulação, abordagens otimizadas e aproximações
numéricas para casos especiais como casos limites, e momentos quando uma partição tem
volume quase zero ou não é truncada. Métodos para realizar estimação em modelos de
regressão multivariados assimétricos censurados são apresentados e mostrados através de
três aplicações da vida real. Além disso, resultados gerais para distribuições da família
mistura de escala normal são apresentados.

Os métodos propostos foram implementados no pacote MomTrunc do software R, um pacote
altamente otimizado que inclui rotinas C++ por meio do Rcpp, que fornece momentos
teóricos truncados, momentos Monte Carlo e outras funções de interesse como funções
de densidade de probabilidade, distribuições acumuladas e funções geradoras de variáveis
aleatórias para várias distribuições multivariadas simétricas e assimétricas.

Palavras-chave: Distribuições elípticas, Distribuições dobradas, Distribuições de seleção,
Distribuições truncadas, Momentos truncados



Abstract
In this thesis, we calculate doubly truncated moments, that is, in a hyper-rectangle, for a
general class of asymmetric distributions called the selection elliptical family multivariate.
This large family of distributions includes complex multivariate asymmetric versions of
well-known elliptical distributions as the normal, Student’s t, exponential power, hyperbolic,
Slash, Pearson type II, contaminated normal, among others.

In four paper-based chapters, we present recurrent formulations for moments of doubly
truncated and folded multivariate distributions, explicit expressions for particular cases as
univariate lower order moments, sufficient and necessary conditions for the existence of
truncated moments, comparison of computational efficiency between models, simulation
studies, optimized approaches as well as numerical approximation for special cases such as
limiting cases, and moments when a partition has almost zero volume or no truncation.
Methods for performing estimation on censored skewed multivariate regression models are
presented and showed through three real-life applications. Furthermore, general results for
the scale-mixture of normal distributions are presented.

The methods proposed have been implemented in the MomTrunc package of the R software,
a highly optimized package including C++ routines through Rcpp, that offers theoretical,
Monte Carlo truncated moments and other functions of interest as probability density,
cumulative distribution, and random generator functions for various symmetric and
asymmetric multivariate distributions.

Keywords: Elliptical distributions, Folded distributions, Selection distributions, Trun-
cated distributions, Truncated moments
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Introduction

From a probabilistic point of view, doubly truncated expectations have been
a problem of interest for a long time. From the first two one-sided truncated moments
for the normal distribution, useful in Tobin’s model (Tobin, 1958), its evolution led to
its extension to the multivariate case (Tallis, 1961), double truncation (Manjunath &
Wilhelm, 2009), heavy tails when considering the Student’s t bivariate case in Nadarajah
(2007), and finally the first two moments for the multivariate Student’s t case in Ho et al.
(2012).

Truncated expectations are usually used for estimation models in environmental
areas, survival analysis, finance, among others. Doubly truncated moments are very
important not only to model responses restricted in some interval (for example, ratios,
grades, assets portfolio return, etc), but in the context of censored interval models.

Limited or censored data are collected in many studies. This occurs, in several
practical situations, for many reasons such as limitations in measuring equipment or from
an experimental design. In consequence, the extra true value is recorded only if it falls
within an interval range, so, the responses can be either left, interval or right censored.
Missing values can be seen just as a particular case.

In addition to censored models, from a frequentist framework, moments are
required in step E of the Expectation-Maximization (EM) Dempster et al. (1977) algorithm,
when we consider the response Yi, i � 1, . . . , n, being an i.i.d. sample from a given distribu-
tion of interest. Knowing these expectations leads to closed EM algorithms, circumventing
Monte Carlo methods for estimating the E-step of the algorithm and consequently making
possible to fit complex models in a fraction of a time.

We center our attention to the selection elliptical (SE) family of distributions
(Arellano-Valle et al., 2006a), a wide class of multivariate asymmetric elliptical distributions.
Given the flexibility of this family, we can model features such as asymmetry, heavy tails
and multimodality, while interval censoring allows to consider additionally to interval-
censoring, missing values (at random) and left censoring for strictly positive responses
when considering intervals of the form p�8,8q and p0, cs respectively. The general results
for the SE family, involve all the moments previously used in the literature of censored
models in a frequentist point of view. Evidence of applicability and importance of these
models, are the three articles already submitted and one more currently in progress. It
is worth noting that the CensMFM package from R (De Alencar et al., 2019b) uses our
moments to model finite mixtures of censored or missing multivariate data. We know of at
least two jobs that are currently being developed using our moments.
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A brief walk-through

This work has been organized in six chapters, where chapters from 2 to 5
are papers (see technical production subsection 6.1 for more details). These last are in
chronological order with the purpose of passing the idea of the evolution of the research to
the reader.

A recursive approach: The main idea is to compute an arbitrary doubly truncated
product moment of a variable X, that is,

ErXk | a ¤ X ¤ bs � ErXk1
1 , . . . , X

kp
p | a1 ¤ X1 ¤ b1, . . . , ap ¤ Xp ¤ bps,

using a recursive approach departing from the probability Ppa ¤ X ¤ bq � Ppa1 ¤
X1 ¤ b1, . . . , ap ¤ Xp ¤ bpq as initial condition. Depending of the distribution of X, the
probability above can be hard to compute. For the normal and Student’s t distribution,
there exists efficient methods well implemented and available in most statistical softwares;
for instance, in R language, the mvtnorm (Genz & Bretz, 2009; Genz et al., 2020) and
tlrmvnmvt (Cao et al., 2019a,b) packages, this last being released lately in November
2019.

Recursion is developed by establishing a differential equation that involves the
density of X in question (see Kan & Robotti (2017)). This recursion allows calculating
the moments for truncated distributions which may have a complex moment generating
function (MGF) and cannot be treated by differentiation. Based on this recursive approach
were written two articles for the doubly truncated Student’s t and the extended skew-
normal (ESN) distribution, which are resumed in chapters 2 and 3 respectively. Also,
interesting general results for the scale mixture of normal distribution family using this
recursion can be found in Chapter 1. Notice that the ESN distribution includes the
well-known skew-normal (SN) distribution as particular case. Both articles aforementioned
also considered the moments for the positive multivariate variable |X|, that is, its folded
version.

In Chapter 3, we additionally established a 1-1 relationship between the mo-
ments of a truncated ESN distribution and the moments of a truncated normal distribution.
This led to a more efficient (and faster) algorithm since the number of required integrals
is smaller. Chapter 4 proposed estimation on interval-censored models for skew-normal
responses based on this last approach. Naturally, next step was to move forward to the
extended skew-t (EST) distribution (Arellano-Valle & Genton, 2010) in order to incorpo-
rate heavy tails, however, since ESN distribution results to be a member of the SLCT-EC
family, it was possible to write a general result for this class, which contains the EST
distribution itself.

A 1-1 relation: Assume that Y follows a distribution belonging to the SE class. Then,
we are able to compute any arbitrary moment of Y | pa ¤ Y ¤ bq, that is, a doubly
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truncated selection elliptical distribution just using an unique corresponding moment of a
doubly truncated elliptical distribution X | pα ¤ X ¤ βq, its symmetric version.

For instance, consider Y following a unified skew-t (SUT) distribution, a
complex multivariate asymmetric heavy-tailed distribution which includes the EST and
the skew-t (ST) distribution (Azzalini & Capitanio, 2003). Then, the first and second
truncated moment of Y can be calculated only using the first and second truncated moment
of a symmetric Student’s t distribution X, say, which moments were already proposed in
Chapter 2. It is worth mentioning that for any of the t distributions above their normal
analogous versions (the unified skew-normal (SUN), ESN and the SN distribution) are
retrieved when ν Ò 8.

This 1-1 relation is highly convenient since doubly truncated moments for some
members of the elliptical family of distributions are already available in the literature and
statistical softwares. For this reason, this thesis focuses mainly in complex asymmetric
versions of the normal and Student’s t distributions which probabilities of the form
Ppa ¤ X ¤ bq are available. Chapter 5 summarized this general results given some
emphasis to the doubly truncated SUT distribution, embedding all theoretical results in
chapters before.

Implementation: All methods described above have been coded in the R package
MomTrunc (Galarza et al., 2018). The package is able to calculate ErXk | a ¤ X ¤ bs
even for extreme cases as when the probability Ppa ¤ X ¤ bq � 0 due to extreme
parameter settings, integration limits, or even the numerical precision of the machine.
For example, the only other package that calculates truncated moments for the normal
case, the tmvtnorm package (Wilhelm & Manjunath, 2015), under the extreme conditions
mentioned above, it returns values NaNs and even negative variances. In particular, in
contrast with the TTmoment package (Ho et al., 2015) for Student’s t case, the package
is capable of calculating the moments for degrees of freedom ν   5 and even decimals,
for example ν � 2.17. It worth mentioning that moments for a double truncated variable
always exist (for Student t case, for ν ¡ 0), since it is limited. In addition to the moments,
our package provides Ppa ¤ X ¤ bq probabilities for different members of the multivariate
SE family, including the option of returning the logarithm in base 2, useful when true
probability is much less than the precision of the machine.

Algorithms for the normal case have been coded in R from their original versions
in Matlab available in Kan & Robotti (2017). To the best of our knowledge, until the
beginning of 2018, there were only one available package in R offering doubly truncated
moments for the normal distribution (tmvtnorm) and only one for the Student’s t case
(TTmoment). Since its release in February 2018, the MomTrunc package has been downloaded
almost 9000 times, a significant number considering that this is a specialized package.
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Structure of the thesis
The organization of the thesis is as follows:

Chapter 1:We provide some background material. We review some definitions,
methodologies and we describe some datasets used throughout the thesis.

Chapter 2: This Chapter develops recurrence relations for integrals that
involve the density of multivariate Student’s t distributions. The proposed techniques
allow for fast computation of arbitrary-order product moments of folded and truncated
multivariate Student’s t distributions and offer explicit expressions of their low-order
moments. We propose an optimized algorithm that outperforms other methods in the
literature, which can deal with missing data in the response at not computational cost.
The usefulness and effectiveness of the proposed techniques are demonstrated through
both simulated and real data, where we show its usefulness on censored regression models
with missing data.

Chapter 3: We extend the recurrence approach to integrals related to asym-
metric multivariate densities. Specifically, we compute recurrence relations involving the
density of the ESN distribution, including the well-known SN distribution introduced by
Azzalini & Dalla-Valle (1996) and the popular multivariate normal distribution. These
recursions offer a fast computation of arbitrary order product moments of the multivari-
ate truncated ESN and multivariate folded ESN (FESN) distributions with the product
moments as a byproduct. In addition to the recurrence approach, we realized that any
arbitrary moment of the truncated multivariate extended skew-normal distribution can be
computed using a corresponding moment of a truncated multivariate normal distribution,
pointing the way to a faster algorithm since a less number of integrals is required for
its computation which result much simpler to evaluate. Since there are several methods
available to calculate the first two moments of a multivariate truncated normal distribution,
we propose an optimized method that offers a better performance in terms of time and
accuracy, in addition to consider extreme cases in which other methods fail.

Chapter 4: The need for asymmetric distributions for the random errors on
linear censored models, motivate us to develop a likelihood-based inference for linear
models with censored responses based on the multivariate SN distribution. Most linear
and nonlinear regression models used to analyze censored data are based on the normality
assumption for the error term. However, such analyses might not provide robust inference
when the normality assumption (or symmetry) is questionable. The proposed EM algorithm
for maximum likelihood estimation uses closed-form expressions at the E-step, that are
based on formulas for the mean and variance of a truncated multivariate skew-normal
distribution, computed in the Chapter before. Three datasets with censored and/or missing
observations are analyzed and discussed.
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Chapter 5: We generalize all results before to the class of asymmetric dis-
tributions called the selection elliptical (SE) family of distributions, a family including
complex multivariate asymmetric versions of well-known elliptical distributions as the
normal, Student’s t, among others. We address the moments for doubly truncated members
of this family, establishing neat formulation for high order moments as well as for its
first two moments. We establish sufficient and necessary conditions for the existence of
these truncated moments. Also, we propose optimized methods able to deal with extreme
setting of the parameters, partitions with almost zero volume or no truncation. A brief
numerical study is presented in order to validate the methodology. A direct application
of ST truncated moments is developed in the context of risk measurement in Finance.
Useful expressions in censored modeling are presented, which have been particularized to
the SUT distribution, a complex multivariate asymmetric heavy-tailed distribution which
includes the EST (ESN) and ST (SN) distribution as particular cases. Finally, we conclude
the chapter proposing estimation on interval-censored models for skew-t responses based
on this last expressions.

Chapter 6: We present some final remarks, technical production and further
researches related to this thesis.
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1 Preliminaries

We begin our exposition by defining the notation and presenting some basic
concepts and some useful results which are used throughout the development of this thesis.
As is usual in probability theory and its applications, we denote a random variable by
an upper-case letter and its realization by the correspondent lower case and use boldface
letters for vectors and matrices. Let Ip represent a p � p identity matrix, AJ be the
transpose of A, and |X| � p|X1|. . . . , |Xp|qJ denote the absolute value of each component
of the vector X. For multiple integrals, we use the shorthand notation» b

a
fpxqdx �

» b1

a1

. . .

» bp

ap

fpx1, . . . , xpqdxp . . . dx1.

where a � pa1, . . . , apqJ and b � pb1, . . . , bpqJ. For two p-dimensional random vectors
x � px1, . . . , xpqJ and κ � pk1, . . . , kpqJ, let xκ stand for pxκ1

1 , x
κ2
2 , . . . , x

κp
p q. General results

to compute the probability of a random vector lying in a hyper-rectangle are summarized
in the following results.

Lemma 1.1. Let X be a p-variate random vector with joint probability density function
(pdf) fXpx;θq and cumulative density function (cdf) FXpx;θq. Let A be a Borel set in Rp

of the form

A � tpx1, . . . , xpq P Rp : a1 ¤ x1 ¤ b1, . . . , ap ¤ xp ¤ bpu � tx P Rp : a ¤ x ¤ bu. (1.1)

Then PpX P Aq �
¸

sPSpa,bq
p�1qnsFXps;θq, where Spa,bq � ts : s � ps1, . . . , spq with

si � tai, biu, i � 1, . . . , pu and ns �
p̧

i�1
1psi � aiq with 1p�q being the indicator function.

Proof. Based on the inclusion-exclusion principle, the probability PpX P Aq � Ppa ¤ X ¤
bq can be computed by summing the 2p terms corresponding to the s elements in the
solution space of Spa,bq, where the term signs depend on the number of a’s elements in
the vector s, i.e., ns.

Theorem 1.1. Let X be a p-variate random vector with joint pdf fXpx;θq and joint cdf
FXpx;θq. If Y � |X|, then the joint pdf and cdf of Y that follows a folded distribution are
given, respectively, by

fYpyq �
¸

sPSppq
fXpΛsy;θq, for y ¥ 0,

and FYpyq �
¸

sPSppq
πsFXpΛsy;θq, where Sppq � ts : s � ps1, . . . , spq, with si � �1, i �

1, . . . , pu, Λs � Diagpsq and πs �
p¹
i�1

si.
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Proof. The distribution function FYpyq can be calculated as a particular case of Lemma
1.1, when a � �y and b � y. It follows that

FYpyq � Pp�y ¤ X ¤ yq
� Pp�y1 ¤ X1 ¤ y1,�y2 ¤ X2 ¤ y2, . . . ,�yp ¤ Xp ¤ ypq
� FXpyq �

¸
i

FXpy-piqq �
¸
i j

FXpy-pi,jqq �
¸

i j k

FXpy-pi,j,kqq � . . .� p�1qpFXp�yq,

(1.2)

where y�piq denotes the y vector with its ith elements multiplied by �1. For instance,
we have that y-piq � py1, y2, . . . , yi�1,�yi, yi�1, . . . , ypq. It is easy to see that FYpyq can be

written as FYpyq �
¸

sPSppq
πsFXpΛsy;θq, with the constant πs �

p¹
i�1

si providing the signs

p�1, 1q correctly for each summand in (1.2). As a result, we have the joint pdf of Y � |X|
given by

fYpyq � Bp
By1By2 . . . BypFYpyq

� fXpyq � p�1q
¸
i

fXpy-piqq � p�1q2
¸
i j

fXpy-pi,jqq � p�1q3
¸

i j k

fXpy-pi,j,kqq

� � � � � p�1q2pfXp�yq
� fXpyq �

¸
i

fXpy-piqq �
¸
i j

fXpy-pi,jqq �
¸

i j k

fXpy-pi,j,kqq � . . .� fXp�yq

�
¸

sPSppq
fXpΛsy;θq.

Note that we have conveniently used fXpxq instead of fXpx;θq for simplicity.

Corollary 1.1. If X � fXpx; ξ,Ψq belongs to the location-scale family of distributions
with location and scale parameters ξ and Ψ respectively, then the joint pdf and cdf of
Y � |X| are given by

fYpyq �
¸

sPSppq
fXpy; Λsξ,ΛsΨΛsq, for y ¥ 0,

and
FYpyq �

¸
sPSppq

πsFXpΛsy; ξ,Ψq.

Proof. By using the change-of-variable method for Zs � ΛsX, then fZspyq � fXpΛsyq since
Λ�1
s � Λs, J � Λs and | detpJq| � 1, where J is the Jacobian matrix of the transformation.

Additionally, if X � fXp�; ξ,Ψq belongs to the location-scale family of distributions with
location and scale parameters ξ and Ψ, respectively, then Zs � ΛsX � fXpz; Λsξ,ΛsΨΛsq.
By Theorem 1.1, we obtain fYpyq and FYpyq accordingly.
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Corollary 1.1 generalizes the results of Chakraborty & Chatterjee (2013) for
the folded multivariate normal (FMVN) case to all distributions belong to the multivariate
location-scale family.

Corollary 1.2. Under the same conditions of Corollary 1.1, we have that

ErYκs �
¸

sPSppq
ErZ�κ

s s, where X� � X � 1pX ¡ 0q.

Proof. By the simple property of probability theory, we can deduce that» 8

0
yκfYpyqdy �

¸
sPSppq

» 8

0
yκfXpy; Λsξ,ΛsΨΛsqdy

�
¸

sPSppq

» 8

0
yκfZspyqdy

�
¸

sPSppq
ErZ�κ

s s.

1.1 Moments of doubly truncated scale mixture of normal distribu-
tions

1.1.1 Scale mixture of normal distributions (SMN)

An element of the symmetrical class of scale mixture of multivariate normal
distributions (Andrews & Mallows, 1974; Lange & Sinsheimer, 1993) is defined as the
distribution of the p-variate random vector

y � µ� ζpUq1{2Z, (1.3)

where µ is a location vector, Z is a normal random vector with mean vector 0, variance–
covariance matrix Σ, U is a positive random variable with cumulative distribution function
(cdf) Hpu;νq and probability density function (pdf) hpu;νq, independent of Z, where ν is
a scalar or parameter vector indexing the distribution of U and ζp�q is the weight function.
Note that given U � u, y follows a multivariate normal distribution with mean vector µ
and variance–covariance matrix ζpuqΣ. Hence, the pdf of y is given by

SMNppy;µ,Σ,νq �
» 8

0
φppy;µ, ζpuqΣqdHpu;νq, (1.4)

where φpp�;µ,Σq stands for the pdf of the p–variate normal distribution with mean vector
µ and covariate matrix Σ. We use the notation SMNppµ,Σ;Hq when Y has distribution
in the SMN class.

Three scale mixture of normal distributions are commonly used for robust
estimation which share same weight function ζpuq � 1{u:
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 The multivariate Student–t distribution, tppµ,Σ, νq, where ν is called the degrees of
freedom, can be derived from the mixture model (1.3), where U is distributed as
Gammapν2 , ν2 q, with ν ¡ 0. The pdf of y takes the following hierarchical form

tppy;µ,Σ, νq �
» 8

0
φppy;µ, u�1ΣqhUpuqdu. (1.5)

been equivalent to (2.1).

 The multivariate slash distribution, SLppµ,Σ, νq, arises when the distribution of U
is Betapν, 1q, with u P p0, 1q and ν ¡ 0. Its pdf is given by

SLppy;µ,Σ, νq � ν

» 1

0
uν�1φppy;µ, u�1Σqdu, y P Rp,

and can be evaluated through numerical method, for example, using the R function
integrate.

 The multivariate contaminated normal distribution, CNppµ,Σ, ν, ρq, where ν, ρ P
p0, 1q. Here, U is a discrete random variable taking one of two states and with
probability function given by

hpu;νq � ν1tu � ρu � p1� νq1tu � 1u,

where ν � pν, ρq. The associated density is

CNppy;µ,Σ,νq � νφppy;µ, ρ�1Σq � p1� νqφppy;µ,Σq.

The parameter ν can be interpreted as the proportion of outliers while ρ may be
interpreted as a scale factor.

Now, let TSMNppµ,Σ,H;Aq represent a p-variate truncated SMN (TSMN)
distribution for SMNppµ,Σ;Hq lying in the hyper-rectangle A as defined in (1.1). We may
also use the notation TSMNppµ,Σ, ν; pa,bqq for simplicity. Specifically, we say that the
p-dimensional vector X � TSMNppµ,Σ,H;Aq, if its density is given by:

TSMNppx;µ,Σ,ν;Aq � SMNppy;µ,Σ,νq³b
a SMNppy;µ,Σ,νqdy

, a ¤ x ¤ b. (1.6)

1.1.2 A recursive approach for TSMN moments

Let suppose that Y � SMNppµ,Σ;Hq. From (1.4) we have that the density
function of Y, fYpyq M� SMNppy;µ,Σ,νq is given by

fYpyq � EU rφppy;µ, ζpUqΣqs . (1.7)
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Kan & Robotti (2017) proposed a recurrence relation for the moments of a multivariate
normal (MVN) distribution based on a differential equation of its pdf φppy;µ,Σq, that is

� B
Byφp py|µ,Σq � Σ�1py� µqφp py;µ,Σq , (1.8)

which is obtained by multiplying both sides by yκ and then integrating both sides from a
to b with respect to y. Following the same exercise for the pdf of Y, say fYpyq, it follows
from the equation above that

� B
ByfYpyq � EU

�
B
Byφp py;µ, ζpUqΣq

�
� Σ�1py� µqEU

�
ζpUq�1φp py;µ, ζpUqΣq�

� Σ�1py� µqEU
�
ζpUq�1fY|Upyq

�
, (1.9)

with Y|U � u � Nppµ, ζpuqΣq. Note that, the derivative and the expectation in the first
line of (1.9) can be interchanged due to the Leibniz rule. As seen, the right side depends
on the mixture variable U . Next, we compute EU

�
ζpUq�1fY|Upyq

�
for particular cases of

interest.

1.1.2.1 Particular Cases

1. Multivariate normal distribution: This is trivial , since U is a degenerated random
variable in 1, that is, PpU � 1q � 1. Then ζpuq�1fY|Upyq � fYpyq and consequently
we recover expression (1.8).

2. Multivariate Student-t distribution: For U � Gammapν2 , ν2 q and a weight function
ζpuq � u�1, it follows from equation (1.9) that

� B
Bytp py;µ,Σ, νq � Σ�1py� µqEUrUφp py;µ, U�1Σqs

� Σ�1py� µq tp
�
y;µ, ν

ν�2Σ, ν � 2
�
. (1.10)

Proof. Setting ζpuq � u�1, with U � Gammapν2 , ν2 q, it follows that,

EU
�
Uφp

�
y;µ, U�1Σ

�� �
» 8

0

�
ν
2

� ν
2

Γ
�
ν
2

�u ν2 e� ν
2uφp

�
y;µ, u�1Σ

�
du

�
�
ν
2

� ν
2

Γ
�
ν
2

� |2πΣ| 12 Γ
�
p�ν�2

2 , δpyq�ν2

	
,

�
�
ν
2

� ν
2
�
ν�2
ν

� p�ν�2
2

Γ
�
ν
2

� |2πΣ| 12 Γ
�
p�ν�2

2 , ν�2
ν

�
δpyq�ν

2

		



Chapter 1. Preliminaries 29

where δpyq � py�µqJΣ�1py�µq is the Mahalanobis distance and Γpα, λq represents
the two parameter Gamma function,

Γpα, λq �
» 8

0
uα�1 expp�λuqdu.

After some algebra we obtain,

EU
�
Uφp

�
y;µ, U�1Σ

�� �
» 8

0

1
p2πq p2 ��p ν

ν�2qu�1Σ
�� 1

2
exp

 �u
2

�
ν�2
ν

�
δpyq(

�
�
ν�2

2

� ν�2
2

Γ
�
ν
2

� u
ν�2

2 �1 exp
 � �

ν�2
2

�
u
(

du,

�
» 8

0
φp

�
y;µ, u�1 ν

ν�2Σ
�
hV puqdu,

� tp
�
y;µ, ν

ν�2Σ, ν � 2
�
,

where V � Gamma
�
ν�2

2 , ν�2
2

�
. This completes the proof.

3. Multivariate Slash distribution: For this case, we have that U � Betapν, 1q and same
weight function ζpuq � u�1. Then,

EUrUφp py;µ, U�1Σqs �
»
uφp

�
y;µ, u�1Σ

�
hpuqdu

�
» 1

0
νupν�1q�1φp

�
y;µ, u�1Σ

�
du

� ν

ν � 1SLpy;µ,Σ, νq. (1.11)

Hence,

� B
BySLppy;µ,Σ, νq � ν

ν � 1Σ�1py� µqSLppy;µ,Σ, ν � 1q. (1.12)

4. Multivariate Contaminated normal (CN) distribution: Since the pdf of Y is a finite
mixture of two normal densities, it follows directly that

� B
ByCNppy;µ,Σ,νq � � B

By
�
νφppy;µ, ρ�1Σq � p1� νqφppy;µ,Σq�

� Σ�1py� µq �νρφppy;µ, ρ�1Σq � p1� νqφppy;µ,Σq� .
Note that EUrUφp py;µ, U�1Σqs � νρφppy;µ, ρ�1Σq�p1�νqφppy;µ,Σq, where this
last is not proportional to a CN density. This breaks the recurrence relation of CN
moments; however, it is easy to realize that any CN moment is a finite mixture of
normal moments as well.
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1.1.3 Mean and Covariance Matrix of Truncated Multivariate SMN distribu-
tions

Let Z � TNppµ,Σ;Aq be a doubly truncated multivariate normal over the
truncation region A, that is with truncation limits a and b. Kan & Robotti (2017) showed
that

ErZis � µi � 1
Lppa,b;µ,Σq

p̧

j�1
σijrφ1paj;µj, σ2

j qLp�1papjq,bpjq, µ̃
a
j , Σ̃jq

� φ1pbj;µj, σ2
j qLp�1papjq,bpjq, µ̃

b
j, Σ̃jqs, i � 1, . . . , p, (1.13)

where

µ̃aj � µpjq �Σpjq,j
aj � µj
σ2
j

, (1.14)

µ̃bj � µpjq �Σpjq,j
bj � µj
σ2
j

, (1.15)

Σ̃j � Σpjq,pjq � 1
σ2
j

Σpjq,jΣj,pjq. (1.16)

and Lppa,b;µ,Σq �
» b

a
φppx;µ,Σ,νqdx.

Let W � TSMNppµ,Σ,H;Aq be a truncated multivariate SMN distribution
with density function as in 1.6. Then, its mean is given by

ErWs � 1³b
a SMNppx;µ,Σ,νqdx

» b

a
wSMNppw;µ,Σ,νqdw

� 1³b
a SMNppx;µ,Σ,νqdx

» b

a
w
» 8

0
φppw;µ, u�1ΣqhUpuqdudw

� 1³b
a SMNppx;µ,Σ,νqdx

» 8

0

» b

a
wφppw;µ, u�1ΣqdwhUpuqdu,

where we have used expression (1.4) and Fubini’s rule.

Noting that,
» b

a
xφppx;µ,Σqdx � Lppa,b;µ,ΣqErZs, it follows from (1.13)

that » b

a
wφppw;µ, u�1Σqdw � µLppa,b;µ, u�1Σq � u�1Σd,

where the j-th element of d is given by

dj � φ1paj;µj, u�1σ2
j qLp�1papjq,bpjq; µ̃aj , u�1Σ̃jq

� φ1pbj;µj, u�1σ2
j qLp�1papjq,bpjq; µ̃bj, u�1Σ̃jq.

It follows that

ErWs � µ� 1³b
a SMNppx;µ,Σ,νqdx

ΣpqHa � qHb q, (1.17)
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where the j-th element of qHa and qHb are

qHa,j � EU rU�1φ1paj;µj, U�1σ2
j qLp�1papjq,bpjq; µ̃aj , U�1Σ̃jqs, (1.18)

qHb,j � EU rU�1φ1pbj;µj, U�1σ2
j qLp�1papjq,bpjq; µ̃bj, U�1Σ̃jqs. (1.19)

Furthermore, let ei � r0i�1, 1,0p�is, that is, a vector of zeros with a 1 in the
ith position. Hence,

ErWκ�eis � 1³b
a SMNppx;µ,Σ,νqdx

» b

a
wκ�eiSMNppw;µ,Σ,νqdw

� 1³b
a SMNppx;µ,Σ,νqdx

» b

a
wκ�ei

» 8

0
φppw;µ, u�1ΣqhUpuqdudw

� 1³b
a SMNppx;µ,Σ,νqdx

» 8

0

» b

a
wκ�eiφppw;µ, u�1ΣqdwhUpuqdu.

From Kan & Robotti (2017) (Theorem 1), we have» b

a
wκ�eiφppw;µ, u�1Σqdw � µi

» b

a
wκφppw;µ, u�1Σqdw� u�1eJi Σcκ,

where cκ is an p-vector with j-th element

cκ,j � �
» b

a
wκBφppw;µ, u�1Σq

Bwj dw

� kjF
p
κ�ejpa,b;µ, u�1Σq � a

kj
j φ1paj;µj, u�1σ2

j qF p�1
κpjq

papjq,bpjq; µ̃aj , u�1Σ̃jq
� b

kj
j φ1pbj;µj, u�1σ2

j qF p�1
κpjq

papjq,bpjq; µ̃bj, u�1Σ̃jq,

Using the above equation, we obtain the following recurrence relation

ErWκ�eis � µiErWκs � eJi ΣdHκ³b
a SMNppx;µ,Σ,νqdx

, (1.20)

where dHκ � EU rU�1cκs. Using these results and let DH � rdHe1 , . . . ,d
H
eps, we can write

ErWWJs � µErWsJ � 1³b
a SMNppx;µ,Σ,νqdx

ΣDH , (1.21)

covrWs � 1³b
a SMNppx;µ,Σ,νqdx

ΣpDH � pqHa � qHb qErWsJq. (1.22)

Using the recurrence formula in (1.20), we are able to compute any product
moment of W with the vector dHκ depending on the mixture distribution Hpu;νq. Particular
expressions for expectations in terms qHa , qHb and DH , involved in the first two moments
of a TSMN distribution are presented next.
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1.1.3.1 Student-t case

Lemma 1.2. Suppose U � Gpν2 , ν2 q. For ν ¡ 2, we have that

EU rU�1φppw;µ, u�1Σqs � ν

ν � 2tp
�
w;µ, ν

ν�2Σ, ν � 2
�
, (1.23)

and hence

EU rU�1φppw;µ, u�1Σq|Wj � ajs � EU rU�1φ1paj;µj, u�1σ2
j qφp�1pwpjq, µ̃

a
j , u

�1Σ̃jqs
� ν

ν � 2t1paj;µj, σ
�2
j , ν � 2qtp�1pwpjq; µ̃aj , Σ̃a

j , ν � 1q.

Note that last equation holds since the Student’s t distribution is closed under conditioning.
Proof for lemma 1.2 is similar to proof of (1.10). Integrating both sides of (1.23) from a
to b, it is easy to see that

EU rU�1Lppa,b;µ,Σqs � ν

ν � 2Lppa,b;µ, ν
ν�2Σ, ν � 2q,

where Lppa,b;µ,Σ, νq �
» b

a
tppw;µ,Σ,νqdw.

1.1.3.2 Slash case

For the truncated multivariate Slash distribution, we can propose the following
lemma.

Lemma 1.3. Suppose U � Betapν, 1q. We have

EU rU�1φppw;µ, u�1Σqs �
» 1

0
νupν�1q�1φp

�
y;µ, u�1Σ

�
du

� ν

ν � 1SLppy;µ,Σ, ν � 1q, for ν ¡ 1.

Unfortunately, we can not derive analogous closed form expressions for the
Slash case as in lemma 1.2 since the lack of closure over conditioning property of the Slash
distribution. Hence, only the first summand of dκ,j can be simplified and consequently
we should appeal to numerical methods for the other two terms. This would lead to an
inefficient recurrence scheme so it will not be part of this work.

1.1.3.3 Contaminated normal case

Since the multivariate contaminated normal distribution is a finite mixture of
two MVN distributions, any arbitrary moment for its truncated version can be computed
as a mixture of TMVN moments as well. That is,» b

a
xκCNppx;µ,Σ,νqdx � ν

» b

a
xκφppx;µ, ρ�1Σqdx � p1� νq

» b

a
xκφppx;µ,Σqdx,
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� νF p
κpa,b;µ, ρ�1Σq � p1� νqF p

κpa,b;µ,Σq. (1.24)

For X0 � CNppµ,Σ,νq, it follows that

ErXκ
0 |a ¤ X0 ¤ bs � νπ1ErXκ

1 |a ¤ X1 ¤ bs � p1� νqπ2ErXκ
2 |a ¤ X1 ¤ bs

π0
, (1.25)

where π0 � Ppa ¤ X0 ¤ bq, π1 � Ppa ¤ X1 ¤ bq and π2 � Ppa ¤ X2 ¤ bq, with
X1 � Nppµ, ρ�1Σq and X2 � Nppµ,Σq.

1.2 Case studies
In this section we present the motivating datasets, which will be analyzed in

this thesis.

1.2.1 Concentration levels data

This dataset consists of concentration levels of certain dissolved trace metals
in freshwater streams across the Commonwealth of Virginia. The data were provided
by the Virginia Department of Environment Quality (VDEQ). It is very important to
determine the quality of Virginia’s water resources across the state to guide their safe
use. The methodology adopted must neither underestimate nor overestimate the levels
of contamination, as otherwise the results can compromise public health, environmental
safety or can unfairly restrict local industry.

The data consist of the concentration levels of the dissolved trace metals copper
(Cu), lead (Pb), zinc (Zn), calcium (Ca) and magnesium (Mg) from 184 independent
randomly selected sites in freshwater streams across Virginia. The Cu, Pb, and Zn
concentrations are reported in µg/L of water, whereas Ca and Mg concentrations are
suitably reported in mg/L of water. Since the measurements are taken at different times,
the presence of multiple limit of detection values is possible for each trace metal (VDEQ,
2003). The limit of detection is 0.1µg/L for Cu and Pb, 1.0mg/L for Zn, 0.5mg/L for
Ca and 1.0mg/L for Mg. The percentages of left-censored values are 2.7% for Ca, 4.9%
for Cu, 9.8% for Mg, which are small in comparison to 78.3% for Pb and 38.6% for Zn.
Also note that 17.9% of the streams had 0 non-detected trace metals, 39.1% had 1, 37.0%
had 2, 3.8% had 3, 1.1% had 4, and 1.1% had 5. Figure 1 shows the histograms for the
concentration levels study.

1.2.2 Apple data

Apple data (Little & Rubin, 1987) is a small dataset frequently used in missing
data literature which contains partially observed measurements of hundreds of fruits yi1
and 100 times the percentage of wormy fruits yi2 on 18 apple trees. In this dataset, the
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Figure 1 – VDEQ data. Histograms for the concentration levels study. Complete observed
points are represented in gray bins while censored observations are represented
by blue bins. Limits of detection are represented in dashed lines.

observations y1i and y2i, for i � 1, . . . , 12, are fully observed, while y2i, for i � 13, . . . , 18,
are missing (see Table 1).

Table 1 – Apple data.

y1k 8 6 11 22 14 17 18 24 19 23 26 40 4 4 5 6 8 10
y2k 59 58 56 53 60 45 43 42 39 38 30 27 - - - - - -

1.2.3 Wine data

Wine data represent 27 chemical measurements on each of 178 wine specimens
belonging to three types of wine produced in the Piedmont region of Italy and is available
in the SN library at CRAN repository (Azzalini, 2020). The data have been presented and
examined by Forina et al. (1986) and were freely accessible until a few years ago.

The 28 variables are: wine, wine name (categorical variable, i.e. factor, with
levels Barbera, Barolo, Grignolino); alcohol, alcohol percentage (numeric); sugar, sugar-
free extract (numeric); acidity, fixed acidity (numeric); tartaric, tartaric acid (numeric);
malic, malic acid (numeric); uronic, uronic acids (numeric); pH, pH (numeric); ash,
ash (numeric); alcal_ash, alcalinity of ash (numeric); potassium, potassium (numeric);
calcium, calcium (numeric); magnesium, magnesium (numeric); phosphate, phosphate
(numeric); cloride, chloride (numeric); phenols, total phenols (numeric); flavanoids,
flavanoids (numeric); nonflavanoids, nonflavanoid phenols (numeric); proanthocyanins,
proanthocyanins (numeric); colour, colour intensity (numeric); hue, hue (numeric), OD_dw
OD280{OD315 of diluted wines (numeric); OD_fl, OD280{OD315 of flavanoids (numeric);
glycerol, glycerol (numeric); butanediol, 2,3-butanediol (numeric); nitrogen, total
nitrogen (numeric), proline, proline (numeric); and methanol, methanol (numeric).

This dataset avaiable in SN package does not contain the“sulphate” variable.
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2 On moments of folded and truncated mul-
tivariate Student’s t distributions via recur-
rence relations

2.1 Introduction
The multivariate Student’s t (MVT) distribution has played over the past

decades a crucial role in statistical analysis because it offers a more viable alternative
with respect to real-world data, in particular due to its properties of having harmonizing
parameter (called the degrees of freedom) to control the thickness of tails and including the
multivariate normal (MVN) distribution as a limiting case. Both the MVT and the MVN
are members of the general family of elliptically symmetric distributions whose properties
have been widely studied (Fang et al., 1990). Some recent applications in the areas such as
spatial models (De Bastiani et al., 2015), linear mixed effects models (Pinheiro et al., 2001;
Savalli et al., 2006), multivariate linear mixed effects models (Wang & Fan, 2011; Wang &
Lin, 2014), mixture modelling (Peel & McLachlan, 2000), missing data imputation (Wang
et al., 2017) and Bayesian statistical modeling (Fonseca et al., 2008; Wang & Lin, 2015),
have been broadly studied.

On the other hand, for many applications on simulations or experimental
studies, the researches often generate a large number of datasets with values restricted to
fixed intervals. For example, variables such as pH, grades, viral load in HIV studies and
humidity in environmental studies, have upper and lower bounds due to detection limits,
and the support of their densities is restricted to some given intervals. Thus, the necessity
of studying the truncated distributions along with their properties arises naturally. In
this context, there has been a growing interest in evaluating the moments of truncated
distributions. For instance, Tallis (1961) provided the formulae for the first two moments
of truncated multivariate normal (TN) distributions. Lien (1985) gave the expressions for
the moments of truncated bivariate log-normal distributions with applications to testing
the Houthakker effect in future markets. Jawitz (2004) derived the truncated moments of
several continuous univariate distributions commonly applied to hydrologic problems. Kim
(2008) provided analytical formulae for moments of the truncated univariate Student’s t
distribution in a recursive form. Flecher et al. (2010) obtained expressions for the moments
of truncated skew-normal distributions (Azzalini, 1985) and applied the results to model
the relative humidity data. Genç (2013) studied the moments of a doubly truncated member
of the symmetrical class of normal/independent distributions and their applications to
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the actuarial data. Ho et al. (2012) presented a general formula to compute the first two
moments of the truncated multivariate Student’s t (TMVT) distribution based on the
moment generating function (MGF) of the TMVN by expressing a TMVT random variable
as a TMVN scale mixture variable. Arismendi (2013) provided explicit expressions for
computing arbitrary-order product moments of the TMVN distribution by using the MGF.
However, the calculation of this approach relies on differentiation of the MGF and can be
prohibitively time consuming.

Instead of differentiating the MGF of the TN distribution, Kan & Robotti
(2017) recently presented recurrence relations for integrals that involve directly the density
of the MVN distribution for computing arbitrary order product moments of the TMVN
distribution. These recursions offer fast computation of the moments of folded (FMVN)
and TMVN distributions, which require evaluating p-dimensional integrals that involve
the MVN density. Explicit expressions for some low order moments of FMVN and TMVN
distributions are presented. Although some proposals to calculate the moments of the
truncated Student’s t distribution (Kim, 2008; Ho et al., 2012) have been recently published
so far, to the best of our knowledge, there is no attempt on studying the product moments
of folded (FMVT) and TMVT distributions. In this paper, we develop recurrence relations
for integrals involving the density of MVT distributions based on the idea of Kan & Robotti
(2017). The proposed recursions allow fast computation of the product moments of the
FMVT and TMVT distributions. The proposed new methodology has been implemented
in the R package MomTrunc (Galarza et al., 2018) available on CRAN repository.

The rest of this paper is organized as follows. In Section 2.2, we define the
notation and briefly discuss some preliminary results related to the MVT, TMVT and
FMVT distributions. Section 2.3 presents a recurrence formula of an integral for evaluating
product moments of the FMVT and TMVT distributions. Explicit expressions for the
first two moments of the FMVT and TMVT distributions are also presented. Section 2.4
presents maximum likelihood (ML) estimation for the MVT distribution with the presence
interval censored responses. The proposed method is illustrated in Section 2.5 through a
simulation study and a real-data example concerning the concentration levels data. Some
concluding remarks and implications for future research are given in Section 2.6. Technical
details and additional information are sketched in the Appendix A.

2.2 Preliminaries

2.2.1 The MVT and FMVT distributions and main properties

A random variable X having a p-variate t distribution with location vector
µ, positive-definite scale-covariance matrix Σ and degrees of freedom ν, denoted by
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X � tppµ,Σ, νq, has the pdf:

tppx;µ,Σ, νq � Γpp�ν2 q
Γpν2 qπp{2

ν�p{2|Σ|�1{2
�

1� δpxq
ν


�pp�νq{2

, (2.1)

where Γp�q is the standard gamma function and δpxq � px � µqJΣ�1px � µq is the

Mahalanobis distance. Let Lppa,b;µ,Σ, νq be Lppa,b;µ,Σ, νq �
» b

a
tppx;µ,Σ,νqdx,

where a � pa1, . . . , apqJ and b � pb1, . . . , bpqJ. The cdf of X is denoted as

Tppb;µ,Σ, νq �
» b

�8

tppx;µ,Σ, νqdx � Lpp�8,b;µ,Σ, νq.

In light of Theorem 1.1, we have Lppa,b;µ,Σ, νq �
¸

sPSpa,bq
p�1qnsTpps;µ,Σ, νq, where

Spa,bq and ns are defined as in Theorem 1.1.

It is known that as ν Ñ 8, X converges in distribution to a multivariate normal
with mean µ and variance-covariance matrix Σ, denoted by Nppµ,Σq. An important
property of the random vector X is that it can be written as a scale mixture of the MVN
random vector coupled with a independent positive random variable U � Gammapν{2, ν{2q,
where its pdf can be obtained as in (1.5).

The following properties of the MVT distribution are useful for our theoretical
developments. We start with the marginal-conditional decomposition of a MVT random
vector. The proof of the following propositions can be found in Arellano-Valle & Bolfarine
(1995).

Proposition 2.1. Let X � tppµ,Σ, νq partitioned as XJ � pXJ
1 ,XJ

2 qJ with dimpX1q �
p1, dimpY2q � p2, where p1 � p2 � p. Let µ � pµJ

1 ,µ
J
2 qJ and Σ �

�
Σ11 Σ12

Σ21 Σ22

�
be the

corresponding partitions of µ and Σ. Then, we have

piq X1 � tp1pµ1,Σ11, νq; and

piiq The conditional distribution of X2 | pX1 � x1q is given by

X2 | pX1 � x1q � tp2

�
y2;µ2.1, rΣ22.1, ν � p1

�
,

where µ2.1 � µ2 � Σ21Σ�1
11 px1 � µ1q and rΣ22.1 �

�
ν � δ1

ν � p1



Σ22.1 with δ1 � px1 �

µ1qJΣ�1
11 px1 � µ1q and Σ22.1 � Σ22 �Σ21Σ�1

11 Σ12.

Proposition 2.2. Let X � tppµ,Σ, νq. Then for any fixed vector b P Rm and matrix
A P Rm�p of full rank we get

V � b�AX � tmpb�Aµ,AΣAJ, νq.
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We are interested in computing E
�|X1|k1 . . . |Xp|kp

�
and ErXk1

1 . . . Xkp
p |ai  

Xi   bi, i � 1, . . . , ps for any non-negative integer values ki � 0, 1, 2, . . ., where the
former is the moment of a FMVT distribution |X| � p|X1|, . . . , |Xp|qJ, and the later
is the moment of a TMVT distribution, with Xi truncated at the lower limit ai and
upper limit bi, i � 1, . . . , p. Remark that some of the a1is can be �8 and some of the b1is
can be �8 in the second expression. When all the bi’s are 8, the distribution is called
the lower TMVT, and when all the ai’s are �8, the distribution is called the upper TMVT.

2.2.2 The TMVT distribution and main properties

A p-dimensional random vector Y is said to follow a doubly truncated Stu-
dent’s t distribution with location vector µ, scale-covariance matrix Σ and degrees of
freedom ν over the truncation region A defined in (1.1), denoted by Y � Ttppµ,Σ, ν;Aq,
if it has the pdf:

Ttppy;µ,Σ, ν;Aq � tppy;µ,Σ, νq
Lppa,b;µ,Σ, νq , a ¤ y ¤ b. (2.2)

Note that equation above is a special case of equation (1.6). Besides, the cdf of Y evaluated
at the region a ¤ y ¤ b is

TTppy;µ,Σ, ν;Aq � 1
Lppa,b;µ,Σ, νq

» y

a
tppx;µ,Σ, νqdx � Lppa,y;µ,Σ, νq

Lppa,b;µ,Σ, νq .

The following propositions are related to the marginal and conditional moments
of the first two moments of the TMVT distributions under a double truncation. The proof
is similar to those given in Matos et al. (2013). In what follows, we shall use the notation
Yp0q � 1, Yp1q � Y, Yp2q � YYJ, and W � Ttppµ,Σ, ν; pa,bqq stands for a p-variate
doubly truncated Student’s t distribution on pa,bq P Rp.

Proposition 2.3. If Y � Ttppµ,Σ, ν; pa,bqq then it holds that

E
��

ν � p

ν � δpYq

r

Ypkq

�
� cppν, rqLppa,b;µ,Σ�, ν � 2rq

Lppa,b;µ,Σ, νq ErWpkqs,

where
cppν, rq �

�ν � p

ν

	r Γ
�
p�ν

2

�
Γ
�
ν�2r

2

�
Γ
�
ν
2

�
Γ
�
p�ν�2r

2

� ,
Σ� � νΣ{pν � 2rq and ν � 2r ¡ 0, with W � Ttppµ,Σ�, ν � 2r; pa,bqq.

Notice that Proposition 2.3 depends on formulas for ErWs and ErWWJs,
where W � Ttppµ,Σ, ν; pa,bqq. Having established the formula on the k-order moment
of Y, we provide an explicit formula for the conditional moments with respect to a
two-component partition of Y.
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Proposition 2.4. Let Y � Ttppµ,Σ, ν; pa,bqq. Consider the partition YJ � pYJ
1 ,YJ

2 q
with dimpY1q � p1, dimpY2q � p2, p1 � p2 � p, and the corresponding partitions of a, b,
µ, and Σ. Then,

E
��

ν � p

ν � δpYq

r

Ypkq
2 | Y1

�
� dppp1, ν, rq
pν � δpY1qqr

Lp2pa2,b2;µ2.1, rΣ�
22.1, ν � p1 � 2rq

Lp2pa2,b2;µ2.1, rΣ22.1, ν � p1q
ErWpkq

2 s,

for ν � p1 � 2r ¡ 0, with δpY1q � δpY1;µ1,Σ11q,

rΣ�
22.1 �

�
ν � δ1

ν � 2r � p1



Σ22.1, and dppp1, ν, rq � pν � pqr Γ

�
p�ν

2

�
Γ
�
p1�ν�2r

2

�
Γ
�
p1�ν

2

�
Γ
�
p�ν�2r

2

� ,
where Σ22.1 is defined as in proposition 2.1. Moreover, W2 � Ttp2pµ2.1, rΣ�

22.1, ν � p1 �
2r; pa2,b2qq.

2.3 The recurrence relation for the multivariate Student’s t integral
Let apiq be a vector a with its ith element being removed. For a matrix ∆, we

let ∆ipjq stand for the ith row of ∆ with its jth element being removed. Similarly, ∆pi,jq

stands for the matrix ∆ with its ith row and jth columns being removed. Besides, let ei
denote a p� 1 vector with its ith element equaling one and zero otherwise.

The integral that we are interested in evaluating is

Fpκpa,b;µ,Σ, νq �
» b

a
xκtppx;µ,Σ, νqdx.

The initial condition is obviously Fp0pa,b;µ,Σ, νq � Lppa,b;µ,Σ, νq. The recurrence
relation for the normal case has been recently presented by Kan & Robotti (2017). When
p � 1, the use of integration by parts straightforwardly leads to

F1
0pa, b;µ, σ2, νq � T1pb;µ, σ2, νq � T1pa;µ, σ2, νq,

F1
k�1pa, b;µ, σ2, νq � µF1

kpa, b;µ, σ2, νq � kνσ2

pν�2qF
1
k�1pa, b;µ, ν

ν�2σ
2, ν � 2q

� νσ2

pν�2qrakt1pa;µ, ν
ν�2σ

2, ν � 2q � bkt1pb;µ, ν
ν�2σ

2, ν � 2qs, pk ¥ 0q.
(2.3)

When p ¡ 1, we need a similar recurrence relation in order to compute Fpκpa,b;µ,Σ, νq
which we propose in the following Theorem:

Theorem 2.1. For p ¥ 1 and i � 1, . . . , p,

Fpκ�eipa,b;µ,Σ, νq � µiFpκpa,b;µ,Σ, νq � ν
ν�2eJi Σcκ, (2.4)

where cκ is a p� 1 vector with the jth element being

cκ,j � kjFpκ�ejpa,b;µ,Σ�, ν � 2q
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�akjj t1paj;µj, σ�2
j , ν � 2qFp�1

κpjq
papjq,bpjq; µ̃a

j , δ̃
a
j Σ̃j, ν � 1q

�bkjj t1pbj;µj, σ�2
j , ν � 2qFp�1

κpjq
papjq,bpjq; µ̃b

j , δ̃
b
j Σ̃j, ν � 1q, (2.5)

and

Σ̃j � Σ�
pjqpjq �

1
σ�2
j

Σ�
pjqjΣ�

jpjq, δ̃
a
j �

ν � 2� paj�µjq
2

σ�2
j

ν � 1 , δ̃b
j �

ν � 2� pbj�µjq
2

σ�2
j

ν � 1 ,

µ̃a
j � µpjq � paj�µjq

σ�2
j

Σ�
pjqj, µ̃

b
j � µpjq � pbj�µjq

σ�2
j

Σ�
pjqj, Σ� � ν

ν�2Σ, σ�2
j � ν

ν � 2σ
2
j .

When kj � 0, the first term in (2.5) vanishes. When aj � �8 and kj ¤ ν � 2, the second
term vanishes, and when bj � �8 and kj ¤ ν � 2, the third term vanishes.

Proof. In light of equation (1.10), we have that

�Btppx;µ, ν
ν�2Σ, ν � 2q
Bx � ν � 2

ν
tppx;µ,Σ, νqΣ�1px � µq. (2.6)

Multiplying each element on both sides by xκ and integrating x from a to b, we have

cκ � ν�2
ν

Σ�1

������
Fpκ�e1 � µ1Fpκ
Fpκ�e2 � µ2Fpκ

...
Fpκ�ep � µpFpκ.

������ ,
Using integration by parts, the jth element of the left-hand side is

cκ,j � �
» bpjq

apjq
xκtppx;µ,Σ�, ν � 2q|bjxj�ajdxpjq �

» b

a
kjxκ�ej tppx;µ,Σ�, ν � 2qdx. (2.7)

Using the fact that

tppx;µ,Σ�, ν � 2q|xj�aj � t1paj;µj, σ�2
j , ν � 2qtp�1pxpjq; µ̃a

j , δ̃
a
j Σ̃j, ν � 1q and

tppx;µ,Σ�, ν � 2q|xj�bj � t1pbj;µj, σ�2
j , ν � 2qtp�1pxpjq; µ̃b

j , δ̃
b
j Σ̃j, ν � 1q,

we get

cκ,j � kjFpκ�ejpa,b;µ,Σ�, ν � 2q � a
kj
j t1paj;µj, σ�2

j , ν � 2qFp�1
κpjq

papjq,bpjq; µ̃a
j , δ̃

a
j Σ̃j, ν � 1q

�bkjj t1pbj;µj, σ�2
j , ν � 2qFp�1

κpjq
papjq,bpjq; µ̃b

j , δ̃
b
j Σ̃j, ν � 1q.

When kj � 0, the last integral in (2.7) is equal to zero, and the first term of cκ,j vanishes.
When aj Ñ �8 and kj ¤ ν � 2, akjj t1paj;µj, σ�2

j , ν � 2q Ñ 0, so the second term of cκ,j
vanishes. Similarly when bj Ñ 8 the third term of cκ,j vanishes. Finally, the desired result
is obtained by multiplying ν

ν�2Σ on both sides of (2.4).
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As a consequence, ErXκs always exists for
p̧

j�1
κj   ν. When all the a1is are �8

or all the b1is are �8, the length of the recurrence relation is reduced to 2p � 1 rather
than the original 3p� 1. When all the a1is are �8 and all the b1is are �8, we have

Fpκp�8,�8;µ,Σ, νq � ErXκs, X � tppµ,Σ, νq

and the recursive relation of length pp� 1q is

ErXκ�eis � µiErXκs �
p̧

j�1
σ�ijkjErYκ�eis, Y � tppµ,Σ�, ν � 2q, i � 1, . . . , p.

Another special case of interest occurs when ai � 0 and bi � �8, i � 1, . . . , p.
In this scenario, we have Ipκpµ,Σ, νq � Fpκp0,�8;µ,Σ, νq. The recurrence relation for Ipκ
can be written as

Ipκ�eipµ,Σ, νq � µiI
p
κpµ,Σ, νq �

p̧

j�1
σ�ijdκ,j, i � 1, . . . , p,

where

dκ,j �
#
kjI

p
κ�eipµ,Σ, νq for kj ¡ 0,

t1p0|µj, σ�2
j , ν � 2qIp�1

κpjq
pµ̃j, δ̃jΣ̃j, ν � 1q for kj � 0,

with

µ̃j � µpjq � µj
σ�2
j

Σ�
pjqj, Σ̃j � Σ�

pjqpjq �
1
σ�2
j

Σ�
pjqjΣ�

jpjq, and δ̃j �
ν � 2� µ2

j

σ�2
j

ν � 1 .

2.3.1 The first two moments of the doubly TMVT distribution

Let X � tppµ,Σ, νq and Z � X | pa ¤ X ¤ bq � Ttppµ,Σ, ν; pa,bqq. It follows
that

ErZκs � 1
Lppa,b;µ,Σ, νq

» b

a
xκtppx;µ,Σ, νqdx � Fpκpa,b;µ,Σ, νq

Lppa,b;µ,Σ, νq .

Furthermore, let denote Fpκ � Fpκpa,b;µ,Σ, νq and L � Lppa,b;µ,Σ, νq for simplicity. In
light of Theorem 2.1, it is straightforward that to see that

ErZis �
F p

ei
L

� µi � 1
L

eJi Σ�c0 and ErZiZjs �
F p

ei�ej
L

� µjErZis � 1
L

eJj Σ�cei , (2.8)

where c0 � ca � cb, with

ca �
�
t1paj;µj, σ�2

j , ν � 2qLp�1papjq,bpjq; µ̃a
j , δ̃

a
j Σ̃j, ν � 1q�p

j�1 , (2.9)

cb �
�
t1pbj;µj, σ�2

j , ν � 2qLp�1papjq,bpjq; µ̃b
j , δ̃

b
j Σ̃j, ν � 1q�p

j�1 , (2.10)
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and

cei �
�
eijLppa,b;µ,Σ�, ν � 2q � ajt1paj;µj, σ�2

j , ν � 2qFp�1
eipjqpapjq,bpjq; µ̃a

j , δ̃
a
j Σ̃j, ν � 1q

� bjt1pbj;µj, σ�2
j , ν � 2qFp�1

eipjqpapjq,bpjq; µ̃b
j , δ̃

b
j Σ̃j, ν � 1q

�p
j�1

. (2.11)

where

cei i � Lppa,b;µ,Σ�, ν � 2q � ajcai � bjcbi,

ceij
i�j� ajcaiErpXpjq | Xj � ajq | apjq ¤ Xpjq ¤ bpjqs

�bjcbiErpXpjq | Xj � bjq | apjq ¤ Xpjq ¤ bpjqs.

This last equality is obtained by noting that

Ppapjq ¤ Xpjq ¤ bpjq|Xj � ajq � Lp�1papjq,bpjq; µ̃a
j , δ̃

a
j Σ̃j, ν � 1q

and Ppapjq ¤ Xpjq ¤ bpjq|Xj � bjq � Lp�1papjq,bpjq; µ̃b
j , δ̃

b
j Σ̃j, ν � 1q.

Let C � pce1 , ce2 , . . . , cepq. From expressions in (2.8), we can note that for
ErZis, c0 does not depend on i and, for ErZiZjs, cei does not depend on j. Then, it is easy
to establish that the mean vector ξ � ErZs and variance-covariance matrix Ψ � covrZs
are given by

ξ � µ� 1
L

Σ�c0, (2.12)

Ψ � 1
L

Σ�pC� c0ξ
Jq, (2.13)

where ErZZJs � µξJ � 1
L

CΣ�.

Methods for computing the mean and variance-covariance matrix of Z are
summarized in algorithms 1 and 2. Note that, to calculate the variance-covariance matrix

Algorithm 1 – Mean vector for Z � Ttppµ,Σ, ν; pa,bqq
meanpa,b,θq
LÐ Lppa,b;µ,Σ, νq; ca Ð 0; cb Ð 0;
for j � 1 : p do
θa
j Ð pµ̃a

j , δ̃
a
j Σ̃j, ν � 1q; θb

j Ð pµ̃b
j , δ̃

b
j Σ̃j, ν � 1q;

if aj � 8 then
capjq Ð t1paj;µj, σ�2

j , ν � 2qLp�1papjq,bpjq; µ̃a
j , δ̃

a
j Σ̃j, ν � 1q;

end
if bj � 8 then
cbpjq Ð t1pbj;µj, σ�2

j , ν � 2qLp�1papjq,bpjq; µ̃b
j , δ̃

b
j Σ̃j, ν � 1q;

end
end
ξ Ð µ� ν

ν � 2Σpca � cbq{L;
return ξ;



Chapter 2. On moments of folded and truncated multivariate Student’s t distributions 43

Algorithm 2 – Mean vector and variance-covariance matrix for Z �
Ttppµ,Σ, ν; pa,bqq
meanvarpa,b,θq
LÐ Lppa,b;µ,Σ, νq; L� Ð Lppa,b;µ,Σ�, ν � 2q;
Wa Ð 0p�p; Wb Ð 0p�p;
for j � 1 : p do
θa
j Ð pµ̃a

j , δ̃
a
j Σ̃j, ν � 1q; θb

j Ð pµ̃b
j , δ̃

b
j Σ̃j, ν � 1q;

if aj � 8 then
capjq Ð t1paj;µj, σ�2

j , ν � 2qLp�1papjq,bpjq; µ̃a
j , δ̃

a
j Σ̃j, ν � 1q;

Wap�j, jq Ð meanpapjq,bpjq,θ
a
pjqq;

Wapj, jq Ð apjq;
end
if bj � 8 then
cbpjq Ð t1pbj;µj, σ�2

j , ν � 2qLp�1papjq,bpjq; µ̃b
j , δ̃

b
j Σ̃j, ν � 1q;

Wbp�j, jq Ð meanpapjq,bpjq,θ
b
pjqq;

Wbpj, jq Ð bpjq;
end

end
ξ Ð µ�Σ�pca � cbq{L;
Ψ Ð pL�diagppq �Wadiagpcaq �WbdiagpcbqqΣ�{L;
return ξ, Ψ;

Ψ in Algorithm 2, it is necessary to compute 2p pp� 1q-variate mean vectors (lines 8 and
13) through Algorithm 1. This schema leads to only 1� 2p necessary integrals to compute
the mean and additional 1� 2p� 4ppp� 1q integrals for the variance-covariance matrix.
It is noteworthy to mention that i) probabilities between lines 7 and 12 in Algorithm 2,
can be recycled from the meanpa,b,θq function, and ii) C is not symmetric, however
both of its pi, jq-th and pj, iq-th elements cej i and ceij depends on probabilities of the
form P

�
api,jq ¤ Xpi,jq ¤ bpi,jq | pXi, Xjq � pxi, xjq

�
, with pxi, xjq P tai, biu � taj, bju. This

leads to an optimal schema with a maximum total of 2p1 � p2q integrals to compute
the mean and the variance-covariance matrix in the case that the distribution is doubly
truncated. Lastly, we remark that this recurrence is limited to work for real degrees of
freedom greater than 3 due to the computation of Σ�� � ν�Σ{pν� � 2q when ν� � ν � 1.
For ν � 3, we approximate its value taking its right-hand limit, which showed a good
performance in terms of precision and stability. Finally, expressions for the mean vector
and variance-covariance matrix derived in subsection 1.1.3 are equivalent but less efficient.

2.3.2 The first two moments of the TMVT distribution when a non-truncated
partition exists

We describe a trick for fast computation of the first two moments of the TMVT
distribution when there are double infinite limits. Consider the partition X � pXJ

1 ,XJ
2 qJ
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such that dimpX1q � p1, dimpX2q � p2, where p1 � p2 � p. Using the law of total
expectations, we have

ErXs � E

�
ErX1|X2s

X2

�
and

covrXs �
�

ErcovrX1|X2ss � covrErX1|X2ss covrErX1|X2s,X2s
covrX2,ErX1|X2ss covrX2s

�
.

Let p1 be the number of pairs in ra,bs that are both infinite. We consider the
partition X � pXJ

1 ,XJ
2 qJ in which the upper and lower truncation limits associated with

X1 are both infinite, but at least one of the truncation limits associated with X2 is finite.
Let

µ � pµJ
1 ,µ

J
2 qJ, Σ �

�
Σ11 Σ12

Σ21 Σ22

�
, a � paJ1 , aJ2 qJ and b � pbJ

1 ,bJ
2 qJ,

be the corresponding partitions of µ, Σ, a and b. Since a1 � �8 and b1 � 8, it follows
that X2 � Ttp2

�
µ2,Σ22, ν; ra2,b2s

�
and X1|X2 � tp1

�
µ1 � Σ12Σ�1

22 pX2 � µ2q, pΣ11 �
Σ12Σ�1

22 Σ21qpν � δpx2;µ2,Σ22qq{pν � p2q, ν � p2
�
. This leads to

ErXs � E

�
µ1 �Σ12Σ�1

22 pX2 � µ2q
X2

�
�
�
µ1 �Σ12Σ�1

22 pξ2 � µ2q
ξ2

�
. (2.14)

On the other hand, we have that covrX2,ErX1|X2ss � covrX2,X2Σ�1
22 Σ21s �

Ψ22Σ�1
22 Σ21, covrErX1|X2ss � Σ12Σ�1

22 Ψ22Σ�1
22 Σ21 and ErcovrX1|X2ss � ω1.2pΣ11�Σ12Σ�1

22

Σ21q with ξ2 � ErX2s and Ψ22 � covrX2s, and

ω1.2 � E
�
ν � δpX2;µ2,Σ22q

ν � p2 � 2



�
�

ν

ν � 2



Lppa2,b2;µ2,Σ�

22, ν � 2q
Lppa2,b2;µ2,Σ22, νq , (2.15)

with Σ�
22 � νΣ22{pν � 2q. This last expression follows from Proposition 2.3. Finally,

covrXs �
�
ω1.2Σ11 �Σ12Σ�1

22
�
ω1.2Ip2 �Ψ22Σ�1

22
�
Σ21 Σ12Σ�1

22 Ψ22

Ψ22Σ�1
22 Σ21 Ψ22

�
, (2.16)

where ξ2 and Ψ22 are the mean vector and variance-covariance matrix of the
TMVT distribution, which can be computed by using (2.12) and (2.13), respectively.

Note that X1 does not follow a non-truncated t distribution, that is, X1 �
tp1

�
µ1,Σ11, ν

�
, even though a1 � �8 and b1 � 8. In general, the marginal distributions

of a TMt distribution are not TMt, however this holds for X2 due to the particular case
a1 � �8 and b1 � 8. Also note that obtaining (2.15) does not require the compu-
tation of additional integrals given that the probabilities Lppa2,b2;µ2,Σ�

22, ν � 2q and
Lppa2,b2;µ2,Σ22, νq are involved in the calculation of ξ2 and Ψ22 (see Algorithm 2, Line
2).
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It is important to emphasize that ErXs and ErXXJs exist if and only if
ν � p2 ¡ 1 and ν � p2 ¡ 2 respectively. This is equivalent to say that, (2.14) exists if at
least one dimension containing a finite limit exists. Besides, (2.16) exists if at least two
dimensions containing a finite limit exist.

As can be seen, we can use equations (2.14) and (2.16) to deal with double
infinite limits, where the truncated moments are computed only over a p2-variate partition,
avoiding some unnecessary integrals and saving a significant computational cost.

2.3.3 Folded Multivariate Student’s t distribution

Let X � tppµ,Σ, νq, we now turn our attention to discuss the computation of
any arbitrary order moment of |X|. First, we established the following corollary.

Corollary 2.1. If X � tppµ,Σ, νq then Zs � ΛsX � tppµs,Σs, νq and consequently the
joint pdf, cdf and the κth raw moment of Y � |X| are, respectively, given by

fYpyq �
¸

sPSppq
tppy;µs,Σs, νq, FYpyq �

¸
sPSppq

πsTppys;µ,Σ, νq,

and
ErYκs �

¸
sPSppq

Ipκpµs,Σs, νq,

where ys � Λsy, µs � Λsµ, Σs � ΛsΣΛs and Ipκpµs,Σs, νq �
» 8

0
yκtppy;µs,Σs, νqdy.

Proof. The proof follows straightforwardly from the definition of probability theory and
basic matrix algebra and thus is omitted.

Thus the product moments of Y can be calculated easily using Ipκpµs,Σs, νq
terms as stated above. In particular, in light of Corollary 1.2, we have that the mean
vector ξ and variance-covariance matrix Ψ of Y can be calculated as

ξ �
¸

sPSppq
ErZ�

s s, (2.17)

Ψ �
¸

sPSppq
E
�
Z�

sZ�

s
J
�� ξξJ, (2.18)

where Z�

s is the positive component of Zs � ΛsX � tppµs,Σs, νq from Corollary 1.1. Note
that there are 2p times more integrals to be calculated as compared to the non-folded
case. Specifically, p1 � pq2p integrals are required for the mean vector, and additional
p1� 2p� 2p2q2p integrals for the variance-covariance matrix. For the univariate case, the
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explicit expressions for the first four raw moments of Y � |X|, where X � tpµ, σ2, νq,
based on (2.3) and (2.5) can be obtained as

ErY s � µr1� 2T1p0;µ, σ2, νqs � 2σ�2t1p0;µ, σ�2, ν � 2q,
ErY 2s � µ2 � σ�2,

ErY 3s � µ2ErY s � 3µσ�2r1� 2T1p0;µ, σ�2, ν � 2qs � 4pν�2qσ�4

ν�4 t1p0;µ, ν
ν�4σ

2, ν � 4q,
ErY 4s � µ4 � 6µ2σ�2 � 3pν�2q

ν�4 σ�4.

Illustrative results via the implementation of R package MomTrunc are presented in the
Appendix B.

2.4 Inference for MVT with Interval Censored Responses
Let Yi � pYi1, . . . , YipqJ be a p� 1 response vector for the ith sample unit, for

i P t1, . . . , nu, and consider the set of independent and identically distributed samples:

Y1, . . . ,Yn � tppµ,Σ, νq, (2.19)

where the location vector µ � pµ1, . . . , µpqJ and the dispersion matrix Σ � Σpαq depend
on an unknown and reduced parameter vector α. However, the response vector Yi may
not be fully observed due to censoring, so we define pVi,Ciq the observed data for the ith
sample, where Vi� pVi1, . . . , VipqJ represents either an uncensored observation pVik � V0iq
or the interval censoring level pVik P rV1ik, V2iksq, and Ci � pCi1, . . . , CipqJ is the vector of
censoring indicators, satisfying

Cik �
#

1 if V1ik ¤ Yik ¤ V2ik ,

0 if Yik � V0i .
(2.20)

for all i P t1, . . . , nu and k P t1, . . . , pu, i.e., Cik � 1 if Yik is located within a specific
interval. In this case, (2.19) along with (2.20) defines the multivariate Student’s t interval
censored model (hereafter, the MVT-IC model). Notice that a left censoring structure
causes truncation from the lower limit of the support of the distribution, since we only
know that the true observation Yik is less than or equal to the observed quantity V2ik. This
situation has been studied by Lachos et al. (2017). Missing observations can be handled
by considering V1ik � �8 and V2ik � �8.

2.4.1 The likelihood function

Let y � pyJ
1 , . . . ,yJ

n qJ, where yi � pyi1, . . . , yipqJ is a realization of Yi �
tppµ,Σ, νq. To obtain the likelihood function of the MVT-IC model, we firstly treat the
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observed and censored components of yi, separately, i.e., yi � pyoJi ,yc
J

i qJ, where Cik � 0
for all elements in the poi -dimensional vector yoi , and Cik � 1 for all elements in the
pci -dimensional vector yci . Accordingly, we write Vi � vecpVo

i ,Vc
iq, where Vc

i � pVc
1i,Vc

2iq
with

µi � pµoJi ,µcJi qJ and Σ � Σpαq �
�

Σoo
i Σoc

i

Σco
i Σcc

i



.

Then, using Proposition 2.1, we have that Yo
i � tpoi pµoi ,Σoo

i , νq and Yc
i | Yo

i � yoi �
tpci pµcoi ,Scoi , ν � poi q, where

µcoi � µci �Σco
i Σoo�1

i pyoi � µoi q, Scoi �
"
ν � δpyoi q
ν � poi

*
Σcc.o
i , (2.21)

Σcc.o
i � Σcc

i �Σco
i pΣoo

i q�1Σoc
i and δpyoi q � pyoi � µoi qJpΣoo

i q�1pyoi � µoi q. (2.22)

Let V � vecpV1, . . . ,Vnq and C � vecpC1, . . . ,Cnq denote the observed data. Therefore,
the log-likelihood function of θ � pµJ,αJ, νqJ, where α � vechpΣq, for the observed data
pV,Cq is

`pθ | V,Cq �
ņ

i�1
lnLi, (2.23)

where Li represents the likelihood function of θ for the ith sample, given by

Li �Lipθ | Vi,Ciq � fpVi | Ci,θq � fpVc
1i ¤ yci ¤ Vc

2i | yoi ,θqfpyoi | θq
� Lpci pVc

1i,Vc
2i;µcoi ,Scoi , ν � poi qtpoi pyoi ;µoi ,Σoo

i , νq.

2.4.2 Parameter estimation via the EM algorithm

We describe how to carry out ML estimation for the MVT-IC model. The
EM algorithm, originally proposed by Dempster et al. (1977), is a very popular iterative
optimization strategy and commonly used to obtain ML estimates for incomplete-data
problems. This algorithm has many attractive features such as the numerical stability, the
simplicity of implementation and quite reasonable memory requirements (McLachlan &
Krishnan, 2008).

By the essential property of MVT distribution, we can write Yi|pUi � uiq �
Nppµ, u�1

i Σq and ui � Gammapν{2, ν{2q. The complete-data log-likelihood function of

θ � pµ,Σ, νq is given by `cpθq �
ņ

i�1
`icpθq, where the individual complete-data log-

likelihood is

`icpθq � �1
2
 
ln |Σ| � uipyi � µqJΣ�1pyi � µq

(� ln hpui; νq � c,

where c is a constant irrelevant of θ and hpui; νq is the pdf of Gammapν{2, ν{2q. In
summary, the EM algorithm for the MVT-IC model can be adopted as follows:
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E-step: Given the current estimate pθpkq � pµ̂pkq, pΣpkq, ν̂pkqq at the kth step, the E-step
provides the conditional expectation of the complete data log-likelihood function

Qpθ | pθpkqq � E
�
`cpθq | V,C, pθpkq� � ņ

i�1
Qipθ | pθpkqq,

where

Qipθ | pθpkqq � � 1
2 ln |Σ| � 1

2tr
�"yuy2

i

pkq � xuypkq
i µ

J � µpxuypkq
i qJ � pupkqi µµJ

*
Σ�1

�

with xuypkq
i � ErUiYi | Vi,Ci, pθpkqs, yuy2

i

pkq � ErUiYiYJ
i | Vi,Ci, pθpkqs and pupkqi �

ErUi | Vi,Ci, pθpkqs which are collected in Appendix A. Note that, since ν is fixed,
the calculation of Erln hpUi; νq | V,C, pθpkqs is unnecessary.

M-step: Conditionally maximizing Qpθ | pθpkqq with respect to each entry of θ, we update
the estimate pθpkq � pµ̂pkq, pΣpkq, νpkqq by

pµpk�1q �
�

ņ

i�1
pupkqi

��1 ņ

i�1
xuypkq

i ,

pΣpk�1q � 1
n

ņ

i�1

"yuy2
i

pkq � xuypkq
i pµpk�1qJ � pµpk�1qpxuypkq

i qJ � pupkqi pµpk�1qpµpk�1qJ
*
.

Then we update the parameter ν by maximizing the marginal log-likelihood function

for y, that is, pνpk�1q � arg max
ν

ņ

i�1
log fpVi | Ci, pµpk�1q, pΣpk�1q; νpkqq.

The algorithm is iterated until a suitable convergence rule is satisfied. In
the later analysis, the algorithm is terminated when the difference between two suc-
cessive evaluations of the log-likelihood defined in (2.23) is less than a tolerance, i.e.,
`ppθpk�1q | V,Cq � `ppθpkq | V,Cq   ε, for example, ε � 10�6.

2.5 Numerical Illustrations

2.5.1 Simulation study

We conduct a simple simulation study to show how Monte Carlo (MC) estimates
for the mean vector and variance-covariance matrix elements converge to the real values
computed by our method. We consider a 5-variate t distribution X � t5p0,Σ, 4q, where
Σ is a positive-definite matrix with unit diagonal elements and off-diagonal elements
σij � σiσj for i � j � 1, . . . , 5 where σ1 � �0.4, σ2 � �0.7, σ3 � 1, σ4 � 0.7, and σ5 � 0.4.
Let Y d� X | pa ¤ X ¤ bq be a TMVT random variable with lower and upper truncation
limits a � p�8,�8,�8,�3,�3qJ and b � p8,8, 1, 1,8qJ, respectively. Note that the
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first two dimensions are not truncated, while the other three are upper, interval and
lower truncated, respectively. Hence, we can write a � p�82, a2q and b � p82,b2q, with
a2 � p�8,�3,�3q and b2 � p1, 1,8q. Consider the partitions X1 � pX1, X2qJ and
X2 � pX3, X4, X5qJ. Since a non-truncated partition X1 exists, we use relations (2.14)
and (2.16) given in Subsection 3.2 to compute ξ � ErYs and Ω � covrYs and obtain the
true values:

ξ �

��������
0.167
0.292

-0.417
-0.397
-0.110

������� and Ω �

��������
1.355
0.224 1.137
�0.321 �0.561 0.802
�0.166 �0.290 0.414 0.698
�0.101 �0.177 0.253 0.131 1.165

�������.

In this scenario, lower partitions of ξ and Ω (values in bold) correspond to
ξ2 � ErX2 | a2 ¤ X2 ¤ b2s and Ω22 � covrX2 | a2 ¤ X2 ¤ b2s due to Ppa ¤ X ¤ bq �
Ppa2 ¤ X2 ¤ b2q, which are computed using our recurrence-based formulae (2.12) and
(2.13), while the reminder are computed using basic algebra where no integrals are needed.

A total of 10,000 realizations of Y were generated, and then the sample mean
and the sample variance-covariance matrix are computed. Figures 2 and 3 shows the
evolution trace of the MC estimates for the distinct elements of ξ and Ω, denoted by ξ̂i
and ω̂ij for i, j � 1, . . . , 5 with i � j, along with true values depicted as blue dashed lines.
Note that even with 10000 MC simulations there exist slight variation in the chains for
some elements as depicted in Figure 3.

Remark that the computation of the first two moments of Y based on ξ2 and
Ω22 using our method discussed in Subsection 3.2 results in 1.2 times faster than that
considering the full vector Y with the non-truncated partition. Even though the evaluation
of integrals involving infinite values are faster, the number of integrals required increases
exponentially as the dimension p increases. For instance, considering a vector of dimension
p � 20, where 15 (75%) of its dimensions are non-truncated, the computational time for
evaluating the first two moments based on (2.14) and (2.16) is 10 times faster than that
using the crude method. Our method indeed improves the computational efficiency.
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Figure 2 – MC estimates for the elements of ξ � ErYs.



Chapter 2. On moments of folded and truncated multivariate Student’s t distributions 50

ω̂11

ω̂31 ω̂32 ω̂33

ω̂41 ω̂42 ω̂43 ω̂44

ω̂51 ω̂52 ω̂53 ω̂54 ω̂55

ω̂21 ω̂22

Figure 3 – MC estimates for the distinct elements of Ω � covrYs.

2.5.2 Concentration levels study

In order to study the performance of our proposed model and algorithm, we
analyze the concentrations level dataset introduced before in subsection 1.2.1. Thus, we fit
the MVT-IC model to the data which contain p � 5 attributes, and thus we assume that
Yi � pYi1, Yi2, . . . , Yi5q � t5pµ,Σ, νq. For the sake of comparison, we also fit the MVN-IC
model which can be considered as a limiting case when ν Ñ 8. As the concentration
levels are strictly positive measures, to guarantee this, we consider an interval-censoring
analysis by setting all lower limit of detection to equal 0 for all trace metals. Due to the
different scales for each trace metal, we standardize the dataset to have zero mean and unit
variance as in Wang et al. (2019), which considered this study as a left-censoring problem
without taking in account the possibility of predicting negative concentration levels for
the trace metals. For instance, we can see from Figure 5 that Pb censored concentrations
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take values on the small interval r0, 0.1s.

Table 2 – VDEQ data. Estimated mean and ML estimate for ν and model criteria.

Model Cu Pb Zn Ca Mg ν `pθ̂|Yq AIC
Normal 0.556 0.099 2.314 12.083 3.814 - �1351.60 2743.19

Student’s t 0.557 0.102 2.329 12.084 3.817 3 �1040.21 2122.42

The ML estimates of model parameters are obtained using the EM algorithm
described in Subsection 4.2. The estimated mean of the trace metals, degrees of freedom ν

as well as the maximized log-likelihood and Akaike information criterion (AIC; Akaike,
1974) are shown in Table 2. Here, we can see that the estimated mean values are quite
similar for both models. The estimated value of ν is fairly small, taking the minimum
possible value that our algorithm supports (see subsection 2.3.1). This indicates a lack of
adequacy of the normal assumption for the VDEQ data. This finding can be also confirmed
from Figure 4 where the profile log-likelihood values are depicted for a grid of values of ν.
As expected, the AIC value for our MVT-IC model is lower than that for MVN-IC model.
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Figure 4 – VDEQ data. Plot of the profile log-likelihood of the degrees of freedom ν.

Figure 5 shows the histograms on diagonal and pair-wise scatter plots for the
concentration levels study. From the histograms in diagonal of the matrix plot, we observe
how censored observations (taking values over the dashed lines) are distributed to the left
(blue bins) after fitting our proposed model, while gray bins represent complete observed
points. On the other hand, the scatter plots in off-diagonal of the matrix plot show complete
observed (black) points and the predicted observations using the multivariate SN-C model
(blue triangles).

With the aim of validating the proposed censored model approach, we compare
the correlation matrices of the data by considering 5 strategies: (a) Original: original data,
(b) Omitting: zeros are not considered, (c) Manipulating: multiplying the limit of detection
by the factor 0.75, (d) MVN-IC model, and (e) MVT-IC model.
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Figure 5 – VDEQ data. Histograms (diagonal) and pair-wise scatter plots (lower-triangle)
for the concentration levels study. Complete observed points are represented
in black points (gray bins) and MVT predicted observations in blue triangles
(bins). Limit of detection are represented in dashed lines.

From the results depicted in Figure 6, we can find that the correlation matrices
for the MVN-IC and MVT-IC models are similar. Based on the AIC, we consider the
second one as a reference. We can get very decent results for this study by using the
original data (a) or even manipulating the data (c), with both tending to underestimate
the correlations. Omitting (b) is by far the worst strategy. For example, the correlation
between Pb and Cu is poorly estimated to the point that they have the sign changed.
Similar problems arise for the correlations between Zn and other three elements. Given the
large number of censored observations, the omitting method leads to loss of information
(say the case where the correlation between Ca and Pb and that between Ca and Mg are
estimated to be zero).
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Figure 6 – VDEQ data. Correlation matrices of the concentration levels for 5 different
strategies.

2.6 Conclusion
We have developed recurrence relations for integrals involving the density

of MVT distribution and provided explicit expressions for the first two moments of the
TMVT and FMVT distributions. These recursions allow fast computation of arbitrary-order
product moments of TMVT and FMVT distributions. As an illustration, we have shown the
practicability of our methods through a real-data example that contains positive censored
observations. Our methods can also be applied in the context of missing observations
(Lin et al., 2009). The proposed methodology has been implemented in the R MomTrunc
package, which is available on CRAN repository.
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3 Efficient computation of moments of
folded and doubly truncated multivariate
extended skew-normal distributions

3.1 Introduction
Many applications on simulations or experimental studies, the researches often

generate a large number of datasets with restricted values to fixed intervals. For example,
variables such as pH, grades, viral load in HIV studies and humidity in environmental stud-
ies, have upper and lower bounds due to detection limits, and the support of their densities
is restricted to some given intervals. Thus, the need to study truncated distributions along
with their properties naturally arises. In this context, there has been a growing interest in
evaluating the moments of truncated distributions. These variables are also often skewed,
departing from the traditional assumption of using symmetric distributions. For instance,
Tallis (1961) provided the formulae for the first two moments of truncated multivariate
normal (TMVN) distributions. Lien (1985) gave the expressions for the moments of trun-
cated bivariate log-normal distributions with applications to test the Houthakker effect
(Houthakker, 1959) in future markets. Jawitz (2004) derived the truncated moments of
several continuous univariate distributions commonly applied to hydrologic problems. Kim
(2008) provided analytical formulae for moments of the truncated univariate Student-t dis-
tribution in a recursive form. Flecher et al. (2010) obtained expressions for the moments of
truncated univariate skew-normal distributions (Azzalini, 1985) and applied the results to
model the relative humidity data. Genç (2013) studied the moments of a doubly truncated
member of the symmetrical class of univariate normal/independent distributions and their
applications to the actuarial data. Ho et al. (2012) presented a general formula based
on the slice sampling algorithm to approximate the first two moments of the truncated
multivariate Student-t (TMVT) distribution under the double truncation. Arismendi
(2013) provided explicit expressions for computing arbitrary order product moments of
the TMVN multivariate distribution by using the moment generating function (MGF).
However, the calculation of this approach relies on differentiation of the MGF and can be
somewhat time consuming.

Instead of differentiating the MGF of the TMVN distribution, Kan & Robotti
(2017) recently presented recurrence relations for integrals that are directly related to the
density of the multivariate normal distribution for computing arbitrary order product
moments of the TMVN distribution. These recursions offer a fast computation of the
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moments of folded (FN) and TMVN distributions, which require evaluating p-dimensional
integrals that involve the Normal (N) density. Explicit expressions for some low order
moments of FN and TMVN distributions are presented in a clever way, although some
proposals to calculate the moments of the univariate truncated skew-normal distribution
and truncated univariate skew-normal/independent distribution (Flecher et al., 2010)
has recently been published. So far, to the best of our knowledge, there has not been
attempt on studying neither moments nor product moments of the folded multivariate
extended skew-normal (FESN) and truncated multivariate extended skew-normal (TESN)
distributions. Moreover, our proposed methods allow to compute, as a by-product, the
product moments of folded and truncated distributions, of the N (Kan & Robotti, 2017),
SN (Azzalini & Dalla-Valle, 1996), and their respective univariate versions. The proposed
algorithm and methods are implemented in the new R package MomTrunc.

The rest of this paper is organized as follows. In Section 3.2 we briefly discuss
some preliminary results related to the multivariate SN, ESN and TESN distributions and
some of its key properties. The section 3.3 presents a recurrence formula of an integral
to be applied in the essential evaluation of moments of the TESN distribution as well
as explicit expressions for the first two moments of the TESN and TMVN distributions.
A direct relation between the moments of the TESN and TMVN distribution is also
presented which is used to improved the proposed methods. In section 3.4, by means of
approximations, we propose strategies to circumvent some numerical problems that arise
on limiting distributions and extreme cases. We compare our proposal with others popular
methods of the literature in Section 3.5. Finally, Section 3.6 is devoted to the moments
of the FESN distribution, several related results are discussed. Explicit expressions are
presented for high order moments for the univariate case and the mean vector and variance-
covariance matrix of the multivariate FESN distribution. Finally, some concluding remarks
are presented in Section 3.7.

3.2 Preliminaries

3.2.1 The multivariate skew-normal distribution

In this subsection we present the skew-normal distribution and some of its
properties. We say that a p� 1 random vector Y follows a multivariate SN distribution
with p� 1 location vector µ, p�p positive definite dispersion matrix Σ and p� 1 skewness
parameter vector λ P Rp, and we write Y � SNppµ,Σ,λq, if its joint probability density
function (pdf) is given by

SNppy;µ,Σ,λq � 2φppy;µ,ΣqΦ1pλJΣ�1{2py� µqq, (3.1)

where Φ1p�q represents the cumulative distribution function (cdf) of the standard univariate
normal distribution. If λ � 0 then (3.1) reduces to the symmetric Nppµ,Σq pdf. Except
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by a straightforward difference in the parametrization considered in (3.1), this model
corresponds to the one introduced by Azzalini & Dalla-Valle (1996), whose properties
were extensively studied in Azzalini & Capitanio (1999). See also Arellano-Valle & Genton
(2005).

Proposition 3.1 (cdf of the SN). If Y � SNppµ,Σ,λq, then for any y P Rp

FYpyq � PpY ¤ yq � 2Φp�1
�pyJ, 0qJ;µ�,Ω

�
, (3.2)

where µ� � pµJ, 0qJ and Ω �
�

Σ �∆
�∆J 1

�
, with ∆ � Σ1{2λ{p1� λJλq1{2.

Proof of proposition 3.1 can be found in Azzalini & Dalla-Valle (1996). It is worth
mentioning that the multivariate skew-normal distribution is closed over marginalization
but not conditioning. Next we present its extended version which holds both properties,
called, the multivariate ESN distribution.

3.2.2 The extended multivariate skew-normal distribution

We say that a p � 1 random vector Y follows a ESN distribution with p � 1
location vector µ, p� p positive definite dispersion matrix Σ, a p� 1 skewness parameter
vector λ P Rp, and a shift or extension parameter τ P R, denoted by Y � ESNppµ,Σ,λ, τq,
if its pdf is given by

ESNppy;µ,Σ,λ, τq � ξ�1φppy;µ,ΣqΦ1pτ � λJΣ�1{2py� µqq, (3.3)

with ξ � Φ1pτ{p1 � λJλq1{2q. Note that when τ � 0, we retrieve the skew-normal
distribution defined in (3.1), that is, ESNppy;µ,Σ,λ, 0q � SNppy;µ,Σ,λq. Here, we used
a slightly different parametrization of the ESN distribution than the one given in Arellano-
Valle & Azzalini (2006a) and Arellano-Valle & Genton (2010). Futhermore, Arellano-Valle
& Genton (2010) deals with the multivariate extended skew-t (EST) distribution, in which
the ESN is a particular case when the degrees of freedom ν goes to infinity. From this last
work, it is straightforward to see that

ESNppy;µ,Σ,λ, τqÝÑφppy;µ,Σq, as τ Ñ �8.

Also, letting Z � Σ�1{2pY � µq, it follows that Z � ESNpp0, I,λ, τq, with mean vector
and variance-covariance matrix

ErZs � ηλ and covrZs � Ip � ErZs
�
ErZs � τ

1� λJλλ

J

,

with η � φ1pτ ; 0, 1� λJλq{ξ. Then, the mean vector and variance-covariance matrix of Y
can be easily computed as ErYs � µ�Σ1{2ErZs and covrYs � Σ1{2covrZsΣ1{2.
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Next, we present some propositions that are crucial to develop our methods.
First, we propose the marginal and conditional distribution of the ESN with pdf as in (3.3)
(proof can be found in the Appendix B), while the second and third proposition comes
from Arellano-Valle & Azzalini (2006a) and Arellano-Valle & Genton (2010).

Proposition 3.2 (Marginal and conditional distribution of the ESN ). Let Y � ESNppµ,Σ,
λ, τq and Y is partitioned as Y � pYJ

1 ,YJ
2 qJ of dimensions p1 and p2 (p1 � p2 � p),

respectively. Let

Σ �
�

Σ11 Σ12

Σ21 Σ22

�
, µ � pµJ

1 ,µ
J
2 qJ, λ � pλJ1 ,λJ2 qJ and ϕ � pϕJ

1 ,ϕ
J
2 qJ

be the corresponding partitions of Σ, µ, λ and ϕ � Σ�1{2λ. Then,

Y1 � ESNp1pµ1,Σ11, c12Σ1{2
11 ϕ̃1, c12τq, Y2|Y1 � y1 � ESNp2pµ2.1,Σ22.1,Σ1{2

22.1ϕ2, τ2.1q

where c12 � p1 � ϕJ
2 Σ22.1ϕ2q�1{2, ϕ̃1 � ϕ1 � Σ�1

11 Σ12ϕ2, Σ22.1 � Σ22 � Σ21Σ�1
11 Σ12,

µ2.1 � µ2 �Σ21Σ�1
11 py1 � µ1q and τ2.1 � τ � ϕ̃J

1 py1 � µ1q.

Proposition 3.3 (Stochastic representation of the ESN ). Let X � Np�1pµ�,Ωq with X
part as X � pX1

J, X2qJ. If
Y d� pX1|X2   τ̃q, (3.4)

it follows that Y � ESNppµ,Σ,λ, τq, with µ� and Ω as defined in Proposition 3.1, and
τ � τ̃p1� λJλq1{2.

Proposition 3.4 (cdf of the ESN ). If Y � ESNppµ,Σ,λ, τq, then for any y P Rp

FYpyq � PpY ¤ yq � Φp�1
�pyJ, τ̃qJ;µ�,Ω

�
Φpτ̃q . (3.5)

Proof is direct from proposition 3.3. Hereinafter, for Y � ESNppµ,Σ,λ, τq, we
will denote to its cdf as FYpyq � Φ̃ppy;µ,Σ,λ, τq for simplicity.

Let A be a Borel set in Rp. We say that the random vector Y has a truncated
extended skew-normal distribution on A when Y has the same distribution as Y|pY P Aq.
In this case, the pdf of Y is given by

fpy | µ,Σ, ν;Aq � ESNppy;µ,Σ,λ, τq
PpY P Aq 1Apyq,

where 1A is the indicator function of A. We use the notation Y � TESNppµ,Σ,λ, τ ;Aq.
If A has the form

A � tpx1, . . . , xpq P Rp : a1 ¤ x1 ¤ b1, . . . , ap ¤ xp ¤ bpu � tx P Rp : a ¤ x ¤ bu, (3.6)
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then we use the notation tY P Au � ta ¤ Y ¤ bu, where a � pa1, . . . , apqJ and
b � pb1, . . . , bpqJ. Here, we say that the distribution of Y is doubly truncated. Analogously
we define tY ¥ au and tY ¤ bu. Thus, we say that the distribution of Y is truncated from
below and truncated from above, respectively. For convenience, we also use the notation
Y � TESNppµ,Σ,λ, τ ; pa,bqq.

3.3 On moments of the doubly truncated multivariate ESN distri-
bution

3.3.1 A recurrence relation

For two p-dimensional vectors x � px1, . . . , xpqJ and κ � pk1, . . . , kpqJ, let xκ

stand for pxκ1
1 , . . . , x

κp
p q, and let apiq be a vector a with its ith element being removed. For

a matrix A, we let Aipjq stand for the ith row of A with its jth element being removed.
Similarly, Api,jq stands for the matrix A with its ith row and jth columns being removed.
Besides, let ei denote a p� 1 vector with its ith element equaling one and zero otherwise.
Let

Lppa,b;µ,Σ,λ, τq �
» b

a
ESNppy;µ,Σ,λ, τqdx.

We are interested in evaluating the integral

Fp
κpa,b;µ,Σ,λ, τq �

» b

a
xκESNppy;µ,Σ,λ, τqdx. (3.7)

The initial condition is obviously Fp
0 pa,b;µ,Σ,λ, τq � Lppa,b;µ,Σ,λ, τq. When λ � 0

and τ � 0, we recover the multivariate normal case, and then

Fp
κpa,b;µ,Σ,0, 0q � F p

κpa,b;µ,Σq �
» b

a
xκφppx;µ,Σqdx, (3.8)

with initial condition

Lppa,b;µ,Σ,0, 0q � Lppa,b;µ,Σq �
» b

a
φppx;µ,Σqdx. (3.9)

Note that we use calligraphic style for the integrals of interest Fp
κ and Lp when we work

with the skewed version. In both expressions (3.8) and (3.9), for the normal case, we are
using compatible notation with the one used by Kan & Robotti (2017).

3.3.1.1 Univariate case

Let θ � pµ, σ2, λ, τqJ be the set of parameters. When p � 1, it is straightforward
to use integration by parts to show that

F1
0 pa, b;θq � ξ�1 rΦ2 ppb� µ, τqJ; 0,Ωq � Φ2 ppa� µ, τqJ; 0,Ωqs ,
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F1
k�1pa, b;θq � µF1

k pa, b;θq � kσ2F1
k�1pa, b;θq � λσηF 1

k pa, b;µ� µb, γ
2q

�σ2�akESN1pa;θq � bkESN1pb;θq
�
; for k ¥ 0,

where Ω �
�

σ2 �σψ
�σψ 1

�
, ψ � λ{

?
1� λ2, µb � 1

σ
λτγ2 and γ � σ{

?
1� λ2.

When p ¡ 1, we need a similar recurrence relation in order to compute
Fp
κpa,b,µ,Σ,λ, τq which we propose in the next theorem.

3.3.1.2 Multivariate case

Theorem 3.1. For p ¥ 1 and i � 1, . . . , p,

Fp
κ�eipa,b;µ,Σ,λ, τq � µiFp

κpa,b;µ,Σ,λ, τq � δiF
p
κpa,b;µ� µb,Γq � eJi Σdκ, (3.10)

where δ � pδ1, . . . , δpqJ � ηΣ1{2λ, µb � τ̃∆, Γ � Σ�∆∆J and dκ is a p-vector with jth
element

dκ,j � kjFp
κ�ejpa,b,µ,Σ,λ, τq (3.11)

�akjj ESN1paj;µj, σ2
j , cjσjϕ̃j, cjτqFp�1

κpjq
papjq,bpjq; µ̃a

j , Σ̃j, Σ̃1{2
j ϕpjq, τ̃

a
j q

�bkjj ESN1pbj;µj, σ2
j , cjσjϕ̃j, cjτqFp�1

κpjq
papjq,bpjq; µ̃b

j , Σ̃j, Σ̃1{2
j ϕpjq, τ̃

b
j q,

with τ̃a
j � τ � ϕ̃jpaj � µjq and τ̃b

j � τ � ϕ̃jpbj � µjq, where

µ̃a
j � µpjq �Σpjq,j

aj � µj
σ2
j

, µ̃b
j � µpjq �Σpjq,j

bj � µj
σ2
j

, ϕ̃j � ϕj � 1
σ2
j

Σjpjqϕpjq,

cj � 1
p1�ϕJ

pjqΣ̃jϕpjqq1{2
, and Σ̃j � Σpjq,pjq � 1

σ2
j

Σpjq,jΣj,pjq.

Proof. Taking the derivative of the ESN density, we have

B
BxESNppx;µ,Σ,λ, τq � ξ�1

"
φppx;µ,Σq BBxΦ1

�
τ � λJΣ�1{2px � µq�� B

Bxφppx;µ,Σq

Φpτ � λJΣ�1{2px � µqq
*
,

� ξ�1
!
Σ�1{2λφ1pτ � λJΣ�1{2px � µqqφppx;µ,Σq �Σ�1px � µq

� φppx;µ,ΣqΦ1pτ � λJΣ�1{2px � µqq
)
,

� �Σ�1px � µqESNppx;µ,Σ,λ, τq � ξ�1Σ�1{2λφppx;µ,Σq

� φ1pτ � λJΣ�1{2px � µqq. (3.12)
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On the other hand we have that

φ1pτ � λJΣ�1{2px � µqqφppx;µ,Σq � |Σ�1|1{2
p2πq p�1

2
exp

"
�1

2
�
δpxq � pτ � λJΣ�1{2px � µqq2�* ,

� |ΓΣ�1|1{2 exp
"
µJ
b Γ�1µb

2

*
� 1?

2π
exp

"
�τ

2

2

*
� 1
p2πq p2 |Γ|1{2 exp

"
�δpx;µ� µb,Γq

2

*
,

� |Σ�1Γ|1{2 exp
"
µJ
b Γ�1µb

2

*
φ1pτqφppx;µ� µb,Γq,

(3.13)
where we use the fact that,

δpxq � pτ � λJΣ�1{2px � µqq2 � px � µqJΓ�1px � µq � 2µJ
b Γ�1px � µq � τ 2,

� px � pµ� µbqqJΓ�1px � pµ� µbqq � µJ
b Γ�1µb � τ 2,

� δpx;µ� µb,Γq � µJ
b Γ�1µb � τ 2,

and where δpxq � δpx;µ,Σq � px � µqJΣ�1px � µq is the Mahalanobis distance and
with Γ � Σ1{2pIp � λλJq�1Σ1{2 � Σ � ∆∆J (using the fact that, pIp � λλJq�1 �
Ip � p1� λJλq�1λλJ) and µb � τΓΣ�1{2λ � τ̃∆.

Plugging (3.13) in (3.12), we obtain

� B
BxESNppx;µ,Σ,λ, τq �Σ�1 rpx � µqESNppx;µ,Σ,λ, τq � δφppx;µ� µb,Γqs ,

where δ � ηΣ1{2λ and

η � |ΓΣ�1|1{2 � φ1pτq
ξ

exp
"
µJ
b Γ�1µb

2

*
, (3.14)

� |Ip � λλJ|�1{2 � φ1pτq
ξ

exp
"
τ 2λJpIp � λλJq�1λ

2

*
,

� 1?
1� λJλ �

1
ξ
?

2π
exp

"
�τ

2

2

�
1� λJλ

1� λJλ
�*

,

� 1?
1� λJλ �

1
ξ
?

2π
exp

"
�1

2
τ 2

1� λJλ
*
,

� φ1pτ ; 0, 1� λJλq
ξ

with detpIp � λλJq � 1� λJλ from the Sylvester’s determinant identity (Harville, 1997).

Multiplying both sides by xκ and integrating from a to b, we have (after
suppressing the arguments of Fp

κ and F p
κ) that

dκ � Σ�1

������
Fp
κ�e1 � µ1Fp

κ � δ1F
p
κ

Fp
κ�e2 � µ2Fp

κ � δ2F
p
κ

... ...
Fp
κ�ep � µpFp

κ � δpF
p
κ

������ ,
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and the jth element of the left hand side is

dκ,j � �
» bpjq

apjq
xκESNppx;µ,Σ,λ, τq

����bj
xj�aj

dxpjq �
» b

a
kjxκ�ejESNppx;µ,Σ,λ, τqdx

by using integration by parts. Using Proposition 3.2, we know that

ESNppx;µ,Σ,λ, τq��
xj�aj

� ESN1paj;µj, σ2
j , cjσjϕ̃j, cjτqESNp�1pxpjq; µ̃a

j , Σ̃j, Σ̃1{2
j ϕpjq, τ̃

a
j q,

ESNppx;µ,Σ,λ, τq��
xj�bj

� ESN1pbj;µj, σ2
j , cjσjϕ̃j, cjτqESNp�1pxpjq; µ̃b

j , Σ̃j, Σ̃1{2
j ϕpjq, τ̃

b
j q,

and we obtain

dκ,j � kjFp
κ�ejpa,b;µ,Σ,λ, τq

�akjj ESN1paj;µj, σ2
j , cjσjϕ̃j, cjτqFp�1

κpjq
papjq,bpjq; µ̃a

j , Σ̃j, Σ̃1{2
j ϕpjq, τ̃

a
j q

�bkjj ESN1pbj;µj, σ2
j , cjσjϕ̃j, cjτqFp�1

κpjq
papjq,bpjq; µ̃b

j , Σ̃j, Σ̃1{2
j ϕpjq, τ̃

b
j q.

Finally, multiplying both sides by Σ, we obtain (3.10). This completes the proof.

This delivers a simple way to compute any arbitrary moments of multivariate
TSN distribution Fp

κ based on at most 3p� 1 lower order terms, with p� 1 of them being
p-dimensional integrals, the rest being pp� 1q-dimensional integrals, and a normal integral
F p
κ that can be easily computed through our proposed R package MomTrunc available at

CRAN. When kj � 0, the first term in (3.11) vanishes. When aj � �8, the second term
vanishes, and when bj � �8, the third term vanishes. When we have no truncation, that
is, all the a1is are �8 and all the b1is are �8, for Y � ESNppµ,Σ,λ, τq, we have that

Fp
κp�8,�8;µ,Σ,λ, τq � ErYκs,

and in this case the recursive relation is

ErYκ�eis � µiErYκs � δiErWκs �
p̧

j�1
σijkjErYκ�eis, i � 1, . . . , p,

with W � Nppµ� µb,Γq.
It is worth to stress that any arbitrary truncated moment of Y, that is,

ErYκ|a ¤ Y ¤ bs � Fp
κpa,b;µ,Σ,λ, τq

Lppa,b;µ,Σ,λ, τq , (3.15)

can be computed using the recurrence relation given in Theorem 3.1. In the next section,
we proposed another approach to compute (3.15) using a unique corresponding arbitrary
moment to a truncated normal vector.
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3.3.2 Computing ESN moments based on normal moments

Next, we present a theorem establishing a 1-1 relation between the ESN integral
Fκ and the normal integral Fκ.

Theorem 3.2. It holds that

Fp
κpa,b;µ,Σ,λ, τq � ξ�1F p�1

κ� pa�,b�;µ�,Ωq, (3.16)

with µ� and Ω as defined in Proposition 3.1, and κ� � pκJ, 0qJ, a� � paJ,�8qJ and
b� � pbJ, τ̃qJ.

In particular, for κ � 0, then

Lppa,b;µ,Σ,λ, τq � ξ�1Lp�1pa�,b�;µ�,Ωq. (3.17)

Proof. From the inclusion-exclusion principle, we have that

Fp
κpa,b;µ,Σ,λ, τq �

¸
sPSpa,bq

p�1qns
» s

�8

xκESNppx;µ,Σ,λ, τqdx,

where Spa,bq � a�b is a cartesian product with 2p elements of the form s � ps1, . . . , spqJ,
with si P tai, biu for i � 1, . . . , p and ns �

p̧

i�1
1psi � aiq. For Y � ESNppµ,Σ,λ, τq and

X � pX1
J, X2qJ � Np�1pµ�,Ωq, it follows from its stochastic representation (3.4) that

Fp
κpa,b;µ,Σ,λ, τq �

¸
sPSpa,bq

p�1qns
» s

�8

xκ1 fX1px1|X2   τ̃qdx1,

�
¸

sPSpa,bq
p�1qns

» s

�8

» τ̃

�8

xκ1
fYpx1, x2q
P pX2   τ̃qdx2dx1,

� ξ�1
¸

sPSpa,bq
p�1qns

» s

�8

» τ̃

�8

xκ�fXpxqdx,

� ξ�1
¸

sPSpa,bq
p�1qns

» s1

�8

xκ�φp�1px;µ�,Ωqdx,

� ξ�1
¸

sPSpa,bq
p�1qnsF p�1

κ� p�8, s1;µ�,Ωq

with s1 � psJ, τ̃qJ being a vector of dimension p � 1. For convenience, we preserve the
index s in the summation due to s1 is a one-to-one transformation. Similarly, we define
the vector s0 � psJ,�8qJ.

Let U0 and U1 be the two sets U0 �
¤

sPSpa,bq
s0 and U1 �

¤
sPSpa,bq

s1, both with 2p

elements. Then, U0YU1 contains the same 2p�1 elements s� in Spa�,b�q for a� � paJ,�8qJ
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and b� � pbJ, τ̃qJ. Since Fp�1
κ� ps0;µ�,Ωq � 0 for all s0 P U0 and ns� � ns�1psp�1 � �8q,

then ¸
sPSpa,bq

p�1qnsF p�1
κ� p�8, s1;µ�,Ωq �

¸
s0PU0

p�1qns�1F p�1
κ� p�8, s0;µ�,Ωq

�
¸

s1PU1

p�1qnsF p�1
κ� p�8, s1;µ�,Ωq,

�
¸

s�PSpa�,b�q
p�1qns�F p�1

κ� p�8, s�;µ�,Ωq,

� F p�1
κ� pa�,b�;µ�,Ωq.

Equation (3.17) offers us in a very convenient manner to compute the probability
Lppa,b;µ,Σ,λ, τq, since efficient algorithms already exist to calculate Lppa,b;µ,Σq (e.g.,
see Genz (1992)), which avoids performing 2p evaluations of cdf of the multivariate N
distribution.

Corollary 3.1. For Y � ESNppµ,Σ,λ, τq and X � Np�1pµ�,Ωq, it follows from Theo-
rem 3.2 that

ErYκ|a ¤ Y ¤ bs � ErXκ� |a� ¤ X ¤ b�s,
with a�, b�, κ�, µ� and Ω as defined in Theorem 3.2.

3.3.3 Mean and covariance matrix of multivariate TESN distributions

Let us consider Y � TESNppµ,Σ,λ, τ, pa,bqq. In light of Theorem 3.1, we
have that

ErYis � 1
L

�
δiL�

p̧

j�1
σij

�
ESN1paj;µj, σ2

j , cjσjϕ̃j, cjτqLp�1papjq,bpjq; µ̃a
j , Σ̃j, Σ̃1{2

j ϕpjq, τ̃
a
j q

� ESN1pbj;µj, σ2
j , cjσjϕ̃j, cjτqLp�1papjq,bpjq; µ̃b

j , Σ̃j, Σ̃1{2
j ϕpjq, τ̃

b
j q
��� µi,

for i � 1, . . . , p, where L � Lppa,b;µ,Σ,λ, τq and L � Lppa,b;µ� µb,Γq.
It follows that

ErYs � µ� 1
L
rLδ �Σpqa � qbqs, (3.18)

where the j-th element of qa and qb are

qa,j � ESN1paj;µj, σ2
j , cjσjϕ̃j, cjτqLp�1papjq,bpjq; µ̃a

j , Σ̃j, Σ̃1{2
j ϕpjq, τ̃

a
j q, (3.19)

qb,j � ESN1pbj;µj, σ2
j , cjσjϕ̃j, cjτqLp�1papjq,bpjq; µ̃b

j , Σ̃j, Σ̃1{2
j ϕpjq, τ̃

b
j q. (3.20)
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Denoting D � rde1 , . . . ,deps, we can write

ErYYJs � µErYsJ � 1
L
rLδErWsJ �ΣDs, (3.21)

covrYs � �
µ� ErYs�ErYsJ � 1

L
rLδErWsJ �ΣDs, (3.22)

where W � TNppµ� µb,Γ, pa,bqq, that is a p-variate truncated normal distribution on
pa,bq.

Besides, from Corollary 3.1, we have that the first two moments of Y can be
also computed as

ErYs � ErXspp�1q, (3.23)
ErYYJs � ErXXJspp�1,p�1q, (3.24)

with X � TNp�1pµ�,Ω; pa�,b�qq. Note that covrYs � ErYYJs � ErYsErYJs. Equations
(3.23) and (3.24) are more convenient for computing ErYs and covrYs since all boils
down to compute the mean and the variance-covariance matrix for a p� 1-variate TMVN
distribution which integrals are less complex than the ESN ones.

3.3.4 Mean and covariance matrix of TMVN distributions

Some approaches exists to compute the moments of a TMVN distribution. For
instance, for doubly truncation, Manjunath & Wilhelm (2009) (method available through
the tmvtnorm R package) computed the mean and variance of X directly deriving the
MGF of the TMVN distribution. On the other hand, Kan & Robotti (2017) (method
available through the MomTrunc R package) is able to compute arbitrary higher order
TMVN moments using a recursive approach as a result of differentiating the multivariate
normal density. For right truncation, Vaida & Liu (2009) (see Appendix B) proposed a
method to compute the mean and variance of X also by differentiating the MGF, but
where the off-diagonal elements of the Hessian matrix are recycled in order to compute
its diagonal, leading to a faster algorithm. Next, we present an extension of Vaida & Liu
(2009) algorithm to handle doubly truncation.

3.3.5 Deriving the first two moments of a double truncated MVN distribution
through its MGF

Theorem 3.3. Let X � TNpp0,R; pa,bqq, with R being a correlation matrix of order
p� p. Then, the first two moments of X are given by

ErXs � Bmptq
Bt

����J
t�0

� � 1
L

Rq,
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ErXXJs � B2mptq
BtBtJ

����
t�0

� R � 1
L

RHR,

and consequently,
covrXs � R � 1

L2 R
�
LH� qqJ

�
R,

where L � Lppa,b; 0,Rq, q � qa � qb, with the i-th element of qa and qb as

qa,i � φ1paiqLp�1papiq,bpiq; aiRpiq,i, R̃iq and qb,i � φ1pbiqLp�1papiq,bpiq; biRpiq,i, R̃iq,

H being a symmetric matrix of dimension p, with off-diagonal elements hij given by

hij � haaij � hbaij � habij � hbbij ,

� φ2pai, aj; ρijqLp�2papi,jq,bpi,jq;µaaij , R̃ijq � φ2pbi, aj; ρijqLp�2papi,jq,bpi,jq;µbaij , R̃ijq
� φ2pai, bj; ρijqLp�2papi,jq,bpi,jq;µabij , R̃ijq � φ2pbi, bj; ρijqLp�2papi,jq,bpi,jq;µbbij , R̃ijq,

(3.25)

and diagonal elements
hii � aiqai � biqbi �Ri,piqHpiq,i, (3.26)

with R̃i � Rpiq,piq � Rpiq,iRi,piq, µαβij � Rpijq,ri,jspαi, βjqJ and R̃ij � Rpi,jq,pi,jq � Rpi,jq,ri,js

Rri,js,pi,jq.

Proof. See Appendix B.

The main difference of our proposal in Theorem 3.3 and other approaches
deriving the MGF relies on (3.26), where the diagonal elements are recycled using the
off-diagonal elements hij, 1 ¤ i � j ¤ p. Furthermore, for W � TNppµ,Σ; pã, b̃qq, we
have that

ErWs � µ� SErXs, (3.27)
covrWs � S covrXsS, (3.28)

where Σ being a positive-definite matrix, S � diagpσ1, σ2, . . . , σpq, and truncation limits ã
and b̃ such that a � S�1pã � µq and b � S�1pb̃� µq.

3.4 Dealing with limiting and extreme cases
Let consider Y � ESNppµ,Σ,λ, τq. As τ Ñ 8, we have that ξ � Φpτ̃q Ñ 1.

Besides, as τ Ñ �8, we have that ξ Ñ 0 and consequently Fp
κpa,b;µ,Σ,λ, τq �

ξ�1F p�1
κ� pa�,b�;µ�,Ωq Ñ 8. Thus, for negative τ̃ values small enough, we are not able to

compute ErYκs due to computation precision. For instance, in R software, Φpτ̃q � 0 for
τ̃   �37. The next proposition helps us to circumvent this problem.
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Proposition 3.5. (Limiting distribution for the ESN) As τ Ñ �8,

ESNppy;µ,Σ,λ, τ qÝÑφppy;µ� µb,Γq. (3.29)

Proof. Let X2 � Np0, 1q. As τ̃ Ñ �8, we have that P pX2 ¤ τ̃q Ñ 0, ErX2|X2 ¤ τ̃ s Ñ τ̃

and varrX2|X2 ¤ τ̃ s Ñ 0 (i.e., X2 is (i.e., X2 is degenerated on τ̃). In light of Proposition
3.3, Y d� pX1|X2 � τ̃q, and by the conditional distribution of a multivariate normal, it
is straightforward to show that ErX1|X2 � τ̃ s � µ� µb and covrX1|X2 � τ̃ s � Γ, which
concludes the proof.

3.4.1 Approximating the mean and variance-covariance of a TMVN distribu-
tion for extreme cases

While using the normal relation (3.23) and (3.24), we may also face numerical
problems for extreme settings of λ and τ due to the scale matrix Ω does depend on them.
Most common problem is that the normalizing constant Lppa�,b�;µ�,Ωq is approximately
zero, because the probability density has been shifted far from the integration region. It is
worth mentioning that, for these cases, it is not even possible to estimate the moments
generating Monte Carlo (MC) samples due to the high rejection ratio when subsetting to
a small integration region.

For instance, consider a bivariate truncated normal vector X � pX1, X2qJ, with
X1 and X2 having zero mean and unit variance, covpX1, X2q � �0.5 and truncation limits
a � p�20,�10qJ and b � p�9, 10qJ. Then, we have that the limits of X1 are far from the
density mass since P p�20 ¤ X1 ¤ �9q � 0. For this case, both the mtmvnorm function
from the tmvtnorm R package and the Matlab codes provided in Kan & Robotti (2017)
return wrong mean values outside the truncation interval pa,bq and negative variances.
Values are quite high too, with mean values greater than 1� 1010 and all the elements of
the variance-covariance matrix greater than 1� 1020. When changing the first upper limit
from �9 to �13, that is b � p�13, 10qJ, both routines return Inf and NaN values for all
the elements.

Although the above scenarios seem unusual, extreme situations that require
correction are more common than expected. For instance, this occurs when the elements of
the scale matrix Σ are small, even if the location parameter µ is close to the integration
region. Furthermore, the development of this part was motivated as we identified this
problem when we fit censored regression models, with high asymmetry and presence of
outliers. Hence, we present correction method in order to approximate the mean and
the variance-covariance of a multivariate TMVN distribution even when the numerical
precision of the software is a limitation.
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Dealing with out-of-bounds limits

Consider the partition X � pXJ
1 ,XJ

2 qJ such that dimpX1q � p1, dimpX2q � p2,
where p1 � p2 � p. It is well known that

ErXs � E

�
ErX1|X2s

X2

�

and

covrXs �
�

ErcovrX1|X2ss � covrErX1|X2ss covrErX1|X2s,X2s
covrX2,ErX1|X2ss covrX2s

�
.

Now, consider X � TNp

�
µ,Σ, pa,bq� to be partitioned as above. Also consider

the corresponding partitions of µ, Σ, a � paJ1 , aJ2 qJ and b � pbJ
1 ,bJ

2 qJ. We say that
the limits ra2,b2s of X2 are out-of-bounds if P pa2 ¤ X2 ¤ b2q � 0. Let us consider
the case where we are not able to compute any moment of X, because there exists a
partition X2 of X of dimension p2 that is out-of-bounds. Note this happens because
Lppa,b;µ,Σq ¤ P pa2 ¤ X2 ¤ b2q � 0. Also, we consider the partition X1 such that
P pa1 ¤ X1 ¤ b1q ¡ 0. Since the limits of X2 are out-of-bounds (and a2   b2), we have two
possible cases: b2 Ñ �8 or a2 Ñ 8. For convenience, let ξ2 � ErX2s and Ψ22 � covrX2s.
For the first case, as b2 Ñ �8, we have that ξ2 Ñ b2 and Ψ22 Ñ 0p2�p2 . Analogously, we
have that ξ2 Ñ a2 and Ψ22 Ñ 0p2�p2 as a2 Ñ 8.

Then X1 � TNp1

�
µ1,Σ11; ra1,b1s

�
, X2 � Np2

�
ξ2,0

�
(i.e., X2 is degenerated

on ξ2) and X1|X2 � TNp1

�
µ1 �Σ12Σ�1

22 pξ2 �µ2q,Σ11 �Σ12Σ�1
22 Σ21; ra1,b1s

�
. Given that

covrErX1|X2ss � 0p1�p2 and covrErX1|X2s,X2s � 0p2�p2 , it follows that

ErXs �
�
ξ1.2

ξ2

�
and covrXs �

�
Ψ11.2 0p1�p2

0p2�p1 0p2�p2

�
, (3.30)

with ξ1.2 � ErX1|X2s and Ψ11.2 � covrX1|X2s being the mean and variance-covariance
matrix of a TMVN distribution, which can be computed using (3.27) and (3.28).

In the event that there are double infinite limits, we can partition the vector
as well, in order to avoid unnecessary calculation of these integrals.

Dealing with double infinite limits

Let p1 be the number of pairs in pa,bq that are both infinite. We consider the
partition X � pXJ

1 ,XJ
2 qJ, such that the upper and lower truncation limits associated

with X1 are both infinite, but at least one of the truncation limits associated with X2

is finite. Since a1 � �8 and b1 � 8, it follows that X2 � TNp2

�
µ2,Σ22, ra2,b2s

�
and
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X1|X2 � Np1

�
µ1 �Σ12Σ�1

22 pX2 � µ2q,Σ11 �Σ12Σ�1
22 Σ21

�
. This leads to

ErXs � E

�
µ1 �Σ12Σ�1

22 pX2 � µ2q
X2

�
�
�
µ1 �Σ12Σ�1

22 pξ2 � µ2q
ξ2

�
, (3.31)

and

covrXs �
�

Σ11 �Σ12Σ�1
22
�
Ip2 �Ψ22Σ�1

22
�
Σ21 Σ12Σ�1

22 Ψ22

Ψ22Σ�1
22 Σ21 Ψ22

�
, (3.32)

with ξ2 and Ψ22 being the mean vector and variance-covariance matrix of a TMVN
distribution, which can be computed using (3.27) and (3.28) as well.

As can be seen, we can use equations (3.31) and (3.32) to deal with double
infinite limits, where the truncated moments are computed only over a p2-variate partition,
avoiding some unnecessary integrals and saving some computational effort. On the other
hand, expression (3.30) let us to approximate the mean and the variance-covariance matrix
for cases where the computational precision is a limitation.

3.5 Comparison of our proposal with existent methods
Now, we compare different approaches to compute the mean vector and variance-

covariance matrix of a p-variate TESN distribution. We consider our proposal derived
from Theorem 3.1, as well as the normal relation given in Theorem 3.2 using different
(some existent) methods for computing the mean and variance-covariance of a TMVN
distribution. The methods that we compare are the following:

Proposal 1: Theorem 3.1, i.e., equations (3.18), and (3.24),
Proposal 2: Normal relation (NR) in Theorem 3.2 using Theorem 3.3,
K&R: NR in Theorem 3.2 using the Matlab routine from Kan & Robotti (2017),
tmvtnorm: NR in Theorem 3.2 using the tmvtnorm R function from Manjunath &

Wilhelm (2009).

Left panel of Figure 7 shows the number of integrals required to achieve this for different
dimensions p. We compare the proposal 1 for a p-variate TESN distribution and the
equivalent p� 1-variate normal approaches K&R and proposal 2.

It is clear that the importance of the new proposed method since it reduces the
number of integral involved almost to half, this compared to the TESN direct results from
proposal 1, when we consider the double truncation. In particular, for left/right truncation,
we have that the equivalent p� 1-variate normal approach along with Vaida & Liu (2009)
(now, a special case of proposal 2) requires up to 4 times less integrals than when we use
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Figure 7 – Number of integrals required and relative processing time for computing the
mean vector and variance-covariance matrix for a p-variate truncated ESN
and MVN distribution respectively, for 3 different approaches under double
truncation.

the method K&R. As seen before, the normal relation proposal 2 outperforms the proposal
1, that is, the equivalent normal approach always resulted faster even it considers one
more dimension, that is a p� 1-variate normal vector, due to its integrals are less complex
than for the ESN case.

Processing time when using the equivalent normal approach are depicted in
the right panel of Figure 7. Here, we compare the relative processing time of the mean
and variance-covariance of a TMVN distribution under the methods tmvtnorm, K&R and
our proposal 2, for different dimensions p. Note that a method with relative processing
time equal to 1 means this is the fastest one. In general, our proposal is the fastest one, as
expected. Method K&R resulted better only for p ¤ 3, which confirms the necessity for
a faster algorithm, in order to deal with high dimensional problems. Method tmvtnorm
resulted to be the slowest one by far. Our MonTrunc R package computes the mean and
the variance of a TMVN distribution in an optimal way, such that it uses the method
proposed by K&R for p   4 and otherwise proposal 2.

3.6 On moments of folded multivariate ESN distributions
First, we established some general results for the pdf, cdf and moments of a

folded multivariate distributions (FMD). These extend the results found in Chakraborty
& Chatterjee (2013) for a folded normal (FN) distribution to any multivariate distribution,
as well as the multivariate location-scale family. The proofs are given in Appendix B.

Theorem 3.4 (pdf and cdf of a MFD). Let X P Rp be a p-variate random vector
with pdf fXpx;θq and cdf FXpx;θq with θ being a set of parameters characterizing such
distribution. If Y � |X|, then the joint pdf and cdf of Y that follows a folded distribution
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of X are given, respectively, by

fYpyq �
¸

sPSppq
fXpΛsy;θq and FYpyq �

¸
sPSppq

πsFXpΛsy;θq, for y ¥ 0,

where Sppq � t�1, 1up is a cartesian product with 2p elements, each of the form s �
ps1, . . . , spq, Λs � Diagpsq and πs �

p¹
i�1

si.

Corollary 3.2. If X � fXpx; ξ,Ψq belongs to the location-scale family of distributions with
location and scale parameters ξ and Ψ respectively, then Zs � ΛsX � fXpz; Λsξ,ΛsΨΛsq
and consequently the joint pdf and cdf of Y � |X| are given by

fYpyq �
¸

sPSppq
fXpy; Λsξ,ΛsΨΛsq and FYpyq �

¸
sPSppq

πsFXpΛsy; ξ,Ψq, for y ¥ 0.

Hence, the κ-th moment of Y follows as

ErYκs �
¸

sPSppq
ErpZκs q�s,

where X� denotes the positive component of the random vector X.

Let X � ESNppµ,Σ,λ, τq, we now turn our attention to discuss the computa-
tion of any arbitrary order moment of |X|, a multivariate folded ESN (FESN) distribution.
Let define the Ipκ � Ipκpµ,Σ,λ, τq function as

Ipκpµ,Σ,λ, τq �
» 8

0
yκESNppy;µ,Σ,λ, τqdy. (3.33)

Note that Ipκ is a special case of Fp
κ that occurs when ai � 0 and bi � �8, i � 1, . . . , p.

In this scenario we have

Ipκpµ,Σ,λ, τq � Fp
κp0,�8;µ,Σ,λ, τq.

When λ � 0 and τ � 0, that is, the normal case we write Ipκpµ,Σ,0, 0q � Ipκpµ,Σq.

Proposition 3.6. If X � ESNppµ,Σ,λ, τq then Zs � ΛsX � ESNppµs,Σs,λs, τq and
consequently the joint pdf, cdf and the κth raw moment of Y � |X| are, respectively, given
by

fYpyq �
¸

sPSppq
ESNppyp;µs,Σs,λs, τq,

FYpyq � Lpp�y,y;µ,Σ,λ, τq,
and

ErYκs �
¸

sPSppq
Ipκpµs,Σs,λs, τq,

where ys � Λsy, µs � Λsµ, Σs � ΛsΣΛs and λs � Λsλ.
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Proof. Note that is suffices to show that if X � ESNppµ,Σ,λ, τq, then Zs � ΛsX �
ESNppµs,Σs,λs, τq since the rest of the corollary is straightforward. We have that

� ESNppx;µs,Σs,λs, τq
� ξ�1φppx; Λsµ,ΛsΣΛsq � Φ1

�
τ � pΛsλqJpΛsΣΛsq�1{2px �Λsµq

�
� ξ�1|ΛsΛs|1{2φppΛ�1

s x;µ,Σq � Φ1
�
τ � λJΛspΛsΣΛsq�1{2ΛspΛ�1

s x � µq�
� ξ�1φppΛsx;µ,Σq � Φ1

�
τ � λJΛspΛsΣΛsq�1{2ΛspΛsx � µq

�
(3.34)

?� ξ�1φppΛsx;µ,Σq � Φ1
�
τ � λJΣ�1{2pΛsx � µq

�
(3.35)

� ESNppΛsx;µ,Σ,λ, τq,

where ξ�1 � Φ1
�
τ{
a

1� λJ
sλs

�
due to λJs λs � λJλ.

In order to equalize (3.34) and (3.35), we see that it suffices to show that
Σ�1{2 � ΛspΛsΣΛsq�1{2Λs. This is equivalent to show that A � B for A � pΛsΣΛsq1{2
and B � ΛsΣ1{2Λs. We have that both matrices A and B are positive-definite matrices
since pΛsΣΛsq1{2 and Σ1{2 are too, as a consequence that they are obtained using Singular
Value Decomposition (SVD). Finally, given that A2 � B2 � ΛsΣΛs and any positive-
definite matrix has an unique positive-definite square root, we conclude that A � B by
uniqueness, which concludes the proof.

Observation 3.1. As a consequence of Proposition 3.6, we also have the new vectors
δs � Λsδ, µbs � Λsµb, ϕs � Λsϕ, ϕ̃s � Λsϕ̃, µ̃a

js � Λspjqµ̃
a
j and µ̃b

js � Λspjqµ̃
b
j , and

matrix Γs � ΛsΓΛs, while the constants ξ, η, cj ,Σ̃j, and τ̃j remain invariant with respect
to s.

A bivariate case

For instance, let us consider a bivariate case. We denote that X follows a
bivariate ESN distribution as X � ESN2pµ1, µ2, σ

2
1, σ12, σ

2
2, λ1, λ2, τq. For Y � |X|, it

follows that

fYpy1, y2q � fXpy1, y2q � fXp�y1, y2q � fXpy1,�y2q � fXp�y1,�y2q (3.36)
� fX1py1, y2q � fX2py1, y2q � fX3py1, y2q � fX4py1, y2q (3.37)

�
4̧

i�1
fXi

py1, y2q,

with

X1 � ESN2p�µ1,�µ2, σ
2
1,�σ12, σ

2
2,�λ1,�λ2, τq,

X2 � ESN2p�µ1,�µ2, σ
2
1,�σ12, σ

2
2,�λ1,�λ2, τq,

X3 � ESN2p�µ1,�µ2, σ
2
1,�σ12, σ

2
2,�λ1,�λ2, τq,
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X4 � ESN2p�µ1,�µ2, σ
2
1,�σ12, σ

2
2,�λ1,�λ2, τq.

Equation (3.36) stands from Theorem 3.4. Its four summands are respectively
equivalent to the four terms in (3.37). This can be seen through a briefly comparison of
the density regions at the points on Figure 8 above and the four points in the respective
densities in Figure 16 in the Appendix section B. As noted, to pass the signs to the
parameters, let us to fix the point py1, y2q and then integrating in both sides, we can obtain
any arbitrary moment for |X| as a sum of other 2p moments.
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Figure 8 – Density of X.

From Proposition 3.6, we can compute any arbitrary moment of a FESN
distribution as a sum of Ipκ integrals. In light of Theorem 3.1, the recurrence relation for
Ipκ can be written as

Ipκ�eipµ,Σ,λ, τq � µiIpκpµ,Σ,λ, τq � δiI
p
κpµ� µb,Γq �

p̧

j�1
σijdκ,j, i � 1, . . . , p, (3.38)

where

dκ,j �
#
kjIpκ�eipµ,Σ,λ, τq ; for kj ¡ 0
ESN1p0;µj, σ2

j , cjσjϕ̃j, cjτqIp�1
κpjq

pµ̃j, Σ̃j, Σ̃1{2
j ϕpjq, τ̃jq ; for kj � 0

with µ̃j � µpjq � µj
σ2
j

Σpjqj and τ̃j � τ � ϕ̃jµj.

It is also possible to use the normal relation in Theorem 3.2 to compute Er|X|κs
in a simpler manner as in next proposition.

Proposition 3.7. Let Y � |X|, with X � ESNppµ,Σ,λ, τq. In light of Theorem 3.4, It
follows that

ErYκs � ξ�1
¸

sPSppq
Ip�1
κ� pµ�

s ,Ω�
s q, (3.39)
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where Ipκpµ,Σq � F p
κp0,8;µ,Σq, µ�

s � pµJ

s , τ̃qJ and Ωs �
�

Σs �∆s

�∆J
s 1

�
, with µs �

Λsµ, Σs � ΛsΣΛs, ∆s � Λs∆ and Ω�
s standing for the block matrix Ωs with all its

off-diagonal block elements signs changed.

Proof is direct from Theorem 3.2 as Ipκ is a special case of Fp
κ. From proposition

3.2, we have that the mean and variance-covariance matrix can be calculated as a sum of
2p terms as well, that is

ErYs �
¸

sPSppq
ErZ�

s s, (3.40)

covrYs �
¸

sPSppq
E
�
Z�

sZ�

s
J
�� ErYsErYsJ, (3.41)

where Z�

s is the positive component of Zs � ΛsX � ESNppµs,Σs,λs, τq. Note that
there are 2p times more integrals to be calculated as compared to the non-folded case,
representing a huge computational effort for high dimensional problems.

In order to circumvent this, we can use the fact that ErYs � pErY1s, . . . ,ErYpsqJ
and the elements of ErYYJs are given by the second moments ErY 2

i s and ErYiYjs, 1 ¤
i � j ¤ p. Thus, it is possible to calculate explicit expressions for the mean vector and
variance-covariance matrix of the FESN only based on the marginal univariate means and
variances of Yi, as well as the covariance terms covpYi, Yjq.

Univariate case

Using the recurrence relation on Ik in (3.38), and following the notation in
Subsection 3.3.1.1, we can find explicit expressions for Er|X|ks for its first four raw
moments, as well as for others univariate folded distributions that are special cases of the
ESN distribution. For instance, setting τ � 0, we obtain the moments for the univariate
folded skew-normal Y � |X|, with X � SN1pµ, σ2, λq. Additionally, if we set the skewness
parameter as λ � 0, we obtain the moments for the folded normal distribution where
X � Npµ, σ2q. Furthermore, moments for the well-known half normal distribution can be
obtained when we set µ � λ � τ � 0. Explicit expressions for all these special cases can
be found the Appendix B.

Next, we propose explicit expressions for the mean and the variance-covariance
of the multivariate FESN distribution.

3.6.1 Explicit expressions for mean and covariance matrix of multivariate
folded ESN distribution

Let X � ESNppµ,Σ,λ, τq. To obtain the mean and covariance matrix of |X| boils down
to compute Er|Xi|s, Er|X2

i |s and Er|XiXj|s. Consider Xi to be the i-th marginal partition
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of X distributed as Xi � ESNpµi, σ2
i , λi, τiq. In light of proposition 3.6 it follows that

Er|Xi|ks � I1
kpµi, σ2

i , λi, τiq � I1
kp�µi, σ2

i ,�λi, τiq.

Thus, using the recurrence relation on Ik in (3.38), and following the notation in Subsection
3.3.1.1, we can write explicit expressions for Er|Xi|s and Er|Xi|2s. High order moments for
the univariate FESN and others related distributions are detailed in Appendix B.

It remains to obtain Er|XiXj|s for i � j, which can be obtained as

Er|XiXj|s �I2
1,1pµi, µj, σ2

i , σij, σ
2
j , λi, λj, τq � I2

1,1pµi,�µj, σ2
i ,�σij, σ2

j , λi,�λj, τq
� I2

1,1p�µi, µj, σ2
i ,�σij, σ2

j ,�λi, λj, τq � I2
1,1p�µi,�µj, σ2

i , σij, σ
2
j ,�λi,�λj, τq,

(3.42)

as pointed in proposition 3.6, with pXi, Xjq denoting an arbitrary bivariate partition of X.
Without loss of generality, let’s consider the partition pX1, X2q � ESN2pµ,Σ,λ, τq and
pW1,W2q � N2pm,Γq with m � µ� µb. For simplicity, we denote I2

1,1 � I2
1,1pµ,Σ,λ, τq,

and the normalizing constants L2 � L2p0,8;µ,Σ,λ, τq and L2 � L2p0,8;µ� µb,Γq.
Using the recurrence relation on I2

κ�ei in (3.38), we can obtain I2
1,1 for κ �

p1, 0qJ and e2 � p0, 1qJ as

I2
1,1 �pµ1µ2 � σ12qL2 � pδ1µ2 � δ2pµ1 � µb1qqL2 � pµ2σ

2
1 � σ12qφ̃p1qp1� Φ̃p2.1qq

� δ2
�
γ2

1φpµ1;µb1, γ2
1qp1� Φp0;m2.1, γ

2
2.1qq � γ12φpµ2;µb2, γ2

2qp1� Φp0;m1.2, γ
2
1.2qqq

�
� µ2σ12φ̃

p2qp1� Φ̃p1.2qq � σ2
2φ̃

p2qI1
1 pµ1.2, σ

2
11.2, σ11.2ϕ1, τ1.2q, (3.43)

where m2.1 � m2�γ12m1{γ2
1 , m1.2 � m1�γ12m2{γ2

2 , γ2
2.1 � γ2

2 �γ12{γ2
1 , γ2

1.2 � γ2
1 �γ12{γ2

2 ,
and in light of Proposition 3.2 we have that Φ̃p2.1q � Φ̃1p0;µ2.1, σ

2
2.1, σ2.1ϕ2, τ2.1q, Φ̃p1.2q �

Φ̃1p0;µ1.2, σ
2
1.2, σ1.2ϕ1, τ1.2q, and φ̃p`q � ESN1p0;µ`, σ2

` , c`σ`ϕ̃`, c`τq for ` � t1, 2u.
Using Remark 1 along with (3.42), we finally obtain an explicit expression for

Er|XiXj|s as

� Er|XiXj|s
� pµiµj � σijqp1� 2pΦ̃piq � Φ̃pjqqq � pδiµj � δjpµi � µbiqq p1� 2pΦpiq � Φpjqqq
� 2µj

�
σ2
i φ̃

piqp1� 2Φ̃piqq � σijφ̃
pjqp1� 2Φ̃pjqq�� 2σ2

j φ̃
pjqEr|Yi.j|s

� 2δj
�
γ2
i φpµi;µbi, γ2

i qp1� 2Φp0;mj.i, γ
2
j.iqq � γijφpµj;µbj, γ2

j qp1� 2Φp0;mi.j, γ
2
i.jqq

�
(3.44)

with Xi.j � ESNipµi.j, σ2
i.j, σi.jϕi, τi.jq. Furthermore,

Φ̃p1q � Φ̃2p0; p�µi, µjqJ,Σ�, p�λi, λjqJ, τq, Φ̃p2q � Φ̃2p0; pµi,�µjqJ,Σ�, pλi,�λjqJ, τq,

Φp1q � Φ2p0; p�mi,mjqJ,Γ�q and Φp2q � Φ2p0; pmi,�mjqJ,Γ�q,
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with Σ� (Γ�) denoting the Σ � rσijs (Γ � rγijs) matrix with all its signs of covariances
(off-diagonal elements) changed. Here, we have simplified the expressions above using that¸
sPSppq

Lpp0,8,ms,Γsq � 1, along the equivalences

Lpp0,8;µ,Σ,λs, τq � Φ̃pp0;�µs,Σs,�λs, τq, for s P Sppq
ESNpp0;µq,Σq,λq, τq � ESNpp0;µr,Σr,λr, τq, for q, r P Sppq

P pY1Y2 � � �Yp ¡ 0q �
¸

sPSppq
πsLpp0,8;µs,Σs,λs, τq,

with πs �
p¹
i�1

si as in Theorem 3.4 and
¸

sPSppq
Lpp0,8;µs,Σs,λs, τq � 1. It is worth men-

tioning that these expressions hold for the normal case, when λ � 0 and τ � 0.

As expected, this approach is much faster than the one using equations (3.40)
and (3.41). For instance, when we consider a trivariate folded ESN distribution, we have
that it is approximately 56x times faster than using MC methods and 10x times faster
than using equations (3.40) and (3.41). Time comparison (summarized in Figure 15, right
panel) as well as sample codes of our MomTrunc R package are provided in the Appendices
B.3 and B.4, respectively. Contours of different FESN densities can be found in Figure 17
given in Appendix B.3 as well.

3.7 Conclusions
In this paper, we have developed a recurrence approach for computing order

product moments of TESN and FESN distributions as well as explicit expressions for the
first two moments as a byproduct, generalizing results obtained by Kan & Robotti (2017)
for the normal case. The proposed methids also includes the moments of the well-known
truncated multivariate SN distribution, introduced by Azzalini & Dalla-Valle (1996). For
the TESN, we have proposed an optimized robust algorithm based only in normal integrals,
which for the limiting normal case outperforms the existing popular method for computing
the first two moments, even computing these two moments for extreme cases where all
available algorithms fail. The proposed method (including its limiting and special cases)
has been coded and implemented in the R MomTrunc package, which is available for the
users on CRAN repository.

During the last decade or so, censored modeling approaches have been used
in various ways to accommodate increasingly complicated applications. Many of these
extensions involve using Normal (Vaida & Liu, 2009) and Student-t (Matos et al., 2013;
Lachos et al., 2017), however statistical models based on distributions to accommodate
censored and skewness, simultaneously, so far have remained relatively unexplored in
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the statistical literature. We hope that by making the codes available to the community,
we will encourage researchers of different fields to use our newly methods. For instance,
now it is possible to derive analytical expressions on the E-step of the EM algorithm for
multivariate SN responses with censored observation as in Matos et al. (2013).
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4 Likelihood-based inference for multivariate
skew-normal censored responses

4.1 Introduction
In many applications on simulations or on experimental studies, the researches

often generate a large number of datasets with values restricted to fixed intervals. For
example, variables such as pH, grades, viral load in HIV studies and humidity in environ-
mental studies, have upper and lower bounds due to detection limits, being the support of
their densities restricted to some given intervals. On the other hand, during the last decade
or so, censored modeling approaches have been used in several ways to accommodate
increasingly complicated applications. Many of these extensions involve using normal and
its symmetrical extension. For instance, Massuia et al. (2015) proposed the Student-t
censored regression model. Garay et al. (2017) (see also, Matos et al. (2013)) advocated
the use of the multivariate Student-t distribution in the context of censored regression
models, where a simple and efficient EM-type algorithm for iteratively computing ML
estimates of the parameters was also presented. More recently, Wang et al. (2018) proposed
a multivariate extension of the models of Garay et al. (2017) and Matos et al. (2013),
for analyzing multi-outcome longitudinal data with censored observations, where they
established a feasible EM algorithm that admits closed-form expressions at E-steps and
tractable solutions at M-steps. They demonstrated its robustness against outliers through
extensive simulations. A common drawback of these proposals is that they are not ap-
propriate when the observed data exhibit skewness, which might lead to bias estimates
(Azzalini & Capitanio, 1999).

In this paper, we propose to use the multivariate skew-normal distribution to
analyze censored data, so that the SN-C model is defined and a fully likelihood-based
approach is carried out, including the implementation of an exact EM-type algorithm for
the ML estimation. Like Garay et al. (2017), we show that the E-step reduces to computing
the first two moments of a truncated multivariate skew-normal distribution, which are
implemented in the R package MomTrunc (Galarza et al., 2018). The likelihood function is
easily computed as a byproduct of the E-step and it is used for monitoring convergence
and for model selection.

The rest of this paper is organized as follows. In Section 4.2 we briefly discuss
some preliminary results related to the multivariate SN, extended SN (ESN) and some of
its key properties. Moreover, the truncated extended skew-normal is presented along with
some sketch of the computation of its first two moments. Section 4.3 presents the EM
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algorithm for estimating the model parameters of multivariate SN responses as well as in
a regression SN setting. Section 4.4 implements the proposed algorithm to real datasets
and finally, some concluding remarks are presented in Section 4.5.

4.2 Preliminaries
In this section we present some properties of the multivariate skew-normal

distribution and its extended version, the extended skew-normal distribution.

4.2.1 The multivariate skew-normal distribution

We say that a p� 1 random vector Y follows a multivariate SN distribution
with p� 1 location vector µ, p�p positive definite dispersion matrix Σ and p� 1 skewness
parameter vector λ P Rp, and we write Y � SNppµ,Σ,λq, if its joint probability density
function (pdf) is given by

SNppy;µ,Σ,λq � 2φppy;µ,ΣqΦ1pλJΣ�1{2py� µqq, (4.1)

where Φ1p�q represents the cumulative distribution function (cdf) of the standard univariate
normal distribution. If λ � 0, then (4.1) reduces to the symmetric Nppµ,Σq pdf. Except
by a straightforward difference in the parametrization considered in (4.1), this model
corresponds to that introduced by Azzalini & Dalla-Valle (1996).

Proposition 4.1 (cdf of the SN). If Y � SNppµ,Σ,λq, then for any y P Rp,

FYpyq � P pY ¤ yq � 2Φp�1
�pyJ, 0qJ;µ�,Ω

�
, (4.2)

where µ� � pµJ, 0qJ and Ω �
�

Σ �∆
�∆J 1

�
, with ∆ � Σ1{2λ{p1� λJλq1{2.

It is worth mentioning that the multivariate skew-normal distribution is closed
over marginalization but not conditioning. Next we present its extended version which
holds both properties, called, the multivariate ESN distribution.

4.2.2 The extended multivariate skew-normal distribution

We say that a p � 1 random vector Y follows a ESN distribution with p � 1
location vector µ, p� p positive definite dispersion matrix Σ, a p� 1 skewness parameter
vector λ P Rp, and a shift or extension parameter τ P R, denoted by Y � ESNppµ,Σ,λ, τq,
if its pdf is given by

ESNppy;µ,Σ,λ, τq � ξ�1φppy;µ,ΣqΦ1pτ � λJΣ�1{2py� µqq, (4.3)
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with ξ � Φ1pτ{p1 � λJλq1{2q. Note that, when τ � 0, we retrieve the skew-normal
distribution defined in (4.1), that is, ESNppy;µ,Σ,λ, 0q � SNppy;µ,Σ,λq. In this work,
we uses a slightly different parametrization of the ESN distribution found in Arellano-Valle
& Azzalini (2006a) and Arellano-Valle & Genton (2010). Furthermore, Arellano-Valle &
Genton (2010) deals with the multivariate extended skew-t (EST) distribution, in which the
ESN is a particular case when the degrees of freedom ν go to infinity. From Arellano-Valle
& Genton (2010), it is straightforward to see that

ESNppy;µ,Σ,λ, τqÝÑφppy;µ,Σq, as τ Ñ �8.

The following propositions will allow us to develop our methods.

Proposition 4.2 (Marginal and conditional distribution of the ESN ). Let Y � ESNppµ,Σ,
λ, τq partitioned as Y � pYJ

1 ,YJ
2 qJ of dimensions p1 and p2 (p1 � p2 � p), respectively.

Let

Σ �
�

Σ11 Σ12

Σ21 Σ22

�
, µ � pµJ

1 ,µ
J
2 qJ, λ � pλJ1 ,λJ2 qJ and ϕ � pϕJ

1 ,ϕ
J
2 qJ,

be the corresponding partitions of Σ, µ, λ and ϕ � Σ�1{2λ. Then,

Y1 � ESNp1pµ1,Σ11, c12Σ1{2
11 ϕ̃1, c12τq, Y2|Y1 � y1 � ESNp2pµ2.1,Σ22.1,Σ1{2

22.1ϕ2, τ2.1q

where c12 � p1 � ϕJ
2 Σ22.1ϕ2q�1{2, ϕ̃1 � ϕ1 � Σ�1

11 Σ12ϕ2, Σ22.1 � Σ22 � Σ21Σ�1
11 Σ12,

µ2.1 � µ2 �Σ21Σ�1
11 py1 � µ1q and τ2.1 � τ � ϕ̃J

1 py1 � µ1q.

Proof. The proof can be found in Appendix section B.

Proposition 4.3 (Stochastic representation by convolution). Assume that X and T are
independent variables with distribution Npp0, Ipq and TN1p0, 1; r�τ̃ ,8sq (which represents
a truncated standard normal distribution on r�τ̃ ,8q) respectively. Henceforth,

Y d� µ� T∆� Γ1{2X, (4.4)

is distributed as Y � ESNppµ,Σ,λ, τq, where Γ � Σ � ∆∆J with ∆ as defined in
Proposition 4.1.

Proof. The proof can be found in Arellano-Valle & Azzalini (2006a).

Proposition 4.4 (Stochastic representation by conditioning). Let X � pX1
J, X2qJ �

Np�1pµ�,Ωq. If
Y d� pX1|X2   τ̃q, (4.5)

it follows that Y � ESNppµ,Σ,λ, τq, with µ� and Ω as defined in Proposition 4.1, and
τ̃ � τ{p1� λJλq1{2.
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The stochastic representation in Equation (4.5) can be derived from Proposition
1 in Arellano-Valle & Genton (2010).

Proposition 4.5 (cdf of the ESN ). If Y � ESNppµ,Σ,λ, τq, then for any y P Rp,

FYpyq � P pY ¤ yq � Φp�1
�pyJ, τ̃qJ;µ�,Ω

�
Φpτ̃q . (4.6)

Proof. The proof comes from proposition 4.4. Hereinafter, for Y � ESNppµ,Σ,λ, τq, we
will denote its cdf as FYpyq � Φ̃ppy;µ,Σ,λ, τq, for simplicity.

4.2.3 The truncated extended skew-normal distribution

Let A be a Borel set in Rp. We say that the random vector Y has a truncated
extended skew-normal distribution on A when Y has the same distribution as Y|pY P Aq.
In this case, the pdf of Y is given by

fpy | µ,Σ, ν;Aq � ESNppy;µ,Σ,λ, τq
P pY P Aq 1Apyq,

where 1A is the indicator function of A. We use the notation Y � TESNppµ,Σ,λ, τ ;Aq.
If A has the form

A � tpx1, . . . , xpq P Rp : a1 ¤ x1 ¤ b1, . . . , ap ¤ xp ¤ bpu � tx P Rp : a ¤ x ¤ bu, (4.7)

we use the notation tY P Au � ta ¤ Y ¤ bu, where a � pa1, . . . , apqJ and b �
pb1, . . . , bpqJ. In this case, we say that the distribution of Y is double truncated. Anal-
ogously, we define tY ¥ au and tY ¤ bu, so, we say that the distribution of Y
is truncated from below and truncated from above, respectively. For convenience, we
also use the notation Y � TESNppµ,Σ,λ, τ ; ra,bsq. In particular, for a truncated
p-variate skew-normal and normal distribution on ra,bs, we use the notations X �
TSNppµ,Σ; ra,bsq and W � TNppµ,Σ; ra,bsq, respectively. We also define the normaliz-
ing constant Lppa,b;µ,Σ,λ, τq � P pa ¤ Y ¤ bq as

Lppa,b;µ,Σ,λ, τq �
» b

a
ESNppy;µ,Σ,λ, τqdy.

If all λ and τ are equal to zero, we have a normal integral Lppa,b;µ,Σ,0, 0q � Lppa,b;µ,Σq �» b

a
φppy;µ,Σqdy.

Remark: Note that, we use calligraphic style Lp to denote the skewed extended normal
integral and roman style Lp for the symmetric one.

Let apiq denote a vector a with its ith element being removed. For a matrix
A, we let Api,jq stands for its ith row and jth column being removed. Then, for Y �
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TESNppµ,Σ,λ, τ ; ra,bsq, it follows from corollary 3.1 that the first two moments of Y
can be computed from its corresponding Normal random variable, as

ErYs � ErWspp�1q, (4.8)
ErYYJs � ErWWJspp�1,p�1q, (4.9)

where W � TNp�1pµ�,Ω; ra�,b�sq, with µ� and Ω as defined in Proposition 4.1, a� �
paJ,�8qJ and b� � pbJ, τ̃qJ.

The first two moments of Y obtained from equations (4.8) and (4.9) are
available through the MomTrunc R package (Galarza et al., 2018), which so far, is the
unique method to compute the moments of the TESN and TSN. In the following, we
present some useful propositions and corollaries related to TESN random vectors.

Proposition 4.6. Let Y � TESNppµ,Σ,λ, τ, ra,bsq. For any measurable function gp�q,
we have that

E
�
gpYqφ1pτ � λJΣ�1{2pY � µqq

Φ1pτ � λJΣ�1{2pY � µqq
�
� ηL

L
ErgpWqs, (4.10)

with η � φ1pτ ; 0, 1 � λJλq{ξ, µb � τ̃∆, Γ � Σ � ∆∆J, L � Lppa,b;µ � µb,Γq,
L � Lppa,b;µ,Σ,λ, τq and W � TNppµ� µb,Γ, ra,bsq.

Proof. Let X � pX1
J, X2qJ � Np�1pµ�,Ωq as in Proposition 4.4. From the conditional

distribution of a multivariate normal distribution , it is straightforward to show that
X1|X2 � Nppµ �X2∆,Γq and X2|X1 � N1p�∆JΣ�1pX1 � µq, 1 �∆JΣ�1∆q. Then, it
holds that

fX2|X1pτ̃ ; xqfX1pxq � fX2pτ̃qfX1|X2px; τ̃q
φ1pτ̃ ;�∆JΣ�1px � µq, 1�∆JΣ�1∆qφppx;µ,Σq � φ1pτ̃qφppx;µ� τ̃∆,Γq
?

1� λJλ� φ1pτ � λJΣ�1{2px � µqqφppx;µ,Σq � φ1pτ̃qφppx;µ� µb,Γq
φ1pτ � λJΣ�1{2px � µqqφppx;µ,Σq � φ1pτ ; 0, 1� λJλqφppx;µ� µb,Γq,

(4.11)

where we have used that ∆JΣ�1∆ � �λJλ. Thus,

E

�
gpYq

φ1pτ � λ
JΣ�1{2pY � µqq

Φ1pτ � λJΣ�1{2pY � µqq

�
�

» b

a
gpyqφ1pτ � λ

JΣ�1{2py � µqq

Φ1pτ � λJΣ�1{2py � µqq

ESNpy;µ,Σ,λ, τq
Lppa,b;µ,Σ,λ, τqdy

�

» b

a

φ1pτ � λ
JΣ�1{2py � µqqφppy;µ,Σq

ξLppa,b,µ,Σ,λ, τq
gpyqdy

�
φ1pτ ; 0, 1 � λJλq
ξLppa,b;µ,Σ,λ, τq

» b

a
gpyqφppy;µ� µb,Γqdy

�
ηLppa,b;µ� µb,Γq
Lppa,b;µ,Σ,λ, τq

» b

a
gpwq

φppw;µ� µb,Γq
Lppa,b,µ� µb,Γq

dw

�
ηL

L
ErgpWqs,

for W � TNppµ� µb,Γ, ra,bsq.
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Corollary 4.1. Let Y � TESNppµ,Σ,λ, τ, ra,bsq. As τ ÝÑ �8, we have from Proposi-
tion 4.6 that

E
�
gpYqφ1pτ � λJΣ�1{2pY � µqq

Φ1pτ � λJΣ�1{2pY � µqq
�
� � τ

1� λJλErgpWqs, (4.12)

where W � TNppµ� µb,Γ, ra,bsq.

Proof. As τ Ñ �8, we have

Φ1pτ � λJΣ�1{2py� µqq
Φ1pτ{p1� λJλq1{2q ÝÑ 0

0 .

Using L’Hospital,

lim
τÑ�8

ESNppy;µ,Σ,λ, τq � lim
τÑ�8

φ1pτ � λJΣ�1{2py� µqqφppy;µ,Σq
p1� λJλq�1{2 � φ1pτ{p1� λJλq1{2q

(4.11)� lim
τÑ�8

φ1pτ ; 0; 1� λJλqφppy;µ� µb,Γq
p1� λJλq�1{2 � φ1pτ{p1� λJλq1{2q

� lim
τÑ�8

φppy;µ� µb,Γq.

Therefore, ESNppy;µ,Σ,λ, τ qÝÑφppy;µ � µb,Γq, Lppa,b;µ,Σ,λ, τq ÝÑ
Lppa,b;µ � µb,Γq and η ÝÑ �τ{p1� λJλq, as τ ÝÑ �8. This last holds from the
inverse Mill’s ratio, since φpxq{Φpxq ÝÑ �x as x ÝÑ �8. It is enough to replace the
limiting terms in Proposition 4.6.

Corollary 4.2. Setting τ � 0 in Corollary 1, it follows that Y � TSNppµ,Σ,λ, ra,bsq
and

E
�
gpYqφpλ

JΣ�1{2pY � µqq
ΦpλJΣ�1{2pY � µqq

�
� L0a

π
2 p1� λJλqL0

ErgpW0qs, (4.13)

with L0 � Lppa,b;µ,Γq, L0 � Lppa,b;µ,Σ,λ, 0q and W0 � TNppµ,Γ, ra,bsq.

Proof. The proof is straightforward. Setting τ � 0, it suffices to show that µb � 0 and
η �

a
2{πp1� λJλq.

Proposition 4.7. Let Y � ESNppµ,Σ,λ, τq. Also, let Y be partitioned as Y � pYJ
1 ,YJ

2 qJ
of dimensions p1 and p2 (p1 � p2 � p), with corresponding partitions of a, b, µ, Σ, λ and
ϕ. Then, for any measurable function gp�q, we have that

EY2

�
gpY2qφ1pτ � λJΣ�1{2pY � µqq

Φ1pτ � λJΣ�1{2pY � µqq
����Y1

�
� η2.1L2.1

L2.1
ErgpW2qs, (4.14)

where L2.1 � Lp2pa2,b2;µ2.1 � µb2.1,Γ22.1q, L2.1 � Lp2pa2,b2;µ2.1,Σ22.1,λ2.1, τ2.1q and
W2 � TNppµ2.1 � µb2.1,Γ22.1, ra2,b2sq, with λ2.1 � Σ1{2

22.1ϕ2, µ2.1, Σ22.1 and τ2.1 as in
Proposition 4.2; and η2.1, µb2.1 and Γ22.1 can be computed as expressions η, µb and Γ in
Proposition 4.6 but using the new set of parameters µ2.1, Σ22.1, λ2.1 and τ2.1 (instead of
µ, Σ, λ and τ).
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Proof. From Proposition 2, it is known that τ �λJΣ�1{2pY�µq � τ2.1 �λJ2.1Σ�1{2
22.1 pY2 �

µ2.1q, then it is enough to apply Proposition 4.6 by considering Y as Y2 � TESNp2pµ2.1,

Σ22.1,λ2.1, τ2.1, ra2,b2sq.

4.3 Multivariate SN censored responses
Let Yi � pYi1, . . . , YipqJ be a p � 1 response vector for the ith sample unit,

for i P t1, . . . , nu, and consider the set of random samples (independent and identically
distributed):

Y1, . . . ,Yn � SNppµ,Σ,λq, (4.15)

with location vector µ � pµ1, . . . , µpqJ, dispersion matrix Σ � Σpαq depending on an
unknown and reduced parameter vector α and skewness parameter λ. However, the
response vector Yi may not be fully observed due to censoring, so we define pVi,Ciq the
observed data for the ith sample, where Vi� pVi1, . . . , VipqJ with elements being either an
uncensored observation pVik � V0iq or the interval censoring level pVik P rV1ik, V2iksq, and
Ci � pCi1, . . . , CipqJ is the vector of censoring indicators, satisfying

Cik �
#

1 if V1ik ¤ Yik ¤ V2ik ,

0 if Yik � V0i ,
(4.16)

for all i P t1, . . . , nu and k P t1, . . . , pu, i.e., Cik � 1 if Yik is located within a specific
interval. In this case, (4.15) along with (4.16) defines the multivariate skew-normal interval
censored model (hereafter, the SN-C model). For instance, left censoring structure causes
truncation from the lower limit of the support of the distribution, since we only know that
the true observation Yik is greater than or equal to the observed quantity V1ik. Moreover,
missing observations can be handled by considering V1ik � �8 and V2ik � �8.

4.3.1 The likelihood function

Let y � pyJ
1 , . . . ,yJ

n qJ, where yi � pyi1, . . . , yipqJ is a realization of Yi �
SNppµ,Σ,λq. In order to obtain the likelihood function of the SN-C model, first we treat,
separately, the observed and censored components of yi, i.e., yi � pyoJi ,yc

J

i qJ, where
Cik � 0 for all elements in the poi -dimensional vector yoi , and Cik � 1 for all elements in
the pci -dimensional vector yci . On according to that, we write Vi � vecpVo

i ,Vc
iq, where

Vc
i � pVc

1i,Vc
2iq with

µi � pµoJi ,µcJi qJ, Σ � Σpαq �
�

Σoo
i Σoc

i

Σco
i Σcc

i



, λi � pλoJi ,λcJi qJ and ϕi � pϕoJi ,ϕcJi qJ.

Then, using Proposition 4.2, we have that Yo
i � SNpoi

pµoi ,Σoo
i , c

oc
i Σoo 1{2

i ϕ̃oi q and Yc
i | Yo

i �
yoi � ESNpci

pµcoi , Σcc.o
i ,Σcc.o 1{2

i ϕci , τ
co
i q, where

µcoi � µci �Σco
i Σoo�1

i pyoi �µoi q, Σcc.o
i � Σcc

i �Σco
i pΣoo

i q�1Σoc
i , ϕ̃oi � ϕoi �Σoo�1

i Σoc
i ϕ

c
i ,

(4.17)
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coci � p1�ϕcJi Σcc.o
i ϕciq�1{2 and τ c.oi � ϕ̃oJi pyoi � µoi q. (4.18)

Let V � vecpV1, . . . ,Vnq and C � vecpC1, . . . ,Cnq denote the observed data.
Therefore, the log-likelihood function of θ � pµJ,αJ

Σ ,λ
JqJ, where αΣ denotes a minimal

set of parameters such that Σpαq is well defined (e.g. the upper triangular elements of Σ
in the unstructured case), for the observed data pV,Cq is

`pθ | V,Cq �
ņ

i�1
lnLi, (4.19)

where Li � Lipθ | Vi,Ciq represents the likelihood function of θ for the ith sample, say

Li � fpVi | Ci,θq � fpVc
1i ¤ yci ¤ Vc

2i | yoi ,θqfpyoi | θq
� Lpci

pVc
1i,Vc

2i;µcoi ,Σcc.o
i ,Σcc.o 1{2

i ϕci , τ
co
i qSNpoi

pyoi ;µoi ,Σoo
i , c

oc
i Σoo 1{2

i ϕ̃oi q.

4.3.2 Parameter estimation via the EM algorithm

In this subsection, we describe how to carry out ML estimation for the SN-C
model. The EM algorithm, originally proposed by Dempster et al. (1977), is a very popular
iterative optimization strategy commonly used to obtain ML estimates for incomplete-data
problems. This algorithm has many attractive features such as the numerical stability, the
simplicity of implementation and quite reasonable memory requirements (McLachlan &
Krishnan, 2008).

From the stochastic representation of multivariate ESN distribution in Propo-
sition 4.3, setting τ � 0, we can write Yi|pTi � tiq � Nppµ�∆ti,Γq and Ti � HNp0, 1q,
with HN referring to a Half normal distribution The complete data log-likelihood function
of an equivalent set of parameters θ � pµJ,∆J,αJ

Γ qJ, where αΓ � vechpΓq, is given by

`cpθq �
ņ

i�1
`icpθq, where the individual complete data log-likelihood is

`icpθq � �1
2
 
ln |Γ| � pyi � µ�∆tiqJΓ�1pyi � µ�∆tiq

(� c,

with c being a constant that does not depend on θ. Subsequently, the EM algorithm for
the SN-C model can be summarized as follows:

E-step: Given the current estimate pθpkq � pµ̂pkq, p∆pkq, pαpkq

Γ q at the kth step
of the algorithm, the E-step provides the conditional expectation of the complete data
log-likelihood function

Qpθ | pθpkqq � E
�
`cpθq | V,C, pθpkq� � ņ

i�1
Qipθ | pθpkqq,

where

Qipθ | pθpkqq9 � 1
2 ln |Γ| � 1

2tr
�" py2

i

pkq � µµJ � pt2i pkq∆∆J � 2µpyipkqJ � 2 ptypkq

i ∆J



Chapter 4. Likelihood-based inference for multivariate skew-normal censored responses 85

�2ptipkq∆µJ
)

Γ�1
�
,

with pyri pkq � ETiYi
rYr

i |Vi,Ci, pθpkqs, ptri pkq � ETiYi
rT ri |Vi,Ci, pθpkqs (for r � t1, 2u, with

Y1
i � Yi and Y2

i � YiYJ
i ) and ptypkq

i � ETiYi
rTiYi |Vi,Ci, pθpkqs.

M-step: Conditionally maximizing Qpθ | pθpkqq � ņ

i�1
Qipθ | pθpkqq with respect

to each entry of θ, we update the estimate pθpkq � pµ̂pkq, p∆pkq, pαpkq

Γ q by

pµpk�1q � 1
n

ņ

i�1

!pyipkq � ptipkq p∆pkq
)
, (4.20)

p∆pk�1q �
#

ņ

i�1

pt2i pkq
+�1 ņ

i�1

!xtyipkq � ptpkqi pµpk�1q
)
, (4.21)

pΓpk�1q � 1
n

ņ

i�1

" py2
i

pkq � pµpk�1qpµpk�1qJ � pt2i pkq p∆pk�1q p∆pk�1qJ � 2pµpk�1q pyipkqJ
�2 ptypkq

i
p∆pk�1qJ � 2ptipkq p∆pk�1qpµpk�1qJ

)
. (4.22)

Algorithm is iterated until a suitable convergence rule is satisfied. In the later
analysis, the algorithm stops when the relative distance between two successive evaluations
of the log-likelihood defined in (4.19) is less than a tolerance, i.e., |`ppθpk�1q | V,Cq{`ppθpkq |
V,Cq � 1|   ε, for example, ε � 10�6. Once converged, we can recover pλ and pΣ using the
expressions pΣ � pΓ� p∆ p∆J and pλ � pΣ�1{2 p∆

p1� p∆J pΣ�1 p∆q1{2 .

It is important to stress that, from equations (4.20) and (4.22), the E-step reduces to the
computation of pyipkq, py2

i

pkq ptipkq, pt2i pkq and ptypkq

i . To compute these expected values, first
note that for any measurable function of Ti and Yi, such that gpTi,Yiq � g1pTiqg2pYiq,
we have that

ETiYi
rgpTi,Yiq|Vi,Cis � EYi

rg1pYiqETirg2pTiq|Yis|Vi,Cis. (4.23)

Then,

pyri � ETiYi
rYr

i |Vi,Cis � EYi
rYr

i |Vi,Cis,ptri � ETiYi
rT ri |Vi,Cis � EYi

rETirT ri |Yis|Vi,Cis,xtyi � ETiYi
rTiYi|Vi,Cis � EYi

rYiETirTi|Yis|Vi,Cis.

From Cabral et al. (2012), we know that Ti|Yi � TN1pM2pθq∆JΓ�1pYi�µq,M2pθq, p0,8qq,
having that

ETirTi|Yis �M2pθq∆JΓ�1pyi � µq �Mpθqφ1pλJΣ�1{2pyi � µqq
Φ1pλJΣ�1{2pyi � µqq , (4.24)
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ETirT 2
i |Yis �rM2pθq∆JΓ�1pyi � µqs2 �M3pθq∆JΓ�1pyi � µqφ1pλJΣ�1{2pyi � µqq

Φ1pλJΣ�1{2pyi � µqq
�M2pθq, (4.25)

where Mpθq � p1�∆JΓ�1∆q�1{2.

Subsequently, on according to expressions (4.23), (4.24) and (4.25), and Corol-
lary 4.2, we have the implementable expressions to the conditional expectations as follows:

1. If the ith subject has only non-censored components, then

pyri pkq � EYi
rYr

i |Vi,Ci, pθpkqs � yri ,ptri pkq � ETiYi
rT ri |Vi,Ci, pθpkqs � ETirT ri |Yi, pθpkqs,xtyipkq � ETiYi
rTiYi|Vi,Ci, pθpkqs � yiETirTi|Yi, pθpkqs,

with y0
i � 1, y1

i � yi and y2
i � yiyJ

i and ETirT ri |Yi, pθpkqs � ETirT ri |Yis|θ�pθpkq for
r � t1, 2u.

2. If the ith subject has only censored components, we have

pyri pkq � EYi
rYr

i |Vi,Ci, pθpkqs � xwr
i

pkq
,ptipkq �M2ppθpkqq p∆pkqJpΓ�1pkqpxwi

pkq � pµpkqq � pγpkqi Mppθpkqq,pt2i pkq �M4ppθpkqq p∆pkqJpΓ�1pkqpxw2
i

pkq � 2xwi
pkqpµpkqJ � pµpkqpµpkqJqpΓ�1pkq p∆pkq �M2ppθpkqq

� pγpkqi M3ppθpkqq p∆pkqJpΓ�1pkqpxw0
pkq
i � pµpkqq,xtyipkq �M2ppθpkqqpxwi

2pkq �xwi
pkqpµpkqJqpΓ�1pkq p∆pkq � pγpkqi Mppθpkqqxw0

pkq
i ,

where

pwpkq
i � ErWi | pθpkqs, pw2pkq

i � ErWiWJ
i | pθpkqs and xw0

pkq
i � ErW0i | pθpkqs,

with Wi � TSNpppµpkq, pΣpkq, pλpkq, rv1i,v2isq, W0i � TNpppµpkq, pΓpkq, rv1i,v2isq and

pγpkqi � 1b
π
2

�
1� pλpkqJpλpkq� Lppv1i,v2i, pµpkq, pΓpkqq

Lppv1i,v2i, pµpkq, pΣpkq, pλpkq, 0q .
3. If the ith subject has both censored and uncensored components and given that
pYi |Vi,Ciq, pYi |Vi,Ci,Yo

i q, and pYc
i |Vi,Ci,Yo

i q are equivalent processes, we
have

pypkq
i � EpYi |Yo

i ,Vi,Ci, pθpkqq � vecpyoi , pwcpkq
i q,

py2
i

pkq � EpYiYJ
i |Yo

i ,Vi,Ci, pθpkqq � �
yoiyoJi yoi pwcpkqJ

ipwcpkq
i yoJi pw2cpkq

i

�
,
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pypkq
0i � vecpyoi , pwcpkq

0i q,ptipkq �M2ppθpkqq p∆pkqJpΓ�1pkqppyipkq � pµpkqq � pγpkqi Mppθpkqq,pt2i pkq �M4ppθpkqq p∆pkqJpΓ�1pkqp py2
i

pkq � 2pyipkqpµpkqJ � pµpkqpµpkqJqpΓ�1pkq p∆pkq �M2ppθpkqq
� pγpkqi M3ppθpkqq p∆pkqJpΓ�1pkqp py0

pkq
i � pµpkqq,xtyipkq �M2ppθpkqqppyi2pkq � pyipkqpµpkqJqpΓ�1pkq p∆pkq � pγpkqi Mppθpkqq py0

pkq
i ,

where

pwcpkq
i � ErWc

i | pθpkqs, pw2cpkq
i � ErWc

iWcJ
i | pθpkqs and xw0

cpkq
i � ErWc

0i | pθpkqs,
with Wc

i � TESNpci

�pµcopkqi , pΣcc.opkq
i , pλcopkqi , pτ copkqi , rvc1i,vc2is

�
, Wc

0i � TNpp pmcopkq
i , pΓcc.opkq

i ,

rvc1i,vc2isq and pγpkqi � ηcoi Lppvc1i,vc2i; pmcopkq
i , pΓcc.opkq

i q
Lppvc1i,vc2i; pµcopkqi , pΣcc.opkq

i , pλcopkqi , pτ copkqi q
,

with λcoi � Σcc.o1{2

i ϕci , mco
i � µcoi �µcobi , where ηcoi , µcobi and Γcc.o

i can be computed as
expressions η, µb and Γ in Proposition 4.6, but using the new set of parameters µcoi ,
Σcc.o
i , λcoi and τ coi (instead of µ, Σ, λ and τ).

To compute the truncated moments ErW0is, ErWis and ErWiWJ
i s given in

items 2 and 3, we use the MomTrunc R package.

4.3.3 Regression setting

Suppose that we have observations on n independent individuals, Y1, . . . ,Yn,

where Yi � SNppµi,Σ,λq, i � 1, . . . , n. Associated with individual i we assume a known
p� q covariate matrix Xi, which we use to specify the linear predictor µi � Xiβ, where β
is a q-dimensional vector of unknown regression coefficients. In this case, the parameter
vector is θ � pβJ,αJ,λJqJ. The E-Step of the EM algorithm updates β as follows

pβpk�1q � p
ņ

i�1
XJ
i Xiq�1

ņ

i�1
XJ
i ppypkq

i � ptipkq∆pkqq, (4.26)

and the necessary quantities of the E and M-steps found in Subsection 4.3.2 remain the
same once we plug-in pµpkq by pµpkq

i � Xi
pβpkq.

4.4 Applications
To exemplify the method developed in this work, we considered all three

datasets introduced in chapter 1: (a) Apple data: a bivariate example with missing data,
(b) Concentration levels data: an interval-censoring data; and (c) Wine data: a skew normal
censored regression.
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4.4.1 Apple data: A bivariate example with missing data

First, we apply our methodology to the apple data introduced in subsection
1.2.2. We consider our proposed SN-C model with p � 2 dimension to fit the data, that is,
Yi � pYi1, Yi2q � SN2pµ,Σ,λq. In order to fit the models via the EM-based ML estimation
developed in Subsection 4.3.2, we employed different sets of initial values and chose the
fitting result with the largest maximized log-likelihood value to be the global maxima. For
the sake of comparison, we also fit a multivariate N-C model, which can be treated as a
reduced multivariate SN-C model for λ � 0.

A graphical representation for these fitted models is displayed in Figure 9,
with the scatter for the observed data, predicted points using both models, and overlaid
contours of the fitted SN and N densities.

Results are summarized on Tables 3 and 4. In Table 3, we can see that the
estimates for the skewness parameter λ are quite high (due to the small tolerance used for
the stopping rule of the algorithm) evidencing a significant departure from symmetry. From
Figure 9, note that these high values lead to a truncated effect for the response region.
As expected, the SN model outperforms the N model in terms of log-likelihood and AIC.
Predicted missing values are shown in Table 4, where we can see that not considering the
asymmetry in the model leads to underestimation. Comparing our results with Lin et al.
(2009), which studies the same dataset without considering any restriction (as censoring)
on the missing data, we have that our proposed model presents similar results in terms of
log-likelihood and AIC (`pθ̂|Yq � �98.47 and AIC = 208.94). It is worth to mention that
Lin et al. (2009) works with a different version of the SN distribution, the one introduced
by Sahu et al. (2003).

Figure 9 – Apple data. Scatter and predictive plot of the apple data, overlaid on the
contours of fitted SN model (solid lines) and N model (dashed lines). ESN
marginal densities are shown on borders.
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Table 3 – Apple data. Comparison of ML estimates between the two models

Model µ1 µ2 σ11 σ12 σ22 λ1 λ2 `pθ̂|Yq AIC
Normal 14.72 49.33 89.53 �90.69 114.68 - - �101.79 213.57

Skew-normal 9.56 52.36 118.31 �111.09 135.70 1163.26 317.91 �98.23 210.45

Table 4 – Apple data. Comparisons of EM predictions of the six missing values

Model ŷ13,2 ŷ14,2 ŷ15,2 ŷ16,2 ŷ17,2 ŷ18,2
Normal 60.19 60.19 59.18 58.17 56.14 54.12

Skew-normal 63.88 63.88 62.59 61.32 58.79 56.29

4.4.2 Concentration levels data: interval-censoring to fit positive left-censored
data

In the second application, we consider the concentration levels data as in
Chapter 2. These data were previously analyzed by Hoffman & Johnson (2015), where
they proposed a pseudo-likelihood approach for estimating parameters of multivariate
normal and log-normal models.

Censored responses in addition to asymmetric behavior of the data, lead us
to propose a SN-C model to fit the data, now with dimension p � 5 , that is, Yi �
pYi1, Yi2, . . . , Yi5q � SN5pµ,Σ,λq. For the sake of comparison, we also fit a multivariate
N-C model as in the previous application.

To guarantee strictly positive concentration levels, we consider an interval-
censoring analysis by setting all lower limit of detection equal to 0 for all trace metals.
Again, we standardize the dataset to have zero mean and variance equal to one as in
Wang et al. (2019). The ML estimates of the parameters were obtained using the EM
algorithm described in Subsection 4.3.2. The estimated skewness parameter λ̂ as well as
the log-likelihood and AIC are shown in Table 5. Here, we can see that the estimates of λ̂
are quite different from zero, indicating a lack of adequacy of the symmetry assumption
for the VDEQ data. The AIC value is lower for our SN-C model as expected.

Table 5 – VDEQ data. ML estimates for the skewness parameter and model comparison.

Model λ1 λ2 λ3 λ4 λ5 `pθ̂|Yq AIC
Normal - - - - - �1351.596 2743.192

Skew-normal 5.693 16.442 28.579 �1.382 0.488 �1269.078 2588.157

Figure 10 shows the histograms on diagonal and pair-wise scatter plots for the
concentration levels study. From the histograms we can see how censored observations
(taking values over the dashed lines) are distributed adequately to the left (blue bins)
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Figure 10 – VDEQ data. Histograms (diagonal) and pair-wise scatter plots (lower-triangle)
for the concentration levels study. Complete observed points are represented
in black points (gray bins) and SN predicted observations in blue points (bins).
Limits of detection are represented in dashed lines.

after fitting our proposed model, while gray bins represent complete observed points. On
the other hand, the scatter plots of the show complete observed (black) points and the
predicted observations using the multivariate SN-C model (blue points).

Finally, with the aim of validating the proposed censored model approach, we
compare the correlation matrices of the data by considering 5 strategies:

a) Original: original data
b) Omitting: zeros are not considered
c) Manipulating: multiplying the limit of detection by the factor 0.75
d) N-C model
e) SN-C model
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Figure 11 – VDEQ data. Correlation matrices of the concentration levels for 5 different
strategies.

The results are depicted in Figure 11. From this figure we can see that the
correlation matrices for the N and SN models are similar. Based on the AIC, we consider
the second one as a reference. We can get very decent results for this study by using the
original data (a) or even manipulating the data (c), with both tending to underestimate
the correlations. Omitting (b) is by far the worst strategy. For example, the correlation
between the Pb and Cu is poorly estimated to the point that they have the sign changed.
Similar problems arise for the correlations between Zn and other three elements. Given the
large number of censored observations, omitting leads to loss of information (as is the case
of the correlation between Ca and Pb, as well as between Ca and Mg, where correlation
was estimated to be zero).

4.4.3 Wine data: A skew normal censored regression with censored and missing
values

For this data, we propose the following simultaneous model:

acidityi � β10 � β11sugari � β12flavonoidsi � β13pHi � β14ODdwi � ε1i, (4.27)
alcoholi � β20 � β21sugari � β22flavonoidsi � β23pHi � β24ODdwi � ε2i, (4.28)

where we consider a correlation structure between the acidity and alcohol, that is,
covpεl, εbq � 0, and Erε2is � Erε2is � 0. The proposed model can be written in a matrix
form as

yi � rI2 b xisβ � εi, i � 1, . . . , n, (4.29)

where for the object i, yi � pacidity, alcoholqJi is a bivariate response of interest, xi �
p1, sugar, flavanoids, pH,ODdwqJi is a covariate vector, β � pβJ1 ,βJ2 qJ is a 10�1 vector,
with β1 and β2 being a 5 � 1 vector of regression coefficient for acidity and alcohol,
respectively; and finally εi � pε1i, ε2iqJ is the zero mean error term considered to be i.i.d.
as εi � SN2p�

a
2{π∆,Σ,λq, where Σ is a 2� 2 dispersion matrix, λ � pλ1, λ2qJ is the

skewness parameters and ∆ as defined in Proposition 4.1.

Furthermore, flavonoids are complicated compounds responsible for the color
and flavor of grapes and consequently of the wine, while ODdw is a measure of protein
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content. The units for the variables is not registered in the database, however they seem
to be positive quantities.

In order to validate our methodology, we alter the data by creating censoring
as well as missing values at random. Hence, we create 15% of right-censored values for
acidity, 15% of left-censored values for alcohol and an additionally 10% of missing values,
which were selected randomly along the remaining non-censored points.

This setting led to a total of 24.4% of censored/missing points. Note that,
only 57.3% of the measures had 0 missing/censored responses, 36.5% had exactly one
missing/censored characteristic and 6.2% observations with no information at all, that is,
both responses are missing/censored.

Furthermore, since quantities are strictly positive measures, to guarantee this,
we consider this feature by setting the lower limit of detection always greater than 0 for
both responses. This lead us to propose a skew-normal censored regression (SN-CR) model
defined in (4.29) to fit the data. For the sake of comparison, we also fit a multivariate
normal censored regression (N-CR) model and the skew-normal regression (SN-R) model
for the original non-disturbed data.

Table 6 – Wine data. Model comparison criteria for fitting the N-CR and SN-CR models
in the disturbed data.

Model λ1 λ2 `pθ̂|Yq AIC BIC
N-CR - - -726.68 1479.35 1529.73
SN-CR 2.96 -2.07 -718.16 1466.32 1524.44

Table 7 – Wine data. Estimated regression coefficients using the SN-CR model for the
original and disturbed data.

β10 β11 β12 β13 β14 β20 β21 β22 β23 β24 ȳ1 ȳ2
Original 257.14 1.86 -5.97 -58.31 -5.21 10.01 0.13 0.26 -0.03 -0.29 85.64 13.00

Disturbed 259.38 2.17 -6.53 -60.72 -5.32 9.34 0.15 0.22 0.02 -0.23 86.25 12.95

For model selection, we consider the log-likelihood (`pθ̂|Yq), Akaike information
criterion (AIC, Akaike, 1974) as well as the Bayesian Information Criterion (BIC, Schwarz
et al., 1978), displayed in Table 6. From this table, we can see that the estimates of λ are
not near from zero, indicating a significant skewness and consequently a lack of adequacy
of the symmetry assumption for this dataset. All criteria point out to our SN-CR model,
as expected.

We also analyzed the parameter estimation when we have the original and
the disturbed (missing/censored) data, for both datasets we fitted the SN-CR model.
Estimated values for the regression coefficients β, dispersion matrix Σ, skewness parameter
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λ can be found in Table 7, we can see that the estimated values are closer, showing that
it is reasonable to accommodate a mechanism for censoring/missing into the model.
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Figure 12 – Wine data. Scatter plots with marginal histograms (left panel) and estimated
densities (right panel) for the original data (in black) and disturbed data (in
blue) using our proposed SN-CR model.

Note from Figure 12 that the estimated densities for the original dataset (in
gray) and the estimated densities using our model (in blue) for the disturbed data are
almost indistinguishable, showing that our proposal offers a good performance in prediction,
even when the censoring/missing levels are high.

4.5 Conclusions
In this paper, a novel exact EM algorithm for skew-normal censored responses

has been developed. Our proposal uses closed-form expressions at the E-step, that rely on
formulas of the mean and variance of a multivariate truncated skew-normal distribution.
These formulas are available in closed form and have been derived recently (chapter 3).
Our approach includes some previously proposed solutions, such as, the skew-normal linear
regression model proposed by Lachos et al. (2007), the classic Tobit linear models in
which the error terms are assumed to follow a Gaussian distribution and the multivariate
skew-normal models with incomplete data proposed by Lin et al. (2009), among others.

We applied our methods to three real datasets containing missing and censored
components, where we demonstrate the superiority of the SN-C model by providing more
adequate results when the available data have asymmetric behavior. Furthermore, our
results reveal that our method has very competitive performance in terms of imputation
when the skew-normal model is imposed. Therefore, it is noteworthy that the use of the
SN-C model can offer a better fit and more precise inferences. It is important to remark
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that we assumed the dropout/censoring mechanism to be "missing at random" (MAR),
(see, Diggle et al., 2002, p 283). However, in the case where MAR with ignorability is not
realistic, the relationship between the unobserved measurements and censoring process
should be further investigated. The proposed method (including the limiting normal
symmetric case) has been coded and implemented in the R MomTrunc package, which is
available for the users on CRAN repository.
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5 Moments of the doubly truncated selection
elliptical distributions with emphasis on the
unified multivariate skew-t distribution

5.1 Introduction
Truncated moments have been a topic of high interest in the statistical literature,

whose possible applications are wide, from simple to complex statistical models as survival
analysis, censored data models, and in the most varied areas of applications such as
agronomy, insurance, finance, biology, among others. These areas have data whose inherent
characteristics lead to the use of methods that involve these truncated moments, such as
restricted responses to a certain interval, partial information such as censoring (which
may be left, right or interval), among others. The need to have more flexible models that
incorporate features such as asymmetry and robustness, has led to the exploration of
this area in last years. From the first two one-sided truncated moments for the normal
distribution, useful in Tobin’s model Tobin (1958), its evolution led to its extension to the
multivariate case Tallis (1961), double truncation Manjunath & Wilhelm (2009), heavy
tails when considering the Student’s t bivariate case in Nadarajah (2007), and finally the
first two moments for the multivariate Student’s t case in Ho et al. (2012). Besides the
interval-type truncation in cases before, Arismendi & Broda (2017) considers an interesting
non-centered ellipsoid elliptical truncation of the form a ¤ px � µAqJApx � µAq on well
known distributions as the multivariate normal, Student’s t, and generalized hyperbolic
distribution. On the other hand, Kan & Robotti (2017) recently proposed a recursive
approach that allows calculating arbitrary product moments for the normal multivariate
case. Based on the latter, Roozegar et al. (2020) proposes the calculation of doubly
truncated moments for the normal mean-variance mixture distributions which includes
several well-known complex asymmetric multivariate distributions as the generalized
hyperbolic distribution.

Unlike Roozegar et al. (2020), we focus our efforts to the general class of
asymmetric distributions called the selection elliptical family multivariate. This large
family of distributions includes complex multivariate asymmetric versions of well-known
elliptical distributions as the normal, Student’s t, exponential power, hyperbolic, Slash,
Pearson type II, contaminated normal, among others. We go further in details for the unified
skew-t (SUT) distribution, a complex multivariate asymmetric heavy-tailed distribution
which includes the extended skew-t (EST) distribution (Arellano-Valle & Genton, 2010),
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the skew-t (ST) distribution (Azzalini & Capitanio, 2003) and naturally its analogous
normal cases when ν Ñ 8.

The rest of the paper is organized as follows. In Section 5.2 we present some
preliminaries results, most of them being definitions of the class of distributions and its
special cases of interest along the document. Section 5.3, the addresses the moments for
the doubly truncated selection elliptical distributions. We establish formulas for high order
moments as well as its first two moments. We present a methodology to deal with some
limiting cases of interest and when a non-truncated partition exists, and we establish
sufficient and necessary conditions for the existence of these truncated moments. Section 5.4
bases results from Section 5.3 to the SUT case. In Section 5.5, a brief numerical study
is presented in order to validate the methodology. In Section 5.6, a direct application
of ST truncated moments is developed in the context of risk measurement in Finance.
Section 5.7 presents some lemmas and corollaries useful in censored modeling framework.
These are given for the SUT distribution and its particular cases EST (ESN) and ST
(SN) distributions. Finally, Section 5.8 proposes estimation on interval-censored models
for skew-t responses. We last conclude with some comments and future research.

5.2 Preliminaries

5.2.1 Selection distributions

First, we start our exposition defining a selection distribution as in Arellano-
Valle et al. (2006b).

Definition 5.1 (selection distribution). Let X1 P Rq and X2 P Rp be two random
vectors, and denote by C a measurable subset of Rq. We define a selection distribution as
the conditional distribution of X2 given X1 P C, that is, as the distribution of pX2 | X1 P Cq.
We say that a random vector Y P Rp has a selection distribution if Y d� pX2 | X1 P Cq.

We use the notation Y � SLCTp,q with parameters depending on the char-
acteristics of X1, X2, and C. Furthermore, for X2 having a probability density function
(pdf) fX2 say, then Y has a pdf fY given by

fYpyq � fX2pyq
PpX1 P C | X2 � yq

PpX1 P Cq . (5.1)

Since selection distribution depends on the subset C P Rq, particular cases are
obtained. One of the most important case is when the selection subset has the form

Cpcq � tx1 P Rq | x1 ¡ cu. (5.2)

In particular, when a � 0, the distribution of Y is called to be a simple selection
distribution.
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In this work, we are mainly interested in the case where pX1,X2q has a joint
density following an arbitrary symmetric multivariate distribution fX1,X2 . For Y d� pX2 |
X1 P Cq, this setting leads to a Y p-variate random vector following a skewed version of
f , which its pdf can be computed in a simpler manner as

fYpyq �
³
C
fX1,X2px1,yq dx1³
C
fX1px1q dx1

. (5.3)

5.2.2 Selection elliptical (SE) distributions

A quite popular family of selection distributions arises when X1 and X2 have
a joint multivariate elliptically contoured pECq distribution, as follows:

X �
�

X1

X2

�
� ECq�p

�
ξ �

�
ξ1

ξ2

�
,Ω �

�
Ω11 Ω12

Ω21 Ω22

�
, hpq�pq

�
, (5.4)

where ξ1 P Rq and ξ2 P Rp are location vectors, Ω11 P Rq�q, Ω22 P Rp�p, and
Ω21 P Rp�q are dispersion matrices, and, in addition to these parameters, hpq�pq is a
density generator function. We denote the selection distribution resulting from (5.4) by
SLCT -ECp,qpξ,Ω, hpq�pq, Cq. They typically result in skew-elliptical distributions, except
for two cases: Ω21 � 0p�q and C � Cpξ1q (for more details, see Arellano-Valle et al.
(2006b)). Given that the elliptical family of distributions is closed under marginalization
and conditioning, the distribution of X2 and pX1 | X2 � xq are also elliptical, where their
respective pdfs are given by

X2 � ECppξ2,Ω22, h
ppqq, (5.5)

X1 | X2 � x � ECqpξ1 �Ω12Ω�1
22 px � ξ2q,Ω11 �Ω12Ω�1

22 Ω21, h
pqq
x q, (5.6)

with induced conditional generator

hpqqx puq � hpq�pqpu� δ2pxqq
hppqδ2pxq ,

with δ2pxq M� px� ξ2qJΩ�1
22 px� ξ2q. These last equations imply that the selection elliptical

distributions are also closed under marginalization and conditioning. Furthermore, it is
well-know that the SE family is closed under linear transformations. For A P Rr�p and
b P Rr being a matrix of rank r ¤ p and a vector, respectively, it holds that the linear
transformation AY � b d� pAX2 � bq | pX1 ¡ 0q, where d� is an acronym that stands for
identically distributed, and then

AY � b � SLCT -ECr,q

�
ξ �

�
ξ1

Aξ2 � b

�
,Ω �

�
Ω11 Ω12AJ

AΩ21 AΩ22AJ

�
, hpq�rq

�
.

(5.7)
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Notice from Equation (5.3), that alternatively we can write

fYpyq �
³
C
fq�ppx1,y; ξ,Ω, hpq�pqq dx1³
C
fqpx1; ξ1,Ω11, hpqqq dx1

. (5.8)

5.2.3 Particular cases for the SE distribution

Some particular cases, useful for our purposes, are detailed next. For further
details, we refer to Arellano-Valle et al. (2006b).

Unified-skew elliptical (SUE) distribution

Let Y � SLCT -ECp,qpξ,Ω, hpq�pq, Cq. Y is said to follow the unified skew-
elliptical distribution introduced by Arellano-Valle & Azzalini (2006b) when the truncation
subset C � Cp0q. From (5.8), it follows that

fYpyq � fppy; ξ2,Ω22, h
ppqqFqpξ1 �Ω12Ω�1

22 py� ξ2q; 0,Ω11 �Ω12Ω�1
22 Ω21, h

pqq
y q

Fqpξ1; Ω11, hpqqq , (5.9)

where fppy; ξ2,Ω22, h
ppqq � |Ω22|�1{2hppqpδX2pyqq, and Fqpz; 0,Θ, gpqqq denote the cumu-

lative distribution function (cdf) of the ECqp0,Θ, gpqqq. Note that the density in (5.9)
extends the family of skew elliptical distributions proposed by Branco & Dey (2001) (see
also, Azzalini & Capitanio, 2003), which consider q � 1 and ξ1 � 0.

Scale-mixture of unified-skew normal (SMSUN) distribution

Let W being a nonnegative random variable with cdf G. For a generator
function hpp�qqpuq �

» 8

0
p2πζpwqq�pp�qq{2e�u{2ζpwqdGpwq, several skewed and thick-tailed

distributions can be obtained from different specifications of the weight function ζp�q and
G. It is said that Y follows a SMSUN distribution, if its probability density function (pdf)
takes the general form

fYpyq �
» 8

0
φppy; ξ2, ζpwqΩ22qΦqpξ1 �Ω12Ω�1

22 py� ξ2q; ζpwqtΩ11 �Ω12Ω�1
22 Ω21uq

Φqpξ1; ζpwqΩ11q dGpwq,
(5.10)

where Φrp�; Σq represents the cdf of a r-variate normal distribution with mean
vector 0 and variance-covariance matrix Σ. Here Y | pW � wq follow a unified skew-normal
(SUN) distribution, where we write Y | pW � wq � SUNpξ, ζpwqΩq.
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• Unified skew-normal (SUN) distribution

SettingW as a degenerated r.v. in 1 (PpW � 1q � 1) and ζpwq � w, then hpp�qqpuq �
p2πq�pp�qq{2e�u{2, u ¥ 0, for which hppqpuq � p2πq�p{2e�u{2. Then, Y follow a SUN
distribution, that is, Y � SUNp,qpξ,Ωq, with pdf as

fYpyq � φppy; ξ2,Ω22qΦqpξ1 �Ω12Ω�1
22 py� ξ2q; Ω11 �Ω12Ω�1

22 Ω21q
Φqpξ1; Ω11q . (5.11)

• Unified skew-t (SUT) distribution

For W � Gpν{2, ν{2q and weight function ζpwq � 1{w, we obtain hpp�qqpuq �
Γppp�q�νq{2qνν{2

Γpν{2qπpp�qq{2 t1� uu�pp�q�νq{2 and hence (5.10) becomes

fYpyq � tppy; ξ2,Ω2, νq
Tqpξ1 �Ω12Ω�1

22 py� ξ2q; ν�δ2pyqν�p
tΩ11 �Ω12Ω�1

22 Ω21u, ν � pq
Tqpξ1; Ω11, νq ,

(5.12)

where Trp�; Σ, νq represents the cdf of a r-variate Student’s t distribution with location
vector 0, scale matrix Σ and degrees of freedom ν. For Y with pdf as in (5.12) is
said to follow a SUT distribution, which is denoted by Y � SUTp,qpξ,Ω, νq and was
introduced by Arellano-Valle & Azzalini (2006b). It is well-know that (5.12) reduces
to a SUN pdf (5.11) as ν Ñ 8 and to an unified skew-Cauchy (SUC) distribution,
when ν � 1.

Furthermore, using the following parametrization:

ξ �
�
τ

µ

�
and Ω �

�
Ψ�ΛJΛ Ω12

Ω21 Σ

�
, (5.13)

where Ω21 � Σ1{2Λ, with Σ1{2 being the square root matrix of Σ such that Σ �
Σ1{2Σ1{2, we use the notation Y � SUTp,qpµ,Σ,Λ, τ , ν,Ψq, to stand for a p-variate
EST distribution with location parameter µ P Rp, positive-definite scale matrix
Σ P Rp�p, shape matrix parameter λ P Rp�q, extension vector parameter τ P Rq and
positive-definite correlation matrix Ψ P Rq�q. The pdf Y is now simplified to

SUTp,qpy;µ,Σ,Λ, τ , ν,Ψq � tppy;µ,Σ, νqTq
�pτ �ΛJΣ�1{2py� µqqνpyq,Ψ; ν � p

�
Tqpτ ; Ψ�ΛJΛ, νq ,

(5.14)
with ν2pxq � ν2

Xpxq M� pν � dimpxqq{pν � δpxqq and δpxq � px� µXqJΣ�1
X px� µXq

being the Mahalanobis distance. The pdf in (5.14) is equivalent to the one found
in Arellano-Valle & Genton (2010), with a different parametrization. Although the
unified skew-t distribution above is appealing from a theoretical point of view, the
particular case, when q � 1, leads to simpler but flexible enough distribution of
interest for practical purposes.
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Extended skew-t (EST) distribution

For q � 1, we have that Ψ � 1, Λ � λ and Tqpx; Ψ, νq � T1px{
a
ψ, νq, hence (5.14)

reduces to the pdf of a EST distribution, denoted by ESTppy;µ,Σ,λ, τq, that is,

ESTppy;µ,Σ,λ, τq � tppy;µ,Σ, νqT1
�pτ � λJΣ�1{2py� µqqνpyq; ν � p

�
T1pτ̃ ; νq . (5.15)

with τ̃ � τ{
?

1� λJλ .Here, λ P Rp is a shape parameter which regulates the
skewness of Y, and τ P R is a scalar. Location and scale parameters µ and Σ
remains as before. Here, we write Y � ESTppµ,Σ,λ, τq Notice that, SUTp,1 � ESTp.
Besides, it is straightforward to see that

ESTppy;µ,Σ,λ, τ, νqÝÑ tppy;µ,Σ, νq, as τ Ñ 8,

where tpp�;µ,Σ, νq corresponds to the pdf of a multivariate Student’s t distribution
with location parameter µ, scale parameter Σ and degrees of freedom ν. On the
other hand, when τ � 0, we retrieve the skew-t distribution STppµ,Σ,λ, νq say,
which density function is given by

STppy;µ,Σ,λ, νq � 2tppy;µ,Σ, νqT1
�
λJΣ�1{2py� µq νpyq; ν � p

�
, (5.16)

that is, ESTppµ,Σ,λ, 0, νq � STppµ,Σ,λ, νq. Other properties are studied in
Arellano-Valle & Genton (2010), with a slightly different parametrization.

Six different densities for special cases of the truncated SUT distribution are shown in
Figure 13. Symmetrical cases normal and Student’s t are shown at first row (λ � 0),
skew cases: skew-normal (SN) and ST at second row (τ � 0) and extended skew
cases: extended skew-normal (ESN) and EST at the third row. Location vector µ
and scale matrix Σ remains fixed for all cases.

• Others unified skewed distributions

Others unified members are given by different combinations of the weight function
ζpW q and the mixture cdf G. For instance, we obtain an unified skew-slash distribu-
tion when ζpwq � 1{w and W � Betapν, 1q; an unified skew-contaminated-normal
distribution when ζpW q � 1{W and W is a discrete r.v. with probability mass
function (pmf) gpw; ν, γq � νItw�γu�p1�νqItw�1u, with I being the identity function.
Besides, Branco & Dey (2001) mentions some other distributions as the skew-logistic,
skew-stable, skew-exponential power, skew-Pearson type II and finite mixture of
skew-normal distribution. It is worth mentioning that even though Branco & Dey
(2001) works with a subclass of the SMSUN, when q � 1 and ξ1 � 0, unified versions
of these are readily computed by considering the same respective weight function
ζp�q and mixture distribution G.
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5.3 On moments of the doubly truncated selection elliptical distri-
bution

Let Y � SLCT -ECp,qpξ,Ω, hpq�pq, Cq with pdf as in (5.8) and let also A be a
Borel set in Rp. We say that a random vector W has a truncated selection elliptical (TSE)
distribution on A when W d� Y|pY P Aq. In this case, the pdf of W is given by

fWpwq � fYpwq
P pY P Aq1Apwq,

where 1A is the indicator function of A. We use the notation W � TSLCT -ECp,qpξ,Ω, hpq�pq,
C;Aq. If A has the form

A � tpy1, . . . , ypq P Rp : a1 ¤ y1 ¤ b1, . . . , ap ¤ yp ¤ bpu � ty P Rp : a ¤ y ¤ bu, (5.17)

hence we use the notation tY P Au � ta ¤ Y ¤ bu, where a � pa1, . . . , apqJ and b �
pb1, . . . , bpqJ, where ai and bi values may be infinite, by convention. Here, we say that the
distribution of W is doubly truncated. Analogously we define tY ¥ au and tY ¤ bu. Thus,

(a) (b)

Figure 13 – Densities for particular cases of Y being a truncated SUT distribution. (a)
Normal cases at left column (normal, SN and ESN from top to bottom) and
(b) Student’s-t cases at right (Student’s t, ST and EST from top to bottom).
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we say that the distribution of W is truncated from below and truncated from above, respec-
tively. For convenience, we also use the notation W � TSLCT -ECp,qpξ,Ω, hpq�pq, C; pa,bqq
with the last parameter indicating the truncation interval. Analogously, we do denote
TECppξ,Ω, hppq; pa,bqq to refer to a p-variate (doubly) truncated elliptical (TE) distribu-
tion on pa,bq P Rp. Some characterizations of the doubly TE have been recently discussed
in Morán-Vásquez & Ferrari (2019).

5.3.1 Moments of a TSE distribution

For two p-dimensional vectors y � py1, . . . , ypqJ and k � pk1, . . . , kpqJ, let yk

stand for pyk1
1 , . . . , y

kp
p q, that is, we use a pointwise notation. Next, we present a formulation

to compute arbitrary product moments of a TSE distribution.

Theorem 5.1 (moments of a TSE). Let X � ECq�ppξ,Ω, hpq�pqq as in (5.6.1). Let
C be a truncation subset of the form Cpc,dq � tx1 P Rq | c ¤ x1 ¤ du. For Y �
SLCT -ECp,qpξ,Ω, hpq�pq, Cpc,dqq, it holds that ErYks � ErY k1

1 Y k2
2 . . . Y kp

p s can be com-
puted as

ErYk | a ¤ Y ¤ bs � ErXκ | α ¤ X ¤ βs, (5.18)

with κ � p0Jq ,kJqJ, α � pcJ, aJqJ and β � pdJ,bJqJ, where k � pk1, k2, . . . , kpqJ, with
ki P N, for i � 1, . . . , p.

Proof. Since Y d� X2 | pc ¤ X1 ¤ dq, the proof is direct by noting that

Y | pa ¤ Y ¤ bq d� X2 | pc ¤ X1 ¤ d X a ¤ X2 ¤ bq
d� X2 | pα ¤ X ¤ βq.

Corollary 5.1 (first two moments of a TSE). Under the same conditions of Theorem
5.1, let m � ErX | α ¤ X ¤ βs and M � ErXXJ | α ¤ X ¤ βs, both partitioned as

m �
�

m1

m2

�
and M �

�
M11 M12

M21 M22

�
,

respectively. Then, the first two moments of Y | pa ¤ Y ¤ bq are given by

ErY | a ¤ Y ¤ bs � m2, (5.19)
ErYYJ | a ¤ Y ¤ bs � M22, (5.20)

where m2 P Rp and M22 P Rp�p.

For the particular truncation subset Cpcq as in (5.2), theorem 5.1 and corollary
5.1 holds considering α � pcJ, aJqJ and β � p8J,bJqJ. Notice that, theorem 5.1 and
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corollary 5.1 state that we are able to compute any arbitrary moment of Y | pa ¤ Y ¤ bq,
that is, a TSE distribution just using an unique corresponding moment of a doubly TE
distribution X | pα ¤ X ¤ βq.

This is highly convenient since doubly truncated moments for some members
of the elliptical family of distributions are already available in the literature and statistical
softwares.

5.3.2 Dealing with limiting and extreme cases

Consider X � ECq�ppξ,Ω, hpq�pqq and Y � SLCT -ECp,qpξ,Ω, hpq�pq, Cq as in
Theorem 5.1 with truncation subset C � Cp0q. As ξ1 Ñ 8, we have that PpX1 ¥ 0q Ñ 1.
Besides, as ξ1 Ñ �8, we have that PpX1 ¥ 0q Ñ 0 and consequently Ppa ¤ Y ¤ bq �
Ppα ¤ X ¤ βq{PpX1 ¥ 0q Ñ 8. Thus, for ξ1 containing high negative values small
enough, sometimes we are not able to compute ErYks due to computation precision,
mainly when we work with distributions with lighter tails densities. For instance, for a
normal univariate case, Φ1pξ1q � 0 for ξ1 ¤ �38 in R software. The next proposition helps
us to circumvent this problem.

Proposition 5.1 (limiting case of a SE). As ξ1 Ñ �8 pξ1i Ñ �8, i � 1, . . . , qq,

SLCT -ECp,qpξ,Ω, hpq�pq, Cp0qqÝÑECppξ2 �Ω21Ω�1
11 ξ1,Ω22 �Ω21Ω�1

11 Ω12, h
ppq
0 q. (5.21)

Proof. Let X � pXJ
1 ,XJ

2 qJ � ECq�ppξ,Ω, hpq�pqq and Y � TSLCT -ECp,qpξ,Ω, hpq�pq,
Cp0q; pa,bqq. As ξ1 Ñ �8, we have that PpX1 ¥ 0q Ñ 0, ErX1|X1 ¥ 0s Ñ 0 and
VarrX1|X1 ¥ 0s Ñ 0, hence X1|X1 ¥ 0 becomes degenerated on 0. From Definition
5.1, Y dÝÑ pX2|X1 � 0q, and by the conditional distribution in Equation (5.6), it is
straightforward to show that X2|X1 � ECppξ2�Ω21Ω�1

11 pX1�ξ1q,Ω22�Ω21Ω�1
11 Ω12, h

ppq
X1q.

Evaluating X1 � 0 we achieve (5.21) concluding the proof.

5.3.3 Approximating the mean and variance-covariance of a TE distribution
for extreme cases

While using the relation (5.19) and (5.20), we may face numerical problems
trying to compute m � ErX | α ¤ X ¤ βs and M � ErXXJ | α ¤ X ¤ βs for extreme
settings of ξ and Ω. Usually, it occurs when Ppα ¤ X ¤ βq � 0 because the probability
density is far from the integration region pα,βq. It is worth mentioning that, for these
cases, it is not even possible to estimate the moments generating Monte Carlo (MC)
samples via rejection sample due to the high rejection ratio when subsetting to a small
integration region. Other methods as Gibbs sampling are preferable under this situation.
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Hence, we present correction method in order to approximate the mean and the
variance-covariance of a multivariate TE distribution even when the numerical precision
of the software is a limitation.

5.3.3.1 Dealing with out-of-bounds limits

Consider X � ECr
�
ξ,Ω, hprq

�
to be partitioned as X � pXT

1 ,XJ
2 qJ such that

dimpX1q � r1, dimpX2q � r2, where r1 � r2 � r. Also, consider ξ, Ω, α � pαJ
1 ,α

J
2 qJ

and β � pβJ1 ,βJ2 qJ partitioned as before. Suppose that we are not able to compute
ErXκ|α ¤ X ¤ βs, because there exists a partition X2 of X of dimension r2 that is out-of-
bounds, that is P pα2 ¤ X2 ¤ β2q � 0. Notice that this happens because Ppα ¤ X ¤ βq ¤
P pα2 ¤ X2 ¤ β2q � 0. Besides, we suppose that P pα1 ¤ X1 ¤ β1q ¡ 0. Since the limits of
X2 are out-of-bounds (and α2   β2), we have two possible cases: β2 Ñ �8 or α2 Ñ 8. For
convenience, let µ2 � ErX2 | α2 ¤ X2 ¤ β2s and Σ22 � covrX2 | α2 ¤ X2 ¤ β2s. For the
first case, as β2 Ñ �8, we have that µ2 Ñ β2 and Σ22 Ñ 0r2�r2 . Analogously, we have that
µ2 Ñ α2 and Σ22 Ñ 0r2�r2 as α2 Ñ 8. Hence, X2 | pα2 ¤ X2 ¤ β2q is degenerated on µ2

and then X1.2
d� X1 | pX2 � µ2q � ECr1pξ1 �Ω12Ω�1

22 pµ2 � ξ2q,Ω11 �Ω12Ω�1
22 Ω21, h

pr1q
µ2 q.

Given that covrErX1|X2ss � 0 and covrErX1|X2s,X2s � 0, it follows that

ErX | α ¤ X ¤ βs �
�
µ1.2

µ2

�
and covrX | α ¤ X ¤ βs �

�
Σ11.2 0r1�r2
0r2�r1 0r2�r2

�
,

(5.22)

with µ1.2 � ErX1.2 | α1 ¤ X1.2 ¤ β1s and Σ11.2 � covrX1.2 | α1 ¤ X1.2 ¤ β1s being the
mean and variance-covariance matrix of a r1-variate TE distribution.

In the event that there are double infinite limits, we can part the vector as
well, in order to avoid unnecessary calculation of these integrals.

5.3.3.2 Dealing with a non-truncated partition

Now, consider X � pXJ
1 ,XJ

2 qJ to be partitioned such that the upper and lower
truncation limits associated with X1 are both infinite, but at least one of the truncation
limits associated with X2 is finite. Then r1 be the number of pairs in pα,βq that are both
infinite, that is, dimpX1q � r1 and dimpX2q � r2, by complement. Since α1 � �8 and
β1 � 8 , it follows that X2 | pα ¤ X ¤ βq � TECr2

�
ξ2,Ω22, h

pr2q; rα2,β2s
�
and X1|X2 �

ECr1
�
ξ1 � Ω12Ω�1

22 pX2 � ξ2q,Ω11 � Ω12Ω�1
22 Ω21, h

pr1q
X2

�
. Let µ2 � ErX2 | α2 ¤ X2 ¤ β2s

and Σ22 � covrX2 | α2 ¤ X2 ¤ β2s. Hence, it follows that ErX | α ¤ X ¤ βs � ErErX1 |
X2s | α2 ¤ X2 ¤ β2s, that is

ErX | α ¤ X ¤ βs � E

��
ξ1 �Ω12Ω�1

22 pX2 � ξ2q
X2

������α2 ¤ X2 ¤ β2

�
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�
�
ξ1 �Ω12Ω�1

22 pµ2 � ξ2q
µ2

�
. (5.23)

On the other hand, we have that covrX2,ErX1|X2ss � covrX2,X2Ω�1
22 Ω21s � Σ22Ω�1

22 Ω21,
covrErX1|X2ss � Ω12Ω�1

22 Σ22Ω�1
22 Ω21 and ErcovrX1|X2ss � ω1.2pΩ11 �Ω12Ω�1

22 Ω21q, with
ω1.2 being a constant depending of the conditional generating function hpr1qX2 . Finally,

covrX | α ¤ X ¤ βs �
�
ω1.2Ω11 �Ω12Ω�1

22
�
ω1.2Ip2 �Σ22Ω�1

22
�
Ω21 Ω12Ω�1

22 Σ22

Σ22Ω�1
22 Ω21 Σ22

�
,

(5.24)

where µ2 and Σ22 are the mean vector and variance-covariance matrix of a TE distribution,
so we can use (5.19) and (5.20) as well.

Note that X1 | pα ¤ X ¤ βq � ECr1
�
ξ1,Ω11, h

pr1q
�
even though �8 ¤ X1 ¤

8 since X1 | pα ¤ X ¤ βq � X1 | pα2 ¤ X2 ¤ β2q . In general, the marginal distributions
of a TE distribution are not TE, however this holds for X2 due to the particular case
α1 � �8 and β1 � 8.

Particular cases

Notice that the constant ω1.2 will vary depending of the elliptical distribution
we are using. For instance, if X � tr1�r2pξ,Ω, νq then it follows that X2 � tr2

�
ξ2,Ω22, ν

�
and X1|X2 � tr1

�
ξ1 �Ω12Ω�1

22 pX2 � ξ2q, pΩ11 �Ω12Ω�1
22 Ω21q{ν2pX2q, ν � r2

�
. In this case,

it takes the form ω1.2 � Erpν � r2q{pν � r2 � 2qν2pX2q | α2 ¤ X2 ¤ β2s, which is given by

ω1.2 � E
�
ν � δpX2q
ν � r2 � 2 | α2 ¤ X2 ¤ β2

�
,

�
�

ν

ν � 2



Lr2pα2,β2; ξ2, νΩ22{pν � 2q, ν � 2q

Lr2pα2,β2; ξ2,Ω22, νq , (5.25)

where Lrpα,β; ξ,Ω, νq denotes the integral

Lrpα,β; ξ,Ω, νq �
» β
α

trpy; ξ,Ω, νqdy, (5.26)

that is, Lrpα,β; ξ,Ω, νq � Ppα ¤ Y ¤ βq for Y � trpξ,Ω, νq. Probabilities in (5.25) are
involved in the calculation of µ2 and Σ22 so they are recycled. For the normal case, it is
straightforward to see that ω1.2 � 1, by taking ν Ñ 8.

As can be seen, we can use equations (5.23) and (5.24) to deal with double
infinite limits, where the truncated moments are computed only over a r2-variate partition,
avoiding some unnecessary integrals and saving significant computational effort. On the
other hand, expression (5.22) let us to approximate the mean and the variance-covariance
matrix for cases where the computational precision is a limitation.
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5.3.4 Existence of the moments of a TE and TSE distribution

It is well know that for some members of EC family of distributions, their
moments do not exist, however, this could be different depending of the truncation limits.

Let X � ECrpξ,Ω, hprqq be partitioned as in Subsection 5.3.3.2, with r1 being
the number of pairs in pα,βq that are both finite and r2 � r�r1. Similarly, κ � pκJ1 ,κJ2 qJ
is partitioned as well. If r1 � r, then the truncation limits α and β contains only
finite elements, and hence ErXκ | α ¤ X ¤ βs exists for all κ P Nr because the
distribution is bounded. When r2 ¥ 1, there exists at least one pair in pα,βq containing
infinite values, and the expectation may not exist. Given that ErXκ | α ¤ X ¤ βs �
ErXκ1

1 ErXκ2
2 | X1,α2 ¤ X2 ¤ β2s | α1 ¤ X1 ¤ β1s, for any measurable function g,

ErgpX1q | α1 ¤ X1 ¤ β1s always exists, and pα2,β2q is not bounded, it is straightforward
to see that ErXκ | α ¤ X ¤ βs exist if and only if (iff ) the inner expectation ErXκ2

2 | X1s
exists.

As seen, the existence only depends of the order of the moment κ2 and the
distribution of X2|X1, this last depending on the conditional generating function hpr2qX1 .

If Y � SLCT -ECp,qpξ,Ω, hpq�pq, Cq, with truncation subset of the form Cpc,dq
and r � p�q say. It follows from Theorem 5.1, that ErYk | a ¤ Y ¤ bs � ErXκ | α ¤ X ¤
βs. Hence, the same condition holds taking in account that κ � p0Jq ,kJqJ, α � pcJ, aJqJ
and β � pdJ,bJqJ. Next, we present a result for a particular case.

5.4 The doubly truncated SUT distribution
For the rest of the paper we shall focus on the computation of the mo-

ments of the doubly truncated unified skew-t (TSUT) distribution, denoted by W �
TSUTp,qpµ,Σ,Λ, τ , ν,Σ; pa,bqq. Besides, we shall study some of its properties and for
its particular case (when q � 1), the doubly truncated extended skew-t distribution, say
W � TESTppµ,Σ,λ, τ, ν; pa,bqq. For the limiting symmetrical case, we shall use the nota-
tion W � Ttppµ,Σ, ν; pa,bqq to refer to a p-variate truncated Student-t (TT) distribution
on pa,bq P Rp. Finally, W � TNppµ,Σ; pa,bqq will stand for a p-variate truncated normal
distribution on the interval pa,bq . Hereinafter we shall omit the expression doubly due to
we only work with intervalar truncation.

Corollary 5.2 (moments of a TSUT). If Y � SUTp,qpµ,Σ,Λ, τ , ν,Ψq, it follows from
Theorem 5.1 that

ErYk | a ¤ Y ¤ bs � ErXκ | α ¤ X ¤ βs,
where X � tq�ppξ,Ω, νq with ξ and Ω as defined in expression (5.13) and κ � p0Jq ,kJqJ,
α � p0Jq , aJqJ and β � p8J

q ,bJqJ.
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5.4.1 Mean and covariance matrix of the TSUT distribution

Let Y � TSUTp,qpµ,Σ,Λ, τ , ν,Ψ; pa,bqq and X � Ttq�ppξ,Ω, ν; pα,βqq.
From Corollary 5.2, we have that the first two moments of Y can be computed as

ErYs � m2, (5.27)
ErYYJs � M22, (5.28)

where m � ErXs and M � ErXXJs are partitioned as in Corollary 5.1. Notice that
covrYs � ErYYJs � ErYsErYJs.

Equations (5.27) and (5.28) are convenient for computing ErYs and covrYs
since all boils down to compute the mean and the variance-covariance matrix for a
q � p-variate TT distribution which can be calculated using the our MomTrunc R package
available on CRAN.

Existence of the moments of a TSUT

Let also p1 be the number of pairs in pa,bq that are both finite. Without loss
of generality, we assume Y � pYJ

1 ,YJ
2 qJ, where the upper and lower truncation limits

associated with Y1 are both finite, but at least one of the truncation limits associated
with Y2 is not finite, say dimpY1q � p1 and dimpY2q � p2, with p1� p2 � p. Consider the
partitions of a � paJ1 , aJ2 qJ ,b � pbJ

1 ,bJ
2 qJ and k � pkJ

1 ,kJ
2 qJ as well. The next proposition

gives a sufficient condition for the existence of the moment of a TSUT distribution.

Proposition 5.2 (existence of the moments of a TSUT). Under the conditions
above, ErYk | a ¤ Y ¤ bs exists iff sumpk2q   ν � p1.

Proof. From subsection 5.3.4, it is suffices to demonstrate that ErXκ2
2 |X1s exists. Since

α � p0Jq , aJ1 , aJ2 qJ and β � p8J
q ,bJ

1 ,bJ
2 qJ, it follows that r1 � p1, r2 � q � p2, κ1 � k1

and κ2 � p0Jq ,kJ
2 qJ. It is easy to show that the distribution of X2|X1 is a pq � p2q-variate

Student-t distribution with ν � p1 degrees of freedom. Hence, the above expectation exists
iff sumpk2q   ν � p1.

From Proposition 5.2, see that ErYs and ErYYJs exist iff ν � p1 ¡ 1 and
ν � p1 ¡ 2 respectively. Since ν ¡ 0, this is equivalent to say that, (5.23) exists if at
least one dimension containing a finite limit exists. Besides, (5.24) exists if at least two
dimensions containing a finite limit exist.

This sufficient condition for the existence of the first two moments of a trun-
cated SUT distribution holds for the truncated Student-t (q � 0) and for the truncated
EST distribution (q � 1) due to the condition does not depend on q.
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Corollary 5.3 (Proposition 1 for a SUT). As τ Ñ �8 pτi Ñ �8, i � 1, . . . , qq,

SUTp,qpµ,Σ,Λ, τ , ν,ΨqÝÑtppγ, ωτΓ, ν � qq, (5.29)

with γ � µ�Ω21Ω�1
11 τ , Γ � Σ�Ω21Ω�1

11 Ω12 and ωτ � ν2
X1
p0q � pν � τJΩ�1

11 τ q{pν � qq
with Ω11 � Ψ�ΛJΛ.

In particular, for q � 1,

ESTppµ,Σ,λ, τ, νqÝÑtppγ, pν � τ̃ 2q{pν � 1qΓ, ν � 1q, (5.30)

with γ � µ� τ̃∆, Γ � Σ�∆∆J, and ∆ � Σ1{2λ{
?

1� λJλ.

5.5 Numerical example
In order to illustrate our method, we performed a simple Monte Carlo (MC)

simulation study to show how MC estimators for the mean vector and variance-covariance
matrix elements converge to the real values computed by our method.

We consider a bivariate TSUT distribution Y � TSUT2,2pµ,Σ,Λ, τ , ν,Ψ; pa,bqq
with lower and upper truncation limits a � p�0.8,�0.6qJ and b � p0.5, 0.7qJ respectively,
null location vector µ � 0, degrees of freedom ν � 4,

τ �
�
�1
2

�
, Σ �

�
1 0.2

0.2 4

�
, Λ �

�
1 3
�3 �2

�
and Ψ �

�
1 �0.5

�0.5 1

�
.
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Figure 14 – Contour plot for the TSUT density (upper left corner) and trace plots of the
evolution of the MC estimates for the mean and variance-covariance elements
of Y. The solid line represent the true estimated value by our proposal.
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Figure 14 shows the contour plot for the TSUT density (upper left corner) as
well as the evolution trace of the MC estimates for the mean (first row) and variance-
covariance (last row) elements µ1, µ2, σ11, σ12 and σ22. Estimated true values for the
mean vector and the variance-covariance matrix were computed using equations (5.27)
and (5.28), being

ErYs �
�
�0.039
0.303

�
and covrYs �

�
0.112 �0.007
�0.007 0.096

�
,

which are depicted as a blue solid line in Figure 14. Note that even with 1000 MC
simulations there exists a significant variation in the chains.

5.6 Application of SE truncated moments on tail conditional ex-
pectation

Let Y be a random variable representing in this context, the total loss in a
portfolio investment, a credit score, etc. Let yα be the p1 � αqth quantile of Y , that is,
PpY ¡ yαq � α. Hence, the tail conditional expectation (TCE) (see, e.g., Denuit et al.
(2006)) is denoted by

TCEY pyαq � ErY | Y ¡ yαs. (5.31)

This can be interpreted as the expected value of the α% worse losses. The
quantile yα is usually chosen to be high in order to be pessimistic, for instance, α � 0.05.
Notice that, if we consider a variable Y which we are interested on maximizing, for example,
the pay-off of a portfolio, we simply compute TCE�Y p�yαq � �ErY | Y ¤ �yαs, being a
measure of worst expected income.

Main applications of TCE are in actuarial science and financial economics: mar-
ket risk, credit risk of a portfolio, insurance, capital requirements for financial institutions,
among others. TCE (also known as tail value at risk, TVaR) represents an alternative to
the traditional value at risk (VaR) that is more sensitive to the shape of the tail of the loss
distribution. Furthermore, if Y is a continuous r.v., TCE coincides with the well-known
risk measure expected shortfall (Acerbi & Tasche, 2002). In contrast with VaR, TCE is
said to be a coherent measure, holding desirable mathematical properties in the context of
risk measurement and and is a convex function of the selection weights (Artzner et al.,
1999; Pflug, 2000). A good reference to several risk measures and their properties can be
found in Sereda et al. (2010).

Multivariate framework

Let consider a set of p assets, business lines, credit scores, Y � pY1, � � � , YpqJ.
In the multivariate case, the sum of risks arises as a natural and simple measure of total
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risk. Hence, the sum S � Y1 � Y2 � � � � � Yp follows a univariate distribution and from
(5.31), we have that the TCE for S is given by

TCESpsαq � ErS | S ¡ sαs. (5.32)

Even though we may know the marginal distribution of S, it is preferable to compute the
total risk TCE of S as a decomposed sum, that is

ErS | S ¡ sαs �
p̧

i�1
ErYi | S ¡ sαs, (5.33)

where each term ErYi | S ¡ sαs represents the average amount of risk due to Yi. This
decomposed sum offers a way to study the individual impact of the elements of the set,
being an improvement to (5.32).

In order to model combinations of correlated risks, Landsman & Valdez (2003)
extended the TCE to the multivariate framework. The multivariate TCE (MTCE) is given
by

MTCEYpyαq � ErY | Y ¡ yαs � ErY | Y1 ¡ y1α1 , . . . , Yp ¡ ypαps, (5.34)

with α � pα1, . . . , αpq be a vector of quantiles of interest. Notice that the quantile-level
for the MTCE is fixed per each risk i � 1, . . . , p, in contrast with the TCE of the sum,
which is fixed over all the sum of risk S.

5.6.1 MTCE for selection elliptical distributions

Let consider Y � SLCT -ECp,qpξ,Ω, hpq�pq, Cq. Without loss of generality, we
consider the selection subset C � Cp0q. It follows from Theorem 5.1 that

MTCEYpyαq � ErX2 | X ¡ xαs, (5.35)

where X � pXJ
1 ,XJ

2 qJ � ECq�ppξ,Ω, hpq�pqq and xα � p0Jq ,yJ
αqJ. It is noteworthy that

the computation of the MTCE for Y following a SE distribution relies on the calculation
of truncated moments for its symmetrical elliptical multivariate case.

On the other hand, by noticing that S � 1JY, it follows from (5.7) that S is
an univariate SE distribution given by S � SLCT -EC1,qpξs,Ωs, h

pq�1q, Cq, with

ξS �
�

ξ1

1Jξ2

�
, and ΩS �

�
Ω11 Ω121

1JΩ21 1JΩ221

�
.

Hence, its TCE in (5.32) can be easily computed as ErS | S ¡ sαs � ErW2 |
W1 ¡ 0,W2 ¡ sαs, W � pWJ

1 ,W2qJ � ECq�1pξs,Ωs, h
p1�qqq, due to S d� W2 | pW1 ¡ 0q.

Next, we establish a general proposition for computing ErS | S ¡ αss in matrix form as a
decomposed sum.
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Proposition 5.3. Let Y � SLCT -ECp,qpξ,Ω, hpq�pq, Cq, with ξ and Ω as in (5.4), and
W � pWJ

1 ,W2qJ � ECq�1pξS,ΩS, h
p1�qqq as before. It follows that

ErS | S ¡ sαs � 1Js, (5.36)

with s � ξ2 � Ω2S Ω�1
S pES � ξSq, where Ω2S � pΩ21,Ω221q and ES � ErW | W1 ¡

0,W2 ¡ sαs.

Proof. Let A � p1, IpqJ be a real matrix of dimensions pp�1q�p. For V � AY, it follows
that

V �
�

V1

V2

�
� SLCT -ECp�1,q

�
ξV �

�
ξS

ξ2

�
,ΩV �

�
ΩS ΩJ

2S

Ω2S Ω22

�
, hpq�1�pq, C

�
,

where V � pS,YJqJ. It comes from the definition of selection distribution that V d�
pX2,XJ

3 qJ|pX1 ¡ 0q, where X � pXJ
1 , X2,XJ

3 qJ is a partitioned random vector with
elements of dimensions q, 1 and p respectively, where X � ECp�q�1pξV ,ΩV ;hpq�1�pqq.
Hence, it is straightforward to see that

s � ErY | S ¡ sαs � ErX3 | X1 ¡ 0, X2 ¡ sα,�8 ¤ X3 ¤ 8s.

Since there exists a non-truncated partition, the result in (5.36) immediately follows from
equation (5.23), where W � pX1, X2qJ.

Observation 5.1. It is noteworthy that, the ith element of vector s, say si � eJi s, is equal
to ErYi | S ¡ αss, representing the contribution to the total risk due to the ith risk.

Observation 5.2. Since S d� W2 | pW1 ¡ 0q, it follows that the last element of the vector
Es is equivalent to ErS | S ¡ sαs � ErW2 | W1 ¡ 0,W2 ¡ sαs.

5.6.2 Application of MTCE using a ST distribution

Suppose that a set of risks Y are distributed as Y � STppµ,Σ,λ, νq. Let y
represents a realization of Y. Based on y, the set of parameters θ � pµ,Σ,λ, νqJ can be
estimated through maximum likelihood estimation. It follows that

MTCEYpyαq � ErX2 | X1 ¡ 0,X2 ¡ yαs, (5.37)

where X � pX1,XJ
2 qJ � t1�ppξ,Ω, νq with

ξ �
�

0
µ

�
and Ω �

�
1 ∆J

∆ Σ

�
. (5.38)

Additionally, using simple algebraic manipulation, it follows from (5.7) that

S � ST1

�
µS �

p̧

i�1
µi, σ

2
S �

p̧

i�1

p̧

j�1
σij, λS � ∆Sa

σ2
S �∆2

S

, ν

�
, (5.39)



Chapter 5. Moments of the doubly truncated selection elliptical distributions 112

with ∆S �
p̧

i�1
∆i. Besides, the TCE of the sum is given by TCESpsαq � ErW2 | W1 ¡

0,W2 ¡ sαs, W � pWJ
1 ,W2qJ � t2pξS,ΩS, νq, where

ξS �
�

0
µS

�
, and ΩS �

�
1 ∆S

∆S σ2
S

�
.

We have from Proposition 5.3 that

ErYi | S ¡ αss, � eJi
�
µ� p∆,Σ1qΩ�1

S pES � ξSq
�
,

� µi � ES1p∆iσ
2
S � σiS∆Sq � pTCESpsαq � µSqp∆i∆S � σiSq, (5.40)

with ES1 � ErW1 | W1 ¡ 0,W2 ¡ sαs and σiS �
p̧

j�1
σij. Besides, summing (5.40) over

i � 1, . . . , p, and after some straightforward algebra we obtain that TCESpsαq � ErS |
S ¡ sαs can be written as

TCESpsαq � µS � ES1

p̧

i�1

 
∆iσ

2
S � σiS∆S

(� pTCESpsαq � µSq
p̧

i�1
t∆i∆S � σiSu

� µS � 2∆Sσ
2
S

1�∆2
S � σ2

S

ES1. (5.41)

Finally, plugging (5.41) in (5.40), we obtain a explicit expression for ErYi | S ¡ αss that
does not depends on TCESpsαq, that is

ErYi | S ¡ αss � � µi �
�

∆iσ
2
S � σiS∆S � 2∆Sσ

2
S

1�∆2
S � σ2

S

p∆i∆S � σiSq



ES1. (5.42)

5.7 Additional results related to interval censored mechanism
Under interval censoring mechanism the implementation of inferences depends

on the computation of certain marginal and conditional expectations (Matos et al., 2013).
For instance, for X � pXJ

1 ,XJ
2 qJ � φ1�ppξ,Ω, νq, as in (5.13), with Ψ � 1, Λ � λ and

τ � 0, it holds that fX1p0 | X2 � Yq � φ
�
λJΣ�1{2pY � µq� . Then,

E
�
gpYq fX1p0 | X2 � Yq

PpX1 ¡ 0 | X2 � Yq
�
� E

�
gpYqφ

�
λJΣ�1{2pY � µq�

Φ
�
λJΣ�1{2pY � µq�

�
, (5.43)

where gp�q is a measurable function. The expectation in the right side of the expression (5.43)
is highly used to perform inferences under SN censored models from a likelihood-based
perspective, such as the E-Step of the EM-algorithm (Dempster et al., 1977).

Next, we derive general expressions that are involved in interval censored mod-
eling, specifically, in the E-step of the EM algorithm. These expressions arise, when we
consider the responses Yi, i � 1, . . . , n, to be i.i.d. realizations from a selection elliptical
distribution or any of its particular cases. For instance, a SUT, EST or ST distribution or
any normal limiting case as the SUN, ESN or SN distribution as the example in (5.43).
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Lemma 5.1. Let X � pXJ
1 ,XJ

2 qJ � ECq�ppξ,Ω, hpq�pqq and Y � TSLCT -ECp,qpξ,Ω,
hpq�pq, C; pa,bqq with truncation subset C � Cp0q. For any measurable function gpyq :
Rp Ñ R, we have that

E
�
gpYq fX1p0 | X2 � Yq

PpX1 ¡ 0 | X2 � Yq
�
� Ppa ¤ W0 ¤ bq

Ppa ¤ Y0 ¤ bq
ErgpWqs
PpX1 ¥ 0qfX1p0q, (5.44)

where X1 � ECppξ1,Ω11, h
pqqq, Y0 � SLCT -ECp,qpξ,Ω, hpq�pq, Cp0qq, W0 � ECppξ2 �

Ω21Ω�1
11 ξ1,Ω22 �Ω21Ω�1

11 Ω21, h
ppq
0 q and W d� W0 | pa ¤ W0 ¤ bq.

Proof. Using basic probability theory, we have

� E
�
gpYq fX1p0 | X2 � Yq

PpX1 ¡ 0 | X2 � Yq
�

� 1
Ppa ¤ Y0 ¤ bq

» b

a
gpyq fX1p0 | X2 � yq

PpX1 ¡ 0 | X2 � yqfYpyqdy,

� 1
Ppa ¤ Y0 ¤ bq

» b

a
gpyq fX1p0 | X2 � yq

PpX1 ¡ 0 | X2 � yq
PpX1 ¡ 0 | X2 � yqfX2pyq

PpX1 ¡ 0q dy,

� 1
Ppa ¤ Y0 ¤ bq

» b

a
gpyqfX1p0 | X2 � yqfX2pyq

PpX1 ¡ 0q dy,

� 1
Ppa ¤ Y0 ¤ bq

fX1p0q
PpX1 ¡ 0q

» b

a
gpyqfX2py | X1 � 0q dy,

� Ppa ¤ W0 ¤ bq
Ppa ¤ Y0 ¤ bq

ErgpWqs
PpX1 ¡ 0qfX1p0q,

where W0
d� X2|pX1 � 0) and W d� W0 | pa ¤ W0 ¤ bq.

Lemma 5.2. Consider X, Y and g as in Lemma 5.1. Now, consider Y to be partitioned
as Y � pYJ

1 ,YJ
2 qJ of dimensions p1 and p2 (p1 � p2 � p). For a given random variable

U, let U� stands for U� d� U | Y1. It follows that

E
�
gpY2q fX1p0 | X2 � Yq

PpX1 ¡ 0 | X2 � Yq
����Y1

�
� Ppa2 ¤ W�

0 ¤ b2q
Ppa2 ¤ Y�

0 ¤ b2q
ErgpW2qs
PpX�

1 ¡ 0qfX�
1
p0q (5.45)

with X1, Y0, and W0 as defined in Lemma 5.1, and W2
d� W�

0 | pa2 ¤ W�
0 ¤ b2q.

Proof. Consider X2 partitioned as X2 � pXJ
21,XJ

22qJ such that dimpX21q � dimpY1q and
dimpX22q � dimpY2q. Since fY2py2|Y1 � y1q � fYpyq{fY1py1q, it follows (in a similar
manner that the proof of Lemma 5.1) that

� E
�
gpY2q fX1p0 | X2 � Yq

PpX1 ¡ 0 | X2 � Yq
����Y1

�
� 1

Ppa2 ¤ Y�
0 ¤ b2q

» b2

a2

gpy2q fX1p0 | X2 � yq
PpX1 ¡ 0 | X2 � yq

PpX1 ¡ 0 | X2 � yq
PpX1 ¡ 0 | X21 � y1q

fX2pyq
fX21py1qdy2,
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� 1
Ppa2 ¤ Y�

0 ¤ b2q
» b2

a2

gpy2q fX1p0 | X2 � yq
PpX1 ¡ 0 | X21 � y1q

fX2pyq
fX21py1qdy2,

� 1
Ppa2 ¤ Y�

0 ¤ b2q
fX1p0q

PpX1 ¡ 0 | X21 � y1q
» b2

a2

gpy2qfX2py | X1 � 0q
fX21py1q dy2,

� 1
Ppa2 ¤ Y�

0 ¤ b2q
fX1p0|X21 � y1q

PpX1 ¡ 0 | X21 � y1q
» b2

a2

gpy2qfX22py2 | X21 � y1,X1 � 0q dy2,

� Ppa2 ¤ W�
0 ¤ b2q

Ppa2 ¤ Y�
0 ¤ b2q

ErgpW2qs
PpX�

1 ¡ 0qfX�
1
p0q,

where W�
0
d� X22|pX21 � y1,X1 � 0) and W2

d� W�
0 | pa2 ¤ W�

0 ¤ b2q.

In the next corollaries we particularize the aforementioned lemmas to the
truncated SUT, EST, SUN and ESN distributions.

Corollary 5.4 (Lemma 5.1 for a SUT). Let Y � TSUTp,qpµ,Σ,Λ, τ , ν,Ψ, pa,bqq.
For any measurable function gpyq : Rp Ñ R, we have that

E
�
gpYq tq

�pτ �ΛJΣ�1{2pY � µqq νpYq,Ψ; ν � p
�

Tq
�pτ �ΛJΣ�1{2pY � µqq νpYq,Ψ; ν � p

�� � Ppa ¤ W0 ¤ bq
Ppa ¤ Y0 ¤ bq ErgpWqsη,

(5.46)
where η � tqpτ ; Ψ�ΛJΛ, νq{Tqpτ ; Ψ�ΛJΛ, νq, Y0 � SUTp,qpµ,Σ,Λ, τ , ν,Ψq, W0 �
tppγ, ωτΓ, ν � qq and W d� W0 | pa ¤ W0 ¤ bq. When τ � 0, we have that η �
2 tqpτ ; Ψ�ΛJΛ, νq and W0 � tppµ, νΓ{pν � qq, ν � qq .

In particular for q � 1, Y � TESTppµ,Σ,λ, τ, ν; pa,bqq, and

E
�
gpYq t1

�pτ � λJΣ�1{2pY � µqq νpYq; ν � p
�

T1
�pτ � λJΣ�1{2pY � µqq νpYq; ν � p

�� � Ppa ¤ W0 ¤ bq
Ppa ¤ Y0 ¤ bq η ErgpWqs, (5.47)

with η � t1pτ ; 1� λJλ, νq{T1pτ̃ ; νq, Y0 � ESTppµ,Σ,λ, τ , νq, W0 � tppγ, pν� τ̃ 2qΓ{pν�
1q, ν � 1q, and W d� W0 | pa ¤ W0 ¤ bq. Similarly, when τ � 0, we have that
η � 2 t1p0; 1� λJλ, νq and W0 � tppµ, νΓ{pν � 1q, ν � 1q.

Corollary 5.5 (Lemma 5.1 for a SUN). Taking ν Ñ 8, Y � TSUNp,qpµ,Σ,Λ, τ ,Ψ,

pa,bqq and hence from Lemma 5.1 it follows that

E
�
gpYqφq

�
τ �ΛJΣ�1{2pY � µq,Ψ�

Φq

�
τ �ΛJΣ�1{2pY � µq,Ψ�� � Ppa ¤ W0 ¤ bq

Ppa ¤ Y0 ¤ bq ErgpWqsη, (5.48)

where η � φqpτ ; 0,Ψ�ΛJΛq{Φqpτ ; 0,Ψ�ΛJΛq, Y0 � SUNp,qpµ,Σ,Λ, τ ,Ψq, W0 �
Nppγ,Γq, and W d� W0 | pa ¤ W0 ¤ bq .When τ � 0, we have that η � 2φqp0; Ψ�ΛJΛq
and W0 � Nppµ,Γq.
In particular for q � 1, Y � TESNppµ,Σ,λ; pa,bqq, and

E
�
gpYqφ

�
τ � λJΣ�1{2pY � µq�

Φ
�
τ � λJΣ�1{2pY � µq�

�
� Ppa ¤ W0 ¤ bq

Ppa ¤ Y0 ¤ bq η ErgpWqs, (5.49)
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with η � φpτ ; 1� λJλq{Φpτ̃q, Y0 � ESNppµ,Σ,λ, τ q, W0 � Nppγ,Γq, and W d� W0 |
pa ¤ W0 ¤ bq. Similarly, when τ � 0, we have that η �

a
2{πp1� λJλq and W0 �

Nppµ,Γq.

5.8 Multivariate ST censored responses
Let Yi � pYi1, . . . , YipqJ be a p � 1 response vector for the ith sample unit,

for i P t1, . . . , nu, and consider the set of random samples (independent and identically
distributed):

Y1, . . . ,Yn � STppµ,Σ,λ, νq, (5.50)

with location vector µ � pµ1, . . . , µpqJ, dispersion matrix Σ � Σpαq depending on an
unknown and reduced parameter vector α, skewness parameter λ and degrees of freedom
ν. However, the response vector Yi may not be fully observed due to censoring, so we
define pVi,Ciq the observed data for the ith sample, where Vi� pVi1, . . . , VipqJ with
elements being either an uncensored observation pVik � V0iq or the interval censoring level
pVik P rV1ik, V2iksq, and Ci � pCi1, . . . , CipqJ is the vector of censoring indicators, satisfying

Cik �
#

1 if V1ik ¤ Yik ¤ V2ik ,

0 if Yik � V0i ,
(5.51)

for all i P t1, . . . , nu and k P t1, . . . , pu, i.e., Cik � 1 if Yik is located within a specific
interval. In this case, (5.50) along with (5.51) defines the multivariate skew-t interval
censored model (hereafter, the ST-C model). For instance, left censoring structure causes
truncation from the lower limit of the support of the distribution, since we only know that
the true observation Yik is greater than or equal to the observed quantity V1ik. Moreover,
missing observations can be handled by considering V1ik � �8 and V2ik � �8.

5.8.1 The likelihood function

Let y � pyJ
1 , . . . ,yJ

n qJ, where yi � pyi1, . . . , yipqJ is a realization of Yi �
STppµ,Σ,λ, νq. In order to obtain the likelihood function of the ST-C model, first we
treat, separately, the observed and censored components of yi, i.e., yi � pyoJi ,yc

J

i qJ, where
Cik � 0 for all elements in the poi -dimensional vector yoi , and Cik � 1 for all elements in
the pci -dimensional vector yci . On according to that, we write Vi � vecpVo

i ,Vc
iq, where

Vc
i � pVc

1i,Vc
2iq with

µi � pµoJi ,µcJi qJ, Σ � Σpαq �
�

Σoo
i Σoc

i

Σco
i Σcc

i



, and ϕi � pϕoJi ,ϕcJi qJ.

See that, we must rely on the marginal and conditional distribution of a ST variate. Next,
we propose a general result for the EST variate in a similar manner than Arellano-Valle &
Genton (2010).
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Proposition 5.4 (Marginal and conditional distribution of the EST ). Let Y � ESTppµ,Σ,
λ, τ, νq and Y is partitioned as Y � pYJ

1 ,YJ
2 qJ of dimensions p1 and p2 (p1 � p2 � p),

respectively. Let

Σ �
�

Σ11 Σ12

Σ21 Σ22

�
, µ � pµJ

1 ,µ
J
2 qJ, and ϕ � pϕJ

1 ,ϕ
J
2 qJ

be the corresponding partitions of Σ, µ and ϕ � Σ�1{2λ. Then,

Y1 � ESTp1pµ1,Σ11, λ̃1, τ1, νq,
Y2|Y1 � y1 � ESTp2pµ2.1, Σ̃22.1,λ2.1, τ2.1, ν � p1q

with λ̃1 � c12Σ1{2
11 ϕ̃1,τ1 � c12τ , λ2.1 � Σ1{2

22.1ϕ2, τ2.1 � νpy1qpτ � ϕ̃J
1 py1 � µ1qq where

c12 � p1 � ϕJ
2 Σ22.1ϕ2q�1{2, ϕ̃1 � ϕ1 � Σ�1

11 Σ12ϕ2, Σ̃22.1 � Σ22.1{ν2py1q, Σ22.1 � Σ22 �
Σ21Σ�1

11 Σ12, µ2.1 � µ2 �Σ21Σ�1
11 py1 � µ1q and ν2py1q � pν � p1q{pν � δpy1qq.

Proof. See Appendix section C.

Then, from Proposition 5.4, we have that Yo
i � STpoi

pµoi ,Σoo
i , λ̃

o
i , νq and Yc

i |
pYo

i � yoi q � ESTpci
pµcoi , Σ̃cc.o

i ,λcoi , τ
co
i , ν

co
i q, with λ̃oi � coci Σoo 1{2

i ϕ̃oi , λc.oi � Σcc.o 1{2
i ϕci ,

Σ̃cc.o
i � Σcc.o

i {ν2pyoi q and νcoi � ν � poi , where

µcoi � µci�Σco
i Σoo�1

i pyoi �µoi q, Σcc.o
i � Σcc

i �Σco
i pΣoo

i q�1Σoc
i , ϕ̃oi � ϕoi �Σoo�1

i Σoc
i ϕ

c
i ,

coci � p1�ϕcJi Σcc.o
i ϕciq�1{2 and τ coi � νpyoi q ϕ̃oJi pyoi � µoi q. (5.52)

Let V � vecpV1, . . . ,Vnq and C � vecpC1, . . . ,Cnq denote the observed data.
Therefore, the log-likelihood function of θ � pµJ,αJ

Σ ,λ
JqJ, where αΣ denotes a minimal

set of parameters such that Σpαq is well defined (e.g. the upper triangular elements of Σ
in the unstructured case), for the observed data pV,Cq is

`pθ | V,Cq �
ņ

i�1
lnLi, (5.53)

where Li represents the likelihood function of θ for the ith sample, given by

Li �Lipθ | Vi,Ciq � fpVi | Ci,θq � fpvc1i ¤ yci ¤ vc2i | yoi ,θqfpyoi | θq
� Lpci

pvc1i,vc2i;µcoi , Σ̃cc.o
i ,λc.oi , τ̃

co
i , ν � poi qSTpoi pyoi ;µoi ,Σoo

i , λ̃
o
i , νq,

where Lrpα,β; ξ,Ω,λ, τ, νq denotes the integral

Lrpα,β; ξ,Ω,λ, τ, νq �
» β
α

EST rpw; ξ,Ω,λ, τ, νqdw, (5.54)

that is, Lrpα,β; ξ,Ω,λ, τ, νq � Ppα ¤ W ¤ βq for W � ESTrpξ,Ω,λ, τ, νq. For
the ST case (τ � 0), we simply omit the τ parameter, that is, Lrpα,β; ξ,Ω,λ, νq �
Lrpα,β; ξ,Ω,λ, 0, νq.
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5.8.2 Parameter estimation via the EM algorithm

In this subsection, we describe how to carry out ML estimation for the ST-C
model. The EM algorithm, originally proposed by Dempster et al. (1977), is a very popular
iterative optimization strategy commonly used to obtain ML estimates for incomplete-data
problems. This algorithm has many attractive features such as the numerical stability, the
simplicity of implementation and quite reasonable memory requirements (McLachlan &
Krishnan, 2008).

From the stochastic representation of the multivariate ST distribution, it can
be hierarchical represented as,

Yi | pUi � ui, Ti � tiq � Nppµ�∆ti, u
�1
i Γq (5.55)

Ui � Gammapν{2, ν{2q (5.56)
Ti � HTpνq, (5.57)

with HTpνq referring to a Half standard Student’s t distribution with degrees of freedom ν,
with Ui and Ti being mutually independent, and ∆ and Γ as in proposition 5.3. The com-
plete data log-likelihood function of an equivalent set of parameters θ � pµJ,∆J,αJ

Γ , νqJ,
where αΓ � vechpΓq, is given by `cpθq �

ņ

i�1
`icpθq, where the individual complete data

log-likelihood is

`icpθq � �1
2
 
ln |Γ| � uipyi � µ�∆tiqJΓ�1pyi � µ�∆tiq

(� c,

with c being a constant that does not depend on θ. Subsequently, the EM algorithm for
the ST-C model can be summarized as follows:

E-step: Given the current estimate pθpkq � pµ̂pkq, p∆pkq, pαpkq

Γ , ν̂pkqq at the kth step
of the algorithm, the E-step provides the conditional expectation of the complete data
log-likelihood function

Qpθ | pθpkqq � E
�
`cpθq | V,C, pθpkq� � ņ

i�1
Qipθ | pθpkqq,

where

Qipθ | pθpkqq9 � 1
2 ln |Γ| � 1

2tr
�"yuy2

i

pkq� puipkqµµJ� xut2i pkq∆∆J� 2 xuyipkqµJ � 2yutypkq

i ∆J

�2xutipkq∆µJ
)

Γ�1
�
,

with yuyri
pkq � EUiTiYi

rUiYr
i |Vi,Ci, pθpkqs, xutri pkq � EUiTiYi

rUiT ri |Vi,Ci, pθpkqs (for r �
t1, 2u, with Y1

i � Yi and Y2
i � YiYJ

i ), yutypkq

i � EUiTiYi
rUiTiYi |Vi,Ci, pθpkqs andpupkqi � EUiTiYi

rUi |Vi,Ci, pθpkqs.
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M-step: Conditionally maximizing Qpθ | pθpkqq � ņ

i�1
Qipθ | pθpkqq with respect

to each entry of θ, we update the estimate pθpkq � pµ̂pkq, p∆pkq, pαpkq

Γ , ν̂pkqq by

pµpk�1q � 1
n

ņ

i�1

!xuyipkq � xutipkq p∆pkq
)
, (5.58)

p∆pk�1q �
#

ņ

i�1

xut2i pkq
+�1 ņ

i�1

!yutyipkq � xutipµpk�1q
)
, (5.59)

pΓpk�1q � 1
n

ņ

i�1

"yuy2
i

pkq � 2 xuyipkqpµpk�1qJ � 2yutyipkq p∆pk�1qJ � 2xutipkq p∆pk�1qpµpk�1qJ

� xut2i pkq p∆pk�1q p∆pk�1qJ � puipµpk�1qpµpk�1qJ
*

(5.60)

Then we update the parameter ν by maximizing the marginal log-likelihood function for

y, that is, pνpk�1q � arg max
ν

ņ

i�1
log fpVi | Ci,θ

pk�1q; νpkqq.

Algorithm is iterated until a suitable convergence rule is satisfied. In the later
analysis, the algorithm stops when the relative distance between two successive evaluations
of the log-likelihood defined in (5.53) is less than a tolerance, i.e., |`ppθpk�1q | V,Cq{`ppθpkq |
V,Cq � 1|   ε, for example, ε � 10�6. Once converged, we can recover pλ and pΣ using the
expressions pΣ � pΓ� p∆ p∆J and pλ � pΣ�1{2 p∆

p1� p∆J pΣ�1 p∆q1{2 .

It is important to stress that, from equations (5.58) to (5.60), the E-step reduces to the
computation of puipkq, xuyipkq, yuy2

i

pkq xutipkq, xut2i pkq and yutypkq

i . Details of these expectations
can be found in Appendix C.

5.8.3 Regression setting

Suppose that we have observations on n independent individuals, Y1, . . . ,Yn,

where Yi � STppµi,Σ,λ, νq, i � 1, . . . , n. Associated with individual i we assume a known
p� q covariate matrix Xi, which we use to specify the linear predictor µi � Xiβ, where β
is a q-dimensional vector of unknown regression coefficients. In this case, the parameter
vector is θ � pβJ,αJ,λJqJ. The E-Step of the EM algorithm updates β as follows

pβpk�1q � p
ņ

i�1
XJ
i Xiq�1

ņ

i�1
XJ
i pxuypkq

i � xutipkq∆pkqq, (5.61)

and the necessary quantities of the E and M-steps found in Subsection 5.8.2 remain the
same once we plug-in pµpkq by pµpkq

i � Xi
pβpkq.
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5.9 Conclusions
In this paper, we proposed expressions to compute product moment of truncated

multivariate distributions belonging to the selection elliptical family, showing in a clever
way that their moments can be computed using an unique moment for their respective
elliptical symmetric case. In contrast with other works, we avoid cumbersome expressions,
having neat formulas for high-order truncated moments. To the best of our knowledge,
this is the first proposal discussing the conditions of existence of the truncated moments
for members of the selection elliptical family. Also, we propose optimized methods able
to deal with extreme setting of the parameters, partitions with almost zero volume or
no truncation. In order to show the applicability of this work, we have developed an
application of truncated ST moments in risk measurement in Finance context as well as
a ST censored model, a robust model capable to deal with missing data, outliers and
skewness.
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6 Concluding remarks

In this last chapter, we present the scientific production resulting from this
thesis: original articles and software. In addition to the articles of our authorship, we present
articles by other authors that have been based on the results of this thesis. A summary of
the main functions of the proposed MomTrunc package are presented in subsection 6.1.2.
Finally, we close the chapter with two sections concluding the results of this thesis, as well
as sketching some future research.

6.1 Technical production

6.1.1 Submitted papers

As result of the present work, we have written four articles with three of them
being already submitted to high impact journals. Resulting works presented in chapters
2-5 are respectively:

1. Galarza, C., Lachos V. Lin, T.-I., & Wang, W.-L. (2020+) “Moments of doubly
truncated multivariate student-t distribution: A recurrence approach”. Submitted to
Statistica Sinica.

2. Galarza, C., Matos, L. Dey, D. & Lachos V. (2019+) “On moments of folded and
doubly truncated multivariate extended skew-normal distributions”. Submitted to
Journal of Computational and Graphical Statistics.

3. Galarza, C., Matos, L. & Lachos, V. (2020+) “Likelihood-based inference for
multivariate skew-normal censored regression models”. Submitted to METRON.

4. Galarza, C., Matos, L. & Lachos, V. (2020+) “Moments of the doubly truncated
selection elliptical distributions with emphasis on the unified multivariate skew-t
distribution”. To be submitted.

5. Galarza, C., Matos, L. & Lachos, V. (2020+) “Likelihood-based inference for mul-
tivariate skew-t censored regression models with missing data”. Under construction.

Other works based on the results in this document are:

6. Mattos, T.B., Matos, L. & Lachos, V. (2019) “A semiparametric mixed-effects
model for censored longitudinal data”. Technical report, RT-UConn 15, University
of Connecticut.
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7. De Alencar, F.,Galarza, C., Matos, L. & Lachos, V. (2019) “Finite mixture modeling
of censored and missing data using the multivariate skew-normal distribution”.
Technical report, RT-UConn 31, University of Connecticut.

6.1.2 R package implementation

MomTrunc: Moments of Folded and Doubly Truncated Multivariate Distributions

It computes arbitrary products moments (mean vector and variance-covariance
matrix), for some doubly truncated (and folded) multivariate distributions. These distribu-
tions belong to the family of selection elliptical distributions, which includes well known
skewed distributions as the unified skew-t distribution (SUT) and its particular cases as
the extended skew-t (EST), skew-t (ST) and the symmetric student-t (MVT) distribution.
Analogous normal cases unified skew-normal (SUN), extended skew-normal (ESN), skew-
normal (SN), and symmetric normal (MVN) are also included. Density, probabilities and
random deviates are also offered for these members.

Probabilities can be computed using the functions pmvSN() and pmvESN() for
the normal cases SN and ESN and, pmvST() and pmvEST() for the t cases ST and EST
respectively, which offer the option to return the logarithm in base 2 of the probability,
useful when the true probability is too small for the machine precision. These functions
above use methods in Genz & Bretz (2009) through the mvtnorm package (linked direclty
to our C++ functions) and Cao et al. (2019b) through the package tlrmvnmvt. For the
double truncated Student-t cases SUT, EST, ST and T, decimal degrees of freedom are
supported. Computation of arbitrary moments are based in this thesis. Reference for the
family of selection-elliptical distributions in this package can be found in Arellano-Valle &
Genton (2005).

Next, we show part of the MomTrunc R manual (also available on CRAN) for
the three most important functions.

meanvarTMD Mean and variance for doubly truncated multivariate dis-
tributions

Description

It computes the mean vector and variance-covariance matrix for some doubly truncated
skewelliptical distributions. It supports the p-variate Normal, Skew-normal (SN), Extended
Skew-normal (ESN) and Unified Skew-normal (SUN) as well as the Student’s-t, Skew-t
(ST), Extended Skew-t (EST) and Unified Skew-t (SUT) distribution.

Usage
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meanvarTMD(lower = rep(-Inf,length(mu)),upper = rep(Inf,length(mu)),mu,
Sigma,lambda = NULL,tau = NULL,Gamma = NULL,nu = NULL,dist)

Arguments

lower the vector of lower limits of length p
upper the vector of upper limits of length p
mu a numeric vector of length p representing the location parameter
Sigma a numeric positive definite matrix with dimension p � p representing the

scale parameter
lambda a numeric matrix of dimension p� q representing the skewness/shape matrix

parameter for the SUN and SUT distribution. For the ESN and EST distribu-
tions (q = 1), lambda is a numeric vector of dimension p (see examples at the
end of this help). If all(lambda == 0), the SUN/ESN/SN (SUT/EST/ST)
reduces to a normal (t) symmetric distribution.

tau a numeric vector of length q representing the extension parameter for the
SUN and SUT distribution. For the ESN and EST distributions, tau is a
positive scalar (q = 1). Furthermore, if tau == 0, the ESN (EST) reduces
to a SN (ST) distribution.

Gamma a correlation matrix with dimension q � q. It must be provided only for the
SUN and SUT cases. For particular cases SN, ESN, ST and EST, we have
that Gamma == 1.

nu It represents the degrees of freedom for the Student’s t-distribution
log2 a boolean variable, indicating if the log2 result should be returned. This is

useful when the true probability is too small for the machine precision.

Details

Univariate case is also considered, where Sigma will be the variance σ2. Normal case code
is an R adaptation of the Matlab available function dtmvnmom.m from Kan & Robotti
(2017) and it is used for p<=3. For higher dimensions we use the extension of the algorithm
in Vaida & Liu (2009) proposed in Chapter 3.

Value

It returns a list with three elements:

mean the mean vector of length p
EYY the second moment matrix of dimensions p� p

varcov the variance-covariance matrix of dimensions p� p

Warning
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For the t cases, the algorithm supports degrees of freedom nu <= 2, however, it may take
more time than usual.

Note

If nu >= 300, Normal case is considered.

Examples

a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
lambda = c(-2,0,1)

# Theoretical value
value1 = meanvarTMD(a,b,mu,Sigma,dist="normal")

#MC estimates
MC11 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal") #by defalut n = 10000
MC12 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal",n = 10^5) #more precision

# Now works for for any nu>0
value2 = meanvarTMD(a,b,mu,Sigma,dist = "t",nu = 0.87)
value3 = meanvarTMD(a,b,mu,Sigma,,dist = "SN")
value4 = meanvarTMD(a,b,mu,Sigma,lambda,nu = 4,dist = "ST")
value5 = meanvarTMD(a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")
value6 = meanvarTMD(a,b,mu,Sigma,lambda,tau = 1,nu = 4,dist = "EST")

#Skew-unified Normal (SUN) and Skew-unified t (SUT) distributions
Lambda = matrix(c(1,0,2,-3,0,-1),3,2) #A skewness matrix p times q
Gamma = matrix(c(1,-0.5,-0.5,1),2,2) #A correlation matrix q times q
tau = c(-1,2) #A vector of extension parameters of dim q
value7 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,dist = "SUN")
value8 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,nu = 4,dist = "SUT")

#The ESN and EST as particular cases of the SUN and SUT for q == 1
Lambda = matrix(c(-2,0,1),3,1)
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Gamma = 1
tau = 1
value9 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,dist = "SUN")
value10 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,nu = 4,dist = "SUT")
round(value5$varcov,2) == round(value9$varcov,2)
round(value6$varcov,2) == round(value10$varcov,2)

momentsTMD Moments for doubly truncated multivariate distributions

Description

It computes kappa-th order moments for for some doubly truncated skew-elliptical distri-
butions. It supports the p-variate Normal, Skew-normal (SN) and Extended Skew-normal
(ESN), as well as the Student’s t, Skew-t (ST) and the Extended Skew-t (EST) distribution.

Usage

momentsTMD(kappa,lower = rep(-Inf,length(mu)),upper = rep(Inf,length(mu)),
mu,Sigma,lambda = NULL,tau = NULL,nu = NULL,dist)

Arguments

Details

Univariate case is also considered, where Sigma will be the variance σ2.

Value

A data frame containing p� 1 columns. The p first containing the set of combinations of
exponents summing up to sum(kappa) and the last column containing the the expected
value. Normal cases (ESN, SN and normal) return prod(kappa)+1 moments while the
Student’s t cases return all moments of order up to kappa. See example section.

Note

If nu >= 300, the Normal case is considered.

Examples

a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
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kappa moments vector of length p. All its elements must be integers greater or equal
to 0. For the Student’s-t case, kappa can be a scalar representing the order
of the moment.

lower the vector of lower limits of length p
upper the vector of upper limits of length p
mu a numeric vector of length p representing the location parameter
Sigma a numeric positive definite matrix with dimension p � p representing the

scale parameter
lambda a numeric vector of length p representing the skewness parameter for ST

and EST cases. If lambda == 0, the EST/ST reduces to a t (symmetric)
distribution.

tau It represents the extension parameter for the EST distribution. If tau == 0,
the EST reduces to a ST distribution.

nu It represents the degrees of freedom for the Student’s t-distribution.
dist represents the truncated distribution to be used. The values are normal,

SN and ESN for the doubly truncated Normal, Skew-normal and Extended
Skew-normal distributions and, t, ST and EST for the for the doubly truncated
Student-t, Skew-t and Extended Skew-t distributions.

mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)

kp = c(2,0,1)
lambda = c(-2,0,1)
value1 = momentsTMD(kp,a,b,mu,Sigma,dist="normal")
value2 = momentsTMD(kp,a,b,mu,Sigma,dist = "t",nu = 7)
value3 = momentsTMD(kp,a,b,mu,Sigma,lambda,dist = "SN")
value4 = momentsTMD(kp,a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")

#T cases with kappa scalar (all moments up to 3)
value5 = momentsTMD(3,a,b,mu,Sigma,nu = 7,dist = "t")
value6 = momentsTMD(3,a,b,mu,Sigma,lambda,nu = 7,dist = "ST")
value7 = momentsTMD(3,a,b,mu,Sigma,lambda,tau = 1,nu = 7,dist = "EST")

dprmvEST Multivariate Extended-Skew t Density, Probablilities and
Random Deviates Generator
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Description

These functions provide the density function, probabilities and a random number generator
for the multivariate extended-skew t (EST) distribution with mean vector mu, scale matrix
Sigma, skewness parameter lambda, extension parameter tau and degrees of freedom nu.

Usage

dmvEST(x,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau,nu)
pmvEST(lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)),
mu = rep(0,length(lambda)),Sigma,lambda,tau,nu,log2 = FALSE)
rmvEST(n,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau,nu)

Arguments

x vector or matrix of quantiles. If x is a matrix, each row is taken to be a
quantile.

n number of observations.
lower the vector of lower limits of length p
upper the vector of upper limits of length p
mu a numeric vector of length p representing the location parameter
Sigma a numeric positive definite matrix with dimension p � p representing the

scale parameter
lambda a numeric vector of length p representing the skewness parameter for ST

and EST cases. If lambda == 0, the EST/ST reduces to a t (symmetric)
distribution.

tau It represents the extension parameter for the EST distribution. If tau == 0,
the EST reduces to a ST distribution.

nu It represents the degrees of freedom for the Student’s t distribution
log2 a boolean variable, indicating if the log2 result should be returned. This is

useful when the true probability is too small for the machine precision.

Examples

#Univariate case
dmvEST(x = -1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5,nu=4)
rmvEST(n = 100,mu = 2,Sigma = 5,lambda = -2,tau = 0.5,nu=4)
#Multivariate case
mu = c(0.1,0.2,0.3,0.4)
Sigma = matrix(c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,
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1),nrow = length(mu),ncol = length(mu),byrow = TRUE)
lambda = c(-2,0,1,2)
tau = 2
#One observation
dmvEST(x = c(-2,-1,0,1),mu,Sigma,lambda,tau,nu=4)
rmvEST(n = 100,mu,Sigma,lambda,tau,nu=4)
#Many observations as matrix
x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE)
dmvEST(x = x,mu,Sigma,lambda,tau,nu=4)
lower = rep(-Inf,4)
upper = c(-1,0,2,5)
pmvEST(lower,upper,mu,Sigma,lambda,tau,nu=4)

Other functions: MC estimates for the first two moments of a truncated
multivariate distribution (TMD) can be reach through the function MCmeanvarTMD().
Functions to compute the mean and variance-covariance matrix, as well as product
moments for folded multivariate distributions (FMDs) are also available through the
analogous meanvarFMD() and momentsFMD(), which arguments are the same for functions
meanvarFMD() and momentsFMD(), except for arguments lower and upper that are not
longer neeeded. Finally, A function cdfFMD() is provided to compute the cdf of several
FMDs.

Some R MomTrunc package output

# All moments up to 3 for an 5-variate folded Student-t distribution

> momentsFMD(3,mu,S,nu)

[k1] [k2] [k3] [k4] [k5] Moment
[1,] 0 0 0 0 0 1.0000
[2,] 0 0 0 0 1 0.9598
[3,] 0 0 0 0 2 1.5000
[4,] 0 0 0 0 3 3.1311
[5,] 0 0 0 1 0 0.9260
[6,] 0 0 0 1 1 1.1925
[7,] 0 0 0 1 2 2.3439
[8,] 0 0 0 2 0 1.4100
[9,] 0 0 0 2 1 2.2836

[10,] 0 0 0 3 0 2.8902
[11,] 0 0 1 0 0 0.8994
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[12,] 0 0 1 0 1 0.9001
[13,] 0 0 1 0 2 1.4851
[14,] 0 0 1 1 0 0.8878
[15,] 0 0 1 1 1 1.1914
[16,] 0 0 1 2 0 1.4502
[17,] 0 0 2 0 0 1.3400
[18,] 0 0 2 0 1 1.4142
[19,] 0 0 2 1 0 1.4188
[20,] 0 0 3 0 0 2.7055
[21,] 0 1 0 0 0 0.8803
[22,] 0 1 0 0 1 0.9144
[23,] 0 1 0 0 2 1.5559
[24,] 0 1 0 1 0 0.8585
[25,] 0 1 0 1 1 1.1785
[26,] 0 1 0 2 0 1.3919
[27,] 0 1 1 0 0 0.8831
[28,] 0 1 1 0 1 0.9604
[29,] 0 1 1 1 0 0.9207
[30,] 0 1 2 0 0 1.4725
[31,] 0 2 0 0 0 1.2900
[32,] 0 2 0 0 1 1.4584
[33,] 0 2 0 1 0 1.3388
[34,] 0 2 1 0 0 1.4483
[35,] 0 3 0 0 0 2.5749
[36,] 1 0 0 0 0 0.8686
[37,] 1 0 0 0 1 0.9191
[38,] 1 0 0 0 2 1.5934
[39,] 1 0 0 1 0 0.9570
[40,] 1 0 0 1 1 1.3782
[41,] 1 0 0 2 0 1.7208
[42,] 1 0 1 0 0 0.8392
[43,] 1 0 1 0 1 0.9340
[44,] 1 0 1 1 0 0.9739
[45,] 1 0 2 0 0 1.3567
[46,] 1 1 0 0 0 0.8224
[47,] 1 1 0 0 1 0.9552
[48,] 1 1 0 1 0 0.9576
[49,] 1 1 1 0 0 0.8830
[50,] 1 2 0 0 0 1.3073
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[51,] 2 0 0 0 0 1.2600
[52,] 2 0 0 0 1 1.4780
[53,] 2 0 0 1 0 1.6387
[54,] 2 0 1 0 0 1.3205
[55,] 2 1 0 0 0 1.2940
[56,] 3 0 0 0 0 2.4966

6.2 Conclusions
In this thesis, we proposed a methodology to calculate the truncated moments

of several elliptical distributions and its skewed extended versions belonging to the family
of SE distributions. High order moments are achieved using a recurrence approach, plus
a 1-1 relation which let us write in a neat manner, any product moment of a member
of the SE class as a moment of its respective symmetric case. Expressions for the first
two moments, conditions of existence and useful expectations in the context of censored
interval models, are presented in general. Various estimation and regression applications in
censored models are proposed in order to show the usefulness of our proposal, considering
Student’s t, SN and ST deviates as well as an application of ST truncated moments in
Finance. All proposed methodology has been implemented and is available in the MomTrunc
package of the R software, a highly optimized package that provides truncated moments
and other functions of interest for various symmetrical and asymmetric distributions.

6.3 Future research
A natural extension for this work is to calculate the moments other members

of the elliptical and consequently to the SE class of distributions, as their probabilities are
implemented efficiently. Multimodality can be easily handled by considering mixtures of
censored regression models, extending works as Lachos et al. (2017) and De Alencar et al.
(2019a) to the regression framework with interval-censored responses. Mixed effects models
with skewed heavy-tailed random effects or error terms are also a natural extension. For
all models above is also possible to include a semi-parametric structure for modeling the
any nonlinear behavior as in Mattos et al. (2019), or using a spatial covariance structure
for spatially correlated data. Experimental studies include covariates that often comes
with substantial measurement errors (Liu & Wu, 2007). How to incorporate measurement
error in covariates within our robust framework can also be part of future research. An
in-depth investigation of such extensions is beyond the scope of the present work, but
certainly an interesting topic for future research.
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APPENDIX A: Appendix for chapter 2

Appendix A.1: Details for the expectations in EM algorithm
To compute the required expected values of all latent data, we find that most

of them can be written in terms of EpUi | Yiq, and thereby we write pui � EtEpUi |
Yiq | Vi,Ci, pθpkqu, where EpUi | Yiq � pν � pq{pν � δq with δ � pYi � µqJΣ�1pYi � µq.
Subsequently, we discuss the closed-form expressions of conditional expectations as follows:

1. If the ith subject has only non-censored components, then

yuy2
i

pkq � pupkqi yiyJ
i , xuypkq

i � pupkqi yi, and pupkqi � ν � p

ν � pδpkqpyiq ,
where pδpkqpyiq � pyi � pµpkqqJppΣpkqq�1pyi � pµpkqq.

2. If the ith subject has only censored components, from Proposition 3 with r � 1, we
have

yuy2
i

pkq � ErUiYiYJ
i | Vi,Ci, pθpkqs � pϕpkqpViqpw2cpkq

i ,xuypkq
i � ErUiYi | Vi,Ci, pθpkqs � pϕpkqpViqpwcpkq

i ,pupkqi � ErUi | Vi,Ci, pθpkqs � pϕpkqpViq,

where pϕpkqpViq � LppV1i,V2i; pµpkq, pΣ�pkq, ν � 2q
LppV1i,V2i; pµpkq, pΣpkq, νq ,

pwcpkq
i � ErWi | pθpkqs, pw2cpkq

i � ErWiWJ
i | pθpkqs (A.1)

with Wi � Ttpppµpkq, pΣ�pkq, ν � 2; pV1i,V2iqq and pΣ�pkq � ν

ν � 2
pΣpkq. To compute

ErWis and ErWiWJ
i s we use the results given in Subsection 3.1.

3. If the ith subject has both censored and uncensored components, then pYi | Vi,Ciq,
pYi | Vi,Ci,yoi q, and pYc

i | Vi,Ci,yoi q are equivalent processes. We obtain

yuy2
i

pkq � EpUiYiYJ
i | yoi ,Vi,Ci, pθpkqq � �

yoiyoJi pupkqi pupkqi yoi pwcpkqJ
ipupkqi pwcpkq

i yoJi pupkqi pw2cpkq
i

�
,

xuypkq
i � EpUiYi | yoi ,Vi,Ci, pθpkqq � vecpyoi pupkqi , pupkqi pwcpkq

i q,

pupkqi � EpUi | yoi ,Vi,Ci, pθpkqq � poi � ν

ν � pδpkqpyoi q Lp
c
i
pVc

1i,Vc
2i; pµcopkqi , rScopkqi , ν � poi � 2q

Lpci pVc
1i,Vc

2i; pµcopkqi , pScc.opkqi , ν � poi q
,

where

rScopkqi �
#
ν � pδpkqpyoi q
ν � 2� poi

+ pΣcc.opkq
i , pδpkqpyoi q � pyoi � pµopkqi qJppΣoopkq

i q�1pyoi � pµopkqi q,
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pΣcc.opkq
i is defined as in equation (4.22) in the main document, pwcpkq

i and pw2cpkq
i are

defined in (A.1) with Wi � Ttpci ppµcopkqi , rScopkqi , ν � poi � 2; pVc
1i,Vc

2iqq. Similarly, to
compute ErWis and ErWiWJ

i s, we use the results given in Subsection 3.1.

Appendix A.2: Some illustrations using the R MomTrunc package

> momentsTMD(kappa=c(2,2,2),lower,upper,mu,Sigma,nu,dist = "t")

Call:
momentsTMD(kappa = c(2, 2, 2), lower, upper, mu,Sigma, dist = "t", nu)

k1 k2 k3 F(k) E[k]
1 2 2 2 0.0002 0.0017
2 1 2 2 -0.0003 -0.0021
3 0 2 2 0.0021 0.0172
4 0 1 2 -0.0002 -0.0019
5 0 0 2 0.0161 0.1346
6 0 0 1 0.0089 0.0743
7 0 0 0 0.1194 1.0000

> meanvarTMD(lower,upper,mu,Sigma,nu,dist = "t") #Using 5000 MC sims

> means
mean1 mean2 mean3 mean4 mean5 mean6

Proposed -0.3587 -0.0837 -0.0781 0.2745 0.8097 0.9313
MonteCarlo -0.3465 -0.0744 -0.0730 0.2912 0.8022 0.9327

> variances
var1 var2 var3 var4 var5 var6

Proposed 0.0807 0.0863 0.1018 0.1340 0.0962 0.1459
MonteCarlo 0.0787 0.0888 0.0992 0.1393 0.0890 0.1464

> times
Proposed MonteCarlo
3.50 11.89 seconds
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Appendix B.1: Proofs of propositions and theorems

Proof of Proposition 3.2. Consider the partition Y � pYJ

1 ,YJ

2 qJ and the correspond-
ing partitions of µ, Σ, λ and ϕ. We based our proof on the factorization of fYpyq �
fY1,Y2py1,y2q as fY1,Y2py1,y2q � fY1py1qfY2|Y1�y1py2q. First, for the symmetric part, we
have that

φppy;µ,Σq � φp1py1;µ1,Σ11qφp2py2;µ2.1,Σ22.1q. (B.2)

Let now c12 � p1 � ϕJ
2 Σ22.1ϕ2q�1{2, ϕ̃1 � ϕ1 � Σ�1

11 Σ12ϕ2 and τ2.1 � τ � ϕ̃J
1 py1 � µ1q.

By noting after some straightforward algebra that λJΣ�1{2py � µq � ϕJpy � µq �
ϕ̃J

1 py1 � µ1q �ϕJ

2 py2 � µ2.1q and λJλ � ϕJΣϕ � ϕ̃J

1 Σ11ϕ̃1 �ϕJ

2 Σ22.1ϕ2, we obtain

Φ1
�
c12τ � c12ϕ̃

J
1 py1 � µ1qq

� � Φ1

�
τ2.1

p1�ϕJ
2 Σ22.1ϕ2q1{2



. (B.3)

Hence, using (B.2) and (B.3), we can rewrite the density of Y � pYJ
1 ,YJ

2 qJ as

fYpyq � φppy;µ,ΣqΦ1pτ � λJΣ�1{2py� µqq
Φ1pτ{p1� λJλq1{2q

� φppy;µ,ΣqΦ1
�
τ � ϕ̃J

1 py1 � µ1q �ϕJ
2 py2 � µ2.1q

�
Φ1 pτ{p1�ϕJΣϕq1{2q

� φppy;µ,Σq Φ1
�
τ2.1 �ϕJ

2 py2 � µ2.1q
�

Φ1 pτ{p1� ϕ̃J
1 Σ11ϕ̃1 �ϕJ

2 Σ22.1ϕ2q1{2q
� φppy;µ,Σq Φ1

�
τ2.1 �ϕJ

2 py2 � µ2.1q
�

Φ1 pc12τ{p1� c2
12ϕ̃

J
1 Σ11ϕ̃1q1{2q

Φ1pc12τ � c12ϕ̃
J
1 py1 � µ1qq

Φ1 pτ2.1{p1�ϕJ
2 Σ22.1ϕ2q1{2q

� φp1py1;µ1,Σ11qΦ1pc12τ � c12ϕ̃
J
1 Σ1{2

11 Σ�1{2
11 py1 � µ1qq

Φ1 pc12τ{p1� c2
12ϕ̃

J
1 Σ11ϕ̃1q1{2q

� φp2py2;µ2.1,Σ22.1q
Φ1

�
τ2.1 �ϕJ

2 Σ1{2
22.1Σ

�1{2
22.1 py2 � µ2.1q

�
Φ1 pτ2.1{p1�ϕJ

2 Σ22.1ϕ2q1{2q ,

� ESNp1pµ1,Σ11, c12Σ1{2
11 ϕ̃1, c12τq � ESNp2pµ2.1,Σ22.1,Σ1{2

22.1ϕ2, τ2.1q.

Proof of Theorem 3.3. For X � TNpp0,R; pa,bqq, we have that its MGF is given by

mptq � ErexpttJXus � 1
L

» b

a

1
p2πqp{2|R|1{2 exp

 �1
2pxJR�1x � 2tJxq( dx,

� L�1 expttJRt{2u
» b

a
φppx; Rt,Rqdx,

� L�1 expttJRt{2uLppa,b; Rt,Rq, (B.4)
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with normalizing constant L � Lppa,b; 0,Rq. From Tallis (1961), we can compute the
first two moments of X differentiating (B.4). Hence,

Bmptq
Bt � mptqtJR � L�1 expttJRt{2u

� B
BtLppa,b; Rt,Rq

�
.

After a change of variable w � x �Rt,

B
BtLppa,b; Rt,Rq � B

Bw
Bw
Bt

» b

a
φppw; Rqdw � �qptqJR. (B.5)

For t � 0, we denote q � qp0q, which is given by q � qa � qb, with the i-th
element of qa and qb as

qa,i � φ1paiqLp�1papiq,bpiq; aiRpiq,i, R̃iq,
qb,i � φ1pbiqLp�1papiq,bpiq; biRpiq,i, R̃iq,

with R̃i � Rpiq,piq �Rpiq,iRi,piq. Additionally, it is straightforward that

B2mptq
BtBtJ � Bmptq

Bt
J

tR �mptqR � L�1 expttJRt{2uRpt qptqJ �HptqqR, (B.6)

with Hptq � � B
Btqptq. For t � 0, we have that H � Hp0q � B

Bxq, with off-diagonal
elements hij given by

hij � haaij � hbaij � habij � hbbij

� φ2pai, aj; ρijqLp�2papi,jq,bpi,jq;µaaij , R̃ijq � φ2pbi, aj; ρijqLp�2papi,jq,bpi,jq;µbaij , R̃ijq
� φ2pai, bj; ρijqLp�2papi,jq,bpi,jq;µabij , R̃ijq � φ2pbi, bj; ρijqLp�2papi,jq,bpi,jq;µbbij , R̃ijq,

with µαβij � Rpijq,ri,jspαi, βjqJ and R̃ij � Rpi,jq,pi,jq �Rpi,jq,ri,jsRri,js,pi,jq.

Finally, following Vaida & Liu (2009), we can derive the diagonal elements hii
as linear combinations of the elements hik for i � k. This can be achieved as

hii � � B
Bxi qai �

B
Bxi qbi

� B
Bxi

 
φ1paiqLp�1papiq,bpiq; aiRpiq,i, R̃iq � φ1pbiqLp�1papiq,bpiq; biRpiq,i, R̃iq

(
,

� aiφ1paiqLp�1papiq,bpiq; aiRpiq,i, R̃iq � φ1paiq � B
BxiLp�1papiq,bpiq; aiRpiq,i, R̃iq

� biφ1pbiqLp�1papiq,bpiq; biRpiq,i, R̃iq � φ1pbiq � B
BxiLp�1papiq,bpiq; biRpiq,i, R̃iq

� aiqai � biqbi �Ri,piq

 
φ1paiq

�
φ1paj|aiqLp�2papi,jq,bpi,jq;µaaij , R̃ijq � φ1pbj|aiq

� Lp�2papi,jq,bpi,jq;µabij , R̃ijq
�p
j�i�1 � φ1pbiq

�
φ1paj|biqLp�2papi,jq,bpi,jq;µbaij , R̃ijq

� φ1pbj|biqLp�2papi,jq,bpi,jq;µbbij , R̃ijq
�p
j�i�1

)
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� aiqai � biqbi �Ri,piq

�
haaij � habij � hbaij � hbbij

�p
j�i�1

� aiqai � biqbi �Ri,piqHpiq,i.

Finally, evaluating equations (B.5) and (B.6) on t � 0, we obtain the expressions
for ErXs and ErXXJs. This ends the proof.

Proof of Theorem 3.4. It follows that

FYpyq � P p�y ¤ X ¤ yq
� P p�y1 ¤ X1 ¤ y1,�y2 ¤ X2 ¤ y2, . . . ,�yp ¤ Xp ¤ ypq
� FXpyq �

¸
i

FXpy-piqq �
¸
i j

FXpy-pi,jqq �
¸

i j k

FXpy-pi,j,kqq � . . .� p�1qpFXp�yq,

(B.7)

where y�piq denotes the y vector with its ith elements multiplied by �1. For instance,
we have that y-piq � py1, y2, . . . , yi�1,�yi, yi�1, . . . , ypq. It is easy to see that FYpyq can be
written as

FYpyq �
¸

sPSppq
πsFXpΛsy;θq,

with the constant πs �
p¹
i�1

si providing the signs t�1, 1u correctly for each summand in

(B.7).

By the other side, differentiating FYpyq in expression (B.7), we have the joint
pdf of Y � |X| given by

fYpyq � Bp
By1By2 . . . BypFYpyq

� fXpyq � p�1q
¸
i

fXpy-piqq � p�1q2
¸
i j

fXpy-pi,jqq � p�1q3
¸

i j k

fXpy-pi,j,kqq

� . . .� p�1q2pfXp�yq
� fXpyq �

¸
i

fXpy-piqq �
¸
i j

fXpy-pi,jqq �
¸

i j k

fXpy-pi,j,kqq � . . .� fXp�yq

�
¸

sPSppq
fXpΛsy;θq,

where we have conveniently used fXpxq instead of fXpx;θq for simplicity.

Proof of Corollary 3.2. By the method of change-of-variable for Zs � ΛsX, then fZspyq �
fXpΛsyq since Λ�1

s � Λs, J � Λs and | detpJq| � 1, where J is the Jacobian matrix
of the transformation and detpAq is the determinat of the matrix A. Additionally, if
X � fXp�; ξ,Ψq belongs to the location-scale family of distributions with location and
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scale parameters ξ and Ψ, respectively, then Zs � fXp�; Λsξ,ΛsΨΛsq. The κ-th moment
of Y can be obtained by the basic integration as» 8

0
yκfYpyqdy �

¸
sPSppq

» 8

0
yκfXpy; Λsξ,ΛsΨΛsqdy

�
¸

sPSppq

» 8

0
yκfZspyqdy �

¸
sPSppq

ErpZκs q�s.

This concludes the proof.

Appendix B.2: Explicit expressions for moments of some folded uni-
variate distributions

Let X � ESNpµ, σ2, λ, τq, Y � SNpµ, σ2, λq, Z � Npµ, σ2q and W follow a
univariate half normal distribution denoted by W � HNpσ2q. The first four raw moments
for |X|, |Y |, |Z| and W are given by

Er|X|s � µp1� 2p1q � 2ασ2 � λησp1� 2Φ1p0;m, γ2qq,
Er|X|2s � µ2 � σ2 � λησpm� µq,
Er|X|3s � pµ3 � 3µσ2qp1� 2p1q � 2αpµ2σ2 � 2σ4q

� λησ
 
2γpm� µqφ1pm{γq � pm2 � γ2 � µpm� µq � 2σ2qp1� 2Φ1p0;m, γ2qq( ,

Er|X|4s � µ4 � 6µ2σ2 � 3σ4 � λησ
 
m3 � 3mγ2 �m2µ� γ2µ�mµ2 � µ3 � p3m� 5µqσ2( ,

Er|Y |s � µp1� 2p1q � 2ασ2 � λησp1� 2Φ1pµ{γqq,
Er|Y |2s � µ2 � σ2 � 2µλησ,
Er|Y |3s � pµ3 � 3µσ2qp1� 2p1q � 2αpµ2σ2 � 2σ4q

� λησ
 
4γµφ1pµ{γq � p3µ2 � γ2 � 2σ2qp1� 2Φ1pµ{γqq

(
,

Er|Y |4s � µ4 � 6µ2σ2 � 3σ4 � 4µλησ
 
µ2 � γ2 � 2σ2( ,

Er|Z|s � �µp1� 2Φ1pµ{σqq � 2σφ1pµ{σq,
Er|Z|2s � µ2 � σ2,

Er|Z|3s � �µpµ2 � 3σ2qp1� 2Φ1pµ{σqq � 2σpµ2 � 2σ2qφ1pµ{σq,
Er|Z|4s � µ4 � 6µ2σ2 � 3σ4,

and

ErW s � σ
?

2?
π
, ErW 2s � σ2, ErW 3s � 4σ3

?
2π

and ErW 4s � 3σ4,

with m � µ� µb, p1 � Φ̃1p0;µ, σ2, λ, τq and α � ESN1p0;µ, σ2, λ, τq.
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Appendix B.3: Useful approximations.
Proposition B.1. As τ Ñ �8 ,

η ÝÑ � τ

1� λJλ . (B.8)

Proof. Let h denote the complimentary inverse Mill’s ratio (CIMR) of a random variable
X, given by hpxq M� fpxq{F pxq. For X � N1pµ, σ2q, it follows from L’Hôpital that

hpxq ÝÑ �x� µ

σ2 , as x ÝÑ �8.

Setting X � N1p0, 1� λJλq, it follows that hpτq � η, ending the proof.

Proposition B.2. As λÑ �8,

ESN1py;µ, σ2, λ, τqÝÑTN1py;µ, σ2, rµ,8qq, (B.9)

and as λÑ �8,

ESN1py;µ, σ2, λ, τqÝÑTN1py;µ, σ2, p�8, µsq. (B.10)

Proof. For λÑ �8, it is straightforward that

Φ1pτ � λpY � µq{σq
Φ1pτ{p1� λ2q1{2q ÝÑ 1tY   µu

1{2 ,

and for λÑ �8,
Φ1pτ � λpY � µq{σq

Φ1pτ{p1� λ2q1{2q ÝÑ 1tY ¡ µu
1{2 ,

where 1tEu represents the indicator function. This completes the proof.

Corollary B.1. Let M and N be two large positive real numbers. If λ � �M and τ � �N ,
then

ESN1py;µ, σ2, λ, τq � TN1py;µ, σ2, rµ� σN{M,8qq,
and for λ �M , then

ESN1py;µ, σ2, λ, τq � TN1py;µ, σ2, p�8, µ��σN{M sq.

Appendix B.4: The MomTrunc R package
The methods proposed this work have been implemented in the package

MomTrunc, which is available on CRAN repository (version 4.51). It computes the first
two moments, as well as arbitrary moments for some multivariate truncated distributions
(TMD) using the functions meanvarTMD and momentsTMD, respectively. Another possible
distributions includes the Student-t and the ESN along with its limiting cases, say, the
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SN and N distribution. These moments can be accessed by setting the dist parameter
as "t", "ESN", "SN" and "N" respectively. For folded one can use the analogous functions
meanvarFMD and momentsFMD and their cdf s through the cdfFMD function. Densities,
probabilities and random generator functions are also offered for the multivariate ESN
distribution trough the functions dmvESN, pmvESN and rmvESN, respectively. In the following,
we present some sample codes useful for practitioners.

# Univariate ESN case
> dmvESN(x = -1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)
> rmvESN(n = 100,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)
> pmvESN(lower = -5,upper = 2,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)

# Multivariate ESN case
> mu = c(0.1,0.2,0.3,0.4)
> Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,
-0.1,0.2,1),nrow = length(mu),ncol = length(mu),byrow = TRUE)
> lambda = c(-2,0,1,2)
> tau = 1

> dmvESN(x = c(-2,-1,0,1),mu,Sigma,lambda,tau) #One observation
> dmvESN(x = matrix(rnorm(4*10),ncol = 4),mu,Sigma,lambda,tau)
> rmvESN(n = 100,mu,Sigma,lambda,tau)
> pmvESN(lower = rep(-Inf,4),upper = c(-1,0,2,5),mu,Sigma,lambda,tau)

# Truncated case
# First two moments
> a = c(-0.8,-0.7,-0.6) #lower bound
> b = c(0.5,0.6,0.7) #upper bound
> mu = c(0.1,0.2,0.3)
> Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
> lambda = c(-2,0,1)
> meanvarTMD(a,b,mu,Sigma,dist="normal")
> meanvarTMD(a,b,mu,Sigma,dist = "t",nu = 4)
> meanvarTMD(a,b,mu,Sigma,lambda,dist = "SN")
> meanvarTMD(a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")

# Arbitrary moment (2,0,1)
> momentsTMD(kappa = c(2,0,1),a,b,mu,Sigma,dist="normal")
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> momentsTMD(kappa = c(2,0,1),a,b,mu,Sigma,dist = "t",nu = 7)
> momentsTMD(kappa = c(2,0,1),a,b,mu,Sigma,lambda,dist = "SN")
> momentsTMD(kappa = c(2,0,1),a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")

# Folded ESN case
> meanvarFMD(mu,Sigma,lambda,tau = 1,dist = "ESN")
> momentsFMD(kappa = c(2,0,1),mu,Sigma,lambda,tau = 1,dist = "ESN")
> cdfFMD(x = c(0.5,0.2,1.0,1.3),mu,Sigma,lambda,tau = 1,dist = "ESN")

Appendix B.5: Figures

300 500 1000

Time [milliseconds]
10 30 300100

Time [milliseconds]

Figure 15 – Simulation study. Violin plots for the processing time to compute the mean
and the variance for a 4-variate doubly TESN (left panel) and a 3-variate
FESN distribution (right panel). For the FESN case, Method 1 refers to the
approach in Subsection 3.6.1 and Method 2 when using equations (3.40) and
(3.41).
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Figure 16 – Densities of Xi, i � 1, . . . , 4.
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Figure 17 – Contour plots of bivariate FESN densities with same location and scale param-
eters, and different skewness λ � tp8, 3q, p3, 8q, p�3,�8q, p�8,�3qu (from left
to right) and extension τ � t�4,�2, 0, 2, 4u (from top to bottom) parameters.
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Appendix C.1: Details for the expectations in EM algorithm
To compute the expected values, first note that for any multiplicatively separable

measurable function of Ui, Ti and Yi, such that gpUi, Ti,Yiq � g1pYiqg2pUiqg3pTiq, we
have that

EUiTiYi
rgpUi, Ti,Yiq|Vi,Cis � EYi

rg1pYiqEUiTirg2pUiqg3pTiq|Yis|Vi,Cis
� EYi

rg1pYiqEUirg2pUiq|YisETirg3pTiq|Ui,Yis|Vi,Cis.

Hence,

yuyri � EUiTiYi
rUiYr

i |Vi,Cis � EYi
rYr

iEUirUi|Yis|Vi,Cis,xutri � EUiTiYi
rUiT ri |Vi,Cis � EYi

rEUiTirUiT ri |Yis|Vi,Cis,zutyri � EUiTiYi
rUiTiYr

i |Vi,Cis � EYi
rYr

iEUiTirUiTi|Yis|Vi,Cis,

for r � t0, 1, 2u. From Cabral et al. (2012), we know that Ti | pYi, Uiq � TN1p%2∆JΓ�1pYi�
µq, U�1

i %2, p0,8qq. Multiplying the first and second moment of Ti|Yi by Ui and taking
expectation with respect to this last, it follows that

EUiTirUiTi|Yis � %2∆JΓ�1pyi � µqEUirUi|Yis � %φpθ,yiq, (C.11)
EUiTirUiT 2

i |Yis � %2r∆JΓ�1pyi � µqEUiTirUiTi|Yis � 1s, (C.12)

with % � p1�∆JΓ�1∆q�1{2 and

φpθ,yiq � EUi

�
U

1{2
i

φ1pU1{2
i λJΣ�1{2pyi � µqq

Φ1pU1{2
i λJΣ�1{2pyi � µqq

�����Yi

�
.

As noted, both expectations EUiTirUiTi|Yis and EUiTirUiT 2
i |Yis depend on EUirUi|Yis and

φpθ,Yiq. Lachos et al. (2010) states that

EUirUi|Yis � 2ν2pyiq tppyi;µ,Σ, νq
STppyi;µ,Σ,λ, νq T1

�c
ν � p� 2
ν � δi

Ai; ν � p� 2



and
φpθ,yiq � 2 tppyi;µ,Σ, νq

STppyi;µ,Σ,λ, νq
Γppν � p� 1q{2q?
πΓppν � pq{2q

pν � δiqpν�pq{2
pν � δi � A2

i qpν�p�1q{2 ,

where δi � δpyi;µ,Σq, Ai � λJΣ�1{2pyi � µq.
By using the fact that tppyi;µ,Σ, νq � tppyi;µ, ν

ν�2Σ, ν � 2q{ν2pyiq, δi �
ν
ν�2δpyi;µ, ν

ν�2Σq, δi � A2
i � ν

ν�1δpyi;µ, ν
ν�1Γq, det pΣq1{2 �

?
1� λJλ det pΓq1{2 and
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equation (C.24), we can propose simplified versions of equations above in a neat manner.
After some straightforward algebra, we obtain

EUirUi|Yis �
STppyi;µ, ν

ν�2Σ,λ, ν � 2q
STppyi;µ,Σ,λ, νq (C.13)

and

φpθ,yiq � 2a
πνp1� λJλq

Γpν�1
2 q

Γpν2 q
tppyi;µ, ν

ν�1Γ, ν � 1q
STppyi;µ,Σ,λ, νq . (C.14)

Let us define the expectation of interest yφyri � EYi
rYr

iφpθ,Yiq|Vi,Cis, for
r � t0, 1, 2u. Next, we present two crucial propositions to compute these expectations.
Proofs can be found in next subsection C.2.

Proposition C.1. Let Z � Npp0,Γq, U � Gammapν{2, ν{2q and T � HTpνq. Then
Y d� µ�∆T �U�1{2Z � STppµ,Σ,λ, νq. For any measurable function gpyq, it holds that

Erφpθ,YqgpYq|α ¤ Y ¤ βs � 2a
πνp1� λJλq

Γpν�1
2 q

Γpν2 q

� Lpα,β;µ, ν
ν�1Γ, ν � 1q

Lpα,β;µ,Σ,λ, νq ErgpW1qs, (C.15)

and

ErU gpYq|α ¤ Y ¤ βs � Lpα,β;µ, ν
ν�2Σ,λ, ν � 2q

Lpα,β;µ,Σ,λ, νq ErgpW2qs, (C.16)

where A � λJΣ�1{2pY�µq, W1 � Ttppµ, ν
ν�1Γ, ν�1; pα,βqq and W2 � TSTppµ, ν

ν�2Σ,λ,
ν � 2; pα,βqq.

Proposition C.2. Consider Y, U and T as in Proposition C.1. Now, consider Y to be
partitioned as Y � pYJ

1 ,YJ
2 qJ of dimensions p1 and p2 (p1 � p2 � p), respectively. Let

Γ �
�

Γ11 Γ12

Γ21 Γ22

�
, α � pαJ

1 ,α
J
2 qJ, and β � pβJ1 ,βJ2 qJ

be the corresponding partitions of Γ, α and β. For a multiplicatively separable measurable
function g, it follows that

Erφpθ,YqgpYq|Y1,α2 ¤ Y2 ¤ β2s (C.17)

�g1pY1q
tp1py1;µ1,

ν
ν�1Γ11, ν � 1q

STp1py1;µ1,Σ11, λ̃1, νq

� 2a
πνp1� λJλq

Γpν�1
2 q

Γpν2 q
Lpα2,β2;µ2.1,

ν2.1
ν2.1�1Γ̃22.1, ν2.1 � 1q

Lpα2,β2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
Erg2pW�

1qs, (C.18)

and

ErU gpYq|Y1,α2 ¤ Y2 ¤ β2s � g1pY1q
STp1py1;µ1,

ν
ν�2Σ11, λ̃1, ν � 2q

STp1py1;µ1,Σ11, λ̃1, νq
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� Lpα2,β2;µ2.1,
ν2.1
ν2.1�2Σ̃22.1,λ2.1, τ2.1, ν2.1 � 2q

Lpα2,β2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
Erg2pW�

2qs,
(C.19)

where gpYq � g1pY1qg2pY2q, W�
1 � Ttp2pµ2.1,

ν2.1
ν2.1�1Γ̃22.1, ν2.1 � 1; pα2,β2qq and W�

2 �
TESTp2pµ2.1,

ν2.1
ν2.1�2Σ̃22.1,λ2.1, τ2.1, ν2.1�2; pα2,β2qq, with τ2.1 � νpy1qpϕ̃J

1 py1�µ1qq, ν2.1 �
ν � p1, Γ̃22.1 � pΓ22 �Γ21Γ�1

11 Γ12q{ν2py1q and remaining parameters as in Proposition 5.4.

Subsequently, on according to expressions (C.11) - (C.19), we have the imple-
mentable expressions to the conditional expectations for three possible scenarios:

1. If the ith subject has only non-censored components, EUiTiYi
rYr

i |Vi,Cis � yri ; thenyuyri
pkq � pupkqi yri ,pupkqi � EUirUi|Yi, pθpkqsxutri pkq � EUiTirUiT ri |Yi, pθpkqs,zutyri pkq � yriEUiTirUiTi|Yi, pθpkqs,

with yφyri � yriφpθ,yiq, where y0
i � 1, y1

i � yi and y2
i � yiyJ

i .

2. If the ith subject has only censored components, we have

yuyri
pkq � puipkqywr

2i
pkq
,

puipkq � Lpv1i,v2i; µ̂pkq, ν̂pkq

ν̂pkq�2Σ̂pkq, λ̂pkq, ν̂pkq � 2q
Lpv1i,v2i; µ̂pkq, Σ̂pkq, λ̂pkq, ν̂pkqq ,

xutipkq � %̂2pkq∆̂pkqJΓ̂�1pkq
�xuyipkq � µ̂pkq puipkq	� %̂pkqyφy0

i

pkq
,

xut2i pkq � %̂2pkq∆̂pkqJΓ̂�1pkq
�
pyuy2

i

pkq � 2 xuyipkqµ̂Jpkq � puipkqµ̂pkqµ̂JpkqqΓ̂�1pkq∆̂pkq

� %̂pkqpyτy1
i

pkq � µ̂pkqyφy0
i

pkqq
�
� %̂2pkq,

yutyipkq � %̂2pkqpyuy2
i

pkq � xuyipkqµ̂pkqJqΓ̂�1pkq∆̂pkq � %̂pkqyφy1
i

pkq
,

with

yφyri
pkq � 2b

πν̂pkqp1� λ̂pkqJλ̂pkqq
Γp ν̂pkq�1

2 q
Γp ν̂pkq2 q

Lpv1i,v2i; µ̂pkq, ν̂pkq

ν̂pkq�1Γ̂pkq, ν̂pkq � 1q
Lpv1i,v2i; µ̂pkq, Σ̂pkq, λ̂pkq, ν̂pkqq pwrpkq

1i ,

(C.20)

where pwpkq
si � ErWsi | pθpkqs, and pw2pkq

si � ErWsiWJ
si | pθpkqs, (C.21)

for s � t1, 2u, with W1i � Ttpipµ, ν
ν�1Γ, ν�1; pv1i,v2iqq and W2i � TSTpipµ, ν

ν�2Σ,
λ, ν � 2; pv1i,v2iqq.
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3. If the ith subject has both censored and uncensored components and given that
pYi |Vi,Ciq, pYi |Vi,Ci,Yo

i q, and pYc
i |Vi,Ci,Yo

i q are equivalent processes, we
have

xuypkq
i � ErUiYi | yoi ,Vi,Ci, pθpkqs � pupkqi vecpyoi , pwcpkq

2i q,

yuy2
i

pkq � ErUiYiYJ
i | yoi ,Vi,Ci, pθpkqs � �

yoiyoJi pupkqi pupkqi yoi pwcpkqJ
2ipupkqi pwcpkq

2i yoJi pupkqi pw2cpkq
2i

�
,

pupkqi � ErUi | yoi ,Vi,Ci, pθpkqs � STpoi pyoi ; µ̂
opkq
i , ν̂pkq

ν̂pkq�2Σ̂oopkq
i , λ̃

opkq
i , ν̂pkq � 2q

STpoi pyoi ; µ̂
opkq
i , Σ̂oopkq

i , λ̃
opkq
i , ν̂pkqq

�
Lpci

pvc1i,vc2i; pµcopkqi ,
ν̂
copkq
i

ν̂
copkq
i �2

Σ̃cc.opkq
i , λ̂

copkq
i , τ̂

copkq
i , ν̂

copkq
i � 2q

Lpci
pvc1i,vc2i; pµcopkqi , Σ̃cc.opkq

i , λ̂
copkq
i , τ̂

copkq
i , ν̂

copkq
i q

,

with xutipkq, xut2i pkq and yutyipkq as in item 2, and

yφyri
pkq � 2b

πν̂pkqp1� λ̂pkqJλ̂pkqq
Γp ν̂pkq�1

2 q
Γp ν̂pkq2 q

Lpci pvc1i,vc2i; pµcopkqi ,
ν̂
copkq
i

ν̂
copkq
i �1

Γ̃cc.opkq
i , ν̂

copkq
i � 1q

Lpci
pvc1i,vc2i; pµcopkqi , Σ̃cc.opkq

i , λ̂
copkq
i , τ̂

copkq
i , ν̂

copkq
i q

� tpoi pyoi ; µ̂
opkq
i , ν̂pkq

ν̂pkq�1Γ̂oopkq
i , ν̂pkq � 1q

STpoi pyoi ; µ̂
opkq
i , Σ̂oopkq

i , λ̃
opkq
i , ν̂pkqq

pwrpkq
1i ,

where pwpkq
si � ErW�

si | pθpkqs, and pw2pkq
si � ErW�

siW�J
si | pθpkqs, (C.22)

for s � t1, 2u, where W�
1i � Ttpci pµ

copkq
i ,

νcoi
νcoi �1Γ̃cc.o

i , νcoi � 1; pvc1i,vc2iqq and W�
2i �

TESTpci pµ2.1,
ν2.1
ν2.1�2Σ̃22.1,λ2.1, τ2.1, ν2.1 � 2; pvc1i,vc2iqq, with Γi being partitioned like

Σi, τco � νpyciqpϕ̃cJi pyci � µciqq, νcoi � ν � poi and Γ̃cc.o
i � pΓcc

i � Γco
i Γoo�1

i Γoc
i q{ν2pyoi q.

To compute the truncated moments pwpkq
si and pw2pkq

si given in items 2 and 3, we
use our MomTrunc R package.

Appendix C.2: Proofs of propositions

Proof of Proposition 5.4. Consider the partition Y � pYJ

1 ,YJ

2 qJ and the corresponding
partitions of µ, Σ and ϕ. We based our proof on the factorization of fYpyq � fY1,Y2py1,y2q
as fY1,Y2py1,y2q � fY1py1qfY2|Y1�y1py2q. First, for the symmetric part, we have that

tppy;µ,Σ, νq � tp1py1;µ1,Σ11, νqtp2py2;µ2.1, Σ̃22.1, ν � p1q, (C.23)

with µ2.1 � µ2 �Σ21Σ�1
11 py1 � µ1q, Σ22.1 � Σ22 �Σ21Σ�1

11 Σ12, Σ̃22.1 � Σ22.1{ν2py1q and
ν2py1q � pν � p1q{pν � δpy1qq.
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Let now c12 � p1 � ϕJ
2 Σ22.1ϕ2q�1{2, ϕ̃1 � ϕ1 � Σ�1

11 Σ12ϕ2, τ2.1 � νpy1qpτ �
ϕ̃J

1 py1 � µ1qq, and ν2.1 � ν � p1. By noting after some straightforward algebra that
λJΣ�1{2py � µq � ϕJpy � µq � ϕ̃J

1 py1 � µ1q � ϕJ

2 py2 � µ2.1q and λJλ � ϕJΣϕ �
ϕ̃J

1 Σ11ϕ̃1 �ϕJ

2 Σ22.1ϕ2, we obtain

T1

�
pτ1 � λ̃J1 Σ�1{2

11 py1 � µ1qqνpy1q; ν � p1

	
� T1

�
τ2.1

p1� λJ2.1λ2.1q1{2 ; ν2.1



, (C.24)

and

T1

�
τ

p1� λJλq1{2 ; ν


� T1

�
τ1

p1� λ̃J1 λ̃1q1{2
; ν


, (C.25)

where λ̃1 � c12Σ1{2
11 ϕ̃1, τ1 � c12τ and λ2.1 � Σ1{2

22.1ϕ2. Additionally, it is easy to see that

ν2pyq � ν � p

ν � δpyq
� ν � p1

ν � δpy1q
�

ν2.1 � p2

ν2.1 � δpy2;µ2.1, Σ̃22.1q



� ν2py1qν2

Y2.1py2q. (C.26)

From this last equation, it holds that

T1
�pA� τqνpyq; ν � p

� � T1
�pτ2.1 � λJ2.1Σ̃�1{2

22.1 py2 � µ2.1qqνY2.1py2q; ν2.1 � p2
�
, (C.27)

with A � λJΣ�1{2pY � µq, Hence, using (C.23), (C.24) and (C.25), we can rewrite the
density of Y � pYJ

1 ,YJ
2 qJ as

fYpyq � tppy;µ,Σ, νqT1ppτ � λJΣ�1{2py� µqqνpyq; ν � pq
T1pτ{p1� λJλq1{2; νq

� tppy;µ,Σ, νqT1
�pτ2.1 � λJ2.1Σ̃�1{2

22.1 py2 � µ2.1qqνY2.1py2q; ν2.1 � p2
�

T1
�
τ1{p1� λ̃J1 λ̃1q1{2; ν

�
� tp1py1;µ1,Σ11, νq

T1
�pτ1 � λ̃J1 Σ�1{2

11 py1 � µ1qqνpy1q; ν � p1
�

T1
�
τ1{p1� λ̃J1 λ̃1q1{2; ν

�
� tp2py2;µ2.1, Σ̃22.1, ν2.1q

T1
�pτ2.1 � λJ2.1Σ̃�1{2

22.1 py2 � µ2.1qqνY2.1py2q; ν2.1 � p2
�

T1 pτ2.1{p1� λJ2.1λ2.1q1{2; ν2.1q
� ESTp1py1;µ1,Σ11, λ̃1, τ1, νq � ESTp2py2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν � p1q.

Proof of Proposition C.1. First note that Y | pα ¤ Y ¤ βq � TSTppµ,Σ,λ, ν; pα,βqq.
By direct integration of the simplified expressions (C.13) and (C.14), it is readily that

Erφpθ,YqgpYq|α ¤ Y ¤ βs

� 2a
πνp1� λJλq

Γpν�1
2 q

Γpν2 q
» β
α

tppy;µ, ν
ν�1Γ, ν � 1q

STppy;µ,Σ,λ, νq
STppy;µ,Σ,λ, νq
Lpα,β;µ,Σ,λ, νqgpyqdy
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� 2a
πνp1� λJλq

Γpν�1
2 q

Γpν2 q
1

Lpα,β;µ,Σ,λ, νq
» β
α

gpyqtppy;µ, ν
ν�1Γ, ν � 1qdy

� 2a
πνp1� λJλq

Γpν�1
2 q

Γpν2 q
Lpα,β;µ, ν

ν�1Γ, ν � 1q
Lpα,β;µ,Σ,λ, νq ErgpW1qs

and

EUTYrU gpYq|α ¤ Y ¤ βs �
» β
α

STppy;µ, ν
ν�2Σ,λ, ν � 2q

STppy;µ,Σ,λ, νq
STppy;µ,Σ,λ, νq
Lpα,β;µ,Σ,λ, νqgpyqdy

� 1
Lpα,β;µ,Σ,λ, νq

» β
α

gpyqSTppy;µ, ν
ν�2Σ,λ, ν � 2qdy

� Lpα,β;µ, ν
ν�2Σ,λ, ν � 2q

Lpα,β;µ,Σ,λ, νq ErgpW2qs,

W1 � Ttppµ, ν
ν�1Γ, ν � 1; pα,βqq and W2 � TSTppµ, ν

ν�2Σ,λ, ν � 2; pα,βqq.

Proof of Proposition C.2. It follows from the conditional distribution of a ST distribu-
tion that Y2 | pY1,α2 ¤ Y2 ¤ β2q � TESTp2pµ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1; pα2,β2qq, with
conditional parameters and in proposition 5.4 . It is straightforward that

Erφpθ,YqgpYq|Y1,α2 ¤ Y2 ¤ β2s

� 2a
πνp1� λJλq

Γpν�1
2 q

Γpν2 q

�
» β2

α2

tppy;µ, ν
ν�1Γ, ν � 1q

STppy;µ,Σ,λ, νq
ESTp2py2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
Lp2pα2,β2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q

g2py2qdy2

� 2a
πνp1� λJλq

Γpν�1
2 q

Γpν2 q
tp1py1;µ1,

ν
ν�1Γ11, ν � 1q

STp1py1;µ1,Σ11, λ̃1, νq
g1pY1q

�
» β2

α2

tp2py2;µ2.1,
ν2.1
ν2.1�1Γ̃22.1, ν2.1 � 1q

ESTp2py2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
ESTp2py2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
Lp2pα2,β2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q

gpyqdy2

� 2a
πνp1� λJλq

Γpν�1
2 q

Γpν2 q
tp1py1;µ1,

ν
ν�1Γ11, ν � 1q

STp1py1;µ1,Σ11, λ̃1, νq
Lp2pα2,β2;µ2.1,

ν2.1
ν2.1�1Γ̃22.1, ν2.1 � 1q

Lp2pα2,β2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
� g1pY1qErg2pW�

1qs

and

EUTYrU gpYq|α ¤ Y ¤ βs

�
» β2

α2

STppy;µ, ν
ν�2Σ,λ, ν � 2q

STppy;µ,Σ,λ, νq
ESTp2py2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
Lp2pα2,β2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q

gpyqdy2

�STp1py1;µ1,
ν
ν�2Σ11, λ̃1, ν � 2q

STp1py1;µ1,Σ11, λ̃1, νq
g1pY1q

�
» β2

α2

ESTp2py2;µ2.1,
ν2.1
ν2.1�2Σ̃22.1,λ2.1, τ2.1, ν2.1 � 2q

Lp2pα2,β2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
g2py2qdy2

�STp1py1;µ1,
ν
ν�2Σ11, λ̃1, ν � 2q

STp1py1;µ1,Σ11, λ̃1, νq
Lpα2,β2;µ2.1,

ν2.1
ν2.1�2Σ̃22.1,λ2.1, τ2.1, ν2.1 � 2q

Lpα2,β2;µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
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� g1pY1qErg2pW�
2qs,

where gpYq � g1pY1qg2pY2q, W�
1 � Ttp2pµ2.1,

ν2.1
ν2.1�1Γ̃22.1, ν2.1 � 1; pα2,β2qq and W�

2 �
TESTp2pµ2.1,

ν2.1
ν2.1�2Σ̃22.1,λ2.1, τ2.1, ν2.1 � 2; pα2,β2qq.

Appendix C.3: ML estimation via the EM algorithm for ST responses
Let Yi � pYi1, . . . , YipqJ be a p� 1 response vector for the ith sample unit, for

i P t1, . . . , nu, considered to be a realization from Y1, . . . ,Yn � STppµ,Σ,λ, νq. In the
case that Y is fully observed, in order to estimate the vector of parameters θ � pµ,Σ,λ, νq,
we can propose a EM algorithm for ML estimation as a special case of the one proposed
in subsection 5.8.2. For the equivalent set of parameters θ � pµ,∆,αΓ, νq, the algorithm
can be summarized as follows:

E-step: Given the current estimate pθpkq � pµ̂pkq, p∆pkq, pαpkq

Γ , νpkqq at the kth step
of the algorithm, compute the expectations

xutri pkq � EUiTirUiT ri | Yi, pθpkqs,
for r � t0, 1, 2u, using expression (C.11) and (C.12).

M-step: Update the estimate pθpkq � pµ̂pkq, p∆pkq, pαpkq

Γ , νpkqq by

pµpk�1q � 1
n

ņ

i�1

!pupkqyi � xutipkq p∆pkq
)
,

p∆pk�1q �
#

ņ

i�1

xut2i pkq
+�1 ņ

i�1

!xutipkqpyi � pµpk�1qq
)
,

pΓpk�1q � 1
n

ņ

i�1

"puipkqpyi � µ̂pk�1qqpyi � µ̂pk�1qqJ � 2xutipkqpyi∆̂pk�1qJ � ∆̂pk�1qµ̂pk�1qJq

�xut2i pkq∆̂pk�1q∆̂pk�1qJ
*

As before, we recover pλ and pΣ using the expressions in (5.8.2) and we update the parameter
ν by maximizing the marginal log-likelihood function for y, that is,

pνpk�1q � arg max
ν

ņ

i�1
log fpyi | pµpk�1q, pΣpk�1q, pλpk�1q; νpkqq.

Algorithm is iterated until a suitable convergence rule is satisfied, i.e., |`ppθpk�1q |
Yq{`ppθpkq | Yq � 1|   ε ,for ε small enough.
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