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ABSTRACT
Generative models based on latent random variables are a
popular tool for time series forecasting. Generative models
include the Hidden Markov Model, the Recurrent Neural Net-
work and the Stochastic Recurrent Neural Network. In this
paper, we exploit the Pairwise Markov Models, a generaliza-
tion of Hidden Markov models, as generative models. We
first show that the previous generative models are a particular
instance of Pairwise Markov models. Next, we also show that
they can potentially model a large class of distributions for
given observations. In particular, we analyze the particular
linear and Gaussian case, where it is possible to characterize
the modeling power of these generative models. Finally, we
present a parameter estimation algorithm for general Pairwise
Markov Models based on Bayesian variational approaches.
Simulations are presented and support our statements.

Index Terms— Generative Models; Variational Infer-
ence; Time series; Recurrent Neural Networks; Pairwise
Markov Models.

1. INTRODUCTION

Let x ∈ Rd be a random variable (r.v.) and xT = (x0, x1, . . . ,
xT ) a sequence of r.v. of length T + 1, for all T ≥ 0. The
(unknown) distribution of xT is noted p(xT ). As far as nota-
tions are concerned, we do not distinguish random variables
and their realizations.

1.1. Time series modelling

Time series modelling appears in numerous problems in sta-
tistical signal processing [1, 2] such as prediction [3], econo-
metrics [4] or speech recognition [5]. In this paper, we focus
on a generative model approach which consists of different
steps. First, the observations xT are described by a genera-
tive models, i.e. a distribution pθ(xT ) which models the un-
known distribution p(xT ); next the parameter θ is estimated
from a realization xT . In particular, the maximum likelihood
estimate is a popular estimate due to its asymptotic properties
[6, 7]. Finally, when the parameter θ is known, the prediction
of future observations can be deduced from the distribution
pθ(xT+1, . . . , xT+τ |xT ). The practical choice of a model pθ
should take into account these modelling and computational
constraints.

Among popular generative models, we are interested in
those based on latent r.v. (ht)t≥0, where ht ∈ Rm. These
models are defined by a joint distribution pθ(xT ,hT ) from
which the distribution of the observation reads pθ(xT ) =∫
pθ(xT ,hT )dhT . These models include the Hidden Markov

Model (HMM) [5, 8], the Recurrent Neural Network (RNN)
[9, 10], and the Stochastic RNN (SRNN) [11, 12]. In this
paper, we start by including all these models into a com-
mon probabilistic model called the Pairwise Markov Model
(PMM) [13]. This model has been introduced in a Bayesian
framework where the objective is to estimate the latent pro-
cess from the observed one [14, 15, 16, 17]. Next, i) we fo-
cus on the generative aspect of the PMM, and show that this
model pθ(.) is potentially relevant to take into account a (un-
konwn) complex distribution of the observations p(.); ii) we
show that the parameters of PMMs can be estimated with a
Bayesian variational approach [18]; iii) we compare the PMM
with classical generative models on simulations.

1.2. Generative models based on latent variables

Before giving technical details about our work, we first review
the popular generative models introduced in this section.

1.2.1. HMM

A (continuous state) HMM is a model where the latent pro-
cess (ht)t≥0 is Markovian; moreover, given hT , the observa-
tions xT are independent and xt only depends on ht. For all
T , the distribution of (hT ,xT ) reads

pθ(hT ,xT ) = pθ(h0, x0)

T∏
t=1

pθ(xt|ht)pθ(ht|ht−1). (1)

Bayesian inference algorithms in such models are based on
the Kalman filter and its extensions, and also on sequential
Monte Carlo methods [19].

1.2.2. RNN

An RNN is a particular neural network which takes into ac-
count the sequential aspect of the data. Contrary to the HMM,
the latent variable ht is deterministically obtained given the
previous observation xt−1 and the previous latent variable
ht−1. Its expression relies on an activation function fθ, which



can be parametrized by a feed-forward neural network, for ex-
ample. As in the HMM, given hT , the observations xT are in-
dependent and xt only depends on ht. The generative models
is given by

ht = fθ(ht−1, xt−1), (2)
pθ(xt|x0:t−1) = pθ(xt|ht). (3)

1.2.3. SRNN

Finally, the SRNN is an extension of the RNN where the la-
tent variable ht becomes random, as in the HMM, but can
also depend on xt−1 given the past observations and the la-
tent variables. In other words,

pθ(xT ,hT ) =

T∏
t=1

pθ(xt|ht)pθ(ht|xt−1, ht−1). (4)

In fact, this general stochastic model includes both the HMM
and the RNN and has been studied in [20] in the linear and
Gaussian framework. Neural network architectures such as
the Stochastic Recurent network (STORN) [11] or the Varia-
tional RNN (VRNN) [12] are also particular SRNNs.

1.3. Scope of the paper

Even if the SRNN includes the HMM and the RNN, ob-
serve that (ht)t≥0 remains a Markovian process. Indeed,
starting from (4), it is easy to show that pθ(hT |hT−1) ∝∫
pθ(hT ,xT )dxT coincides with pθ(hT |hT−1).

Thus, the scope of this paper is to propose a generative
model in which the latent process in not necessarily Marko-
vian. Our model is based on the PMM which only relies on
the assumption that the pair (ht, xt)t≥0 is Markovian, with
transition p(ht, xt|ht−1, xt−1). The distribution of (hT ,xT )
associated to a PMM reads

pθ(h0, x0)

T∏
t=1

pθ(ht|ht−1, xt−1)pθ(xt|ht−1, xt−1, ht). (5)

The non-Markoviannity of (ht)t≥0 is explained via the intro-
duction of new dependencies between xt and (ht−1, xt−1).
Fig. 1 summarizes the different models presented until now.

The rest of this paper is organized as follows. In sec-
tion 2, we first measure the impact of model (5) as a gen-
erative model w.r.t. the SRNN (4). To that end, we study
the theoretical distributions pθ(xT ) in the linear and Gaussian
framework and show that the PMM can model a larger class
of generative distributions. Next, in section 3, we propose a
variational Bayesian approach to estimate the parameter θ of
general PMMs with a Maximum-Likelihood approach. This
approach is particularly suitable for high dimensional PMMs.
Finally, in section 4 we describe an example of generative
PMM and we compare it with other popular models on simu-
lations.

(a) HMM (b) RNN

(c) SRNN (d) PMM

Fig. 1. Generative models based on latent r.v.

2. THEORETICAL MOTIVATIONS

In this section, our objective is to build generative models
pθ(xT ) for scalar observations such that it coincides with a
Gaussian distribution p(xT ), for all T ≥ 0, which satisfies

p(xt) = N (xt; 0; 1), for all 0 ≤ t ≤ T (6)

(N (x;µ, σ2) denotes the Gaussian distribution with mean µ,
variance σ2 taken at point x). To that end, we focus on linear
and Gaussian PMM with ht ∈ R. Model (5) satisfies

pθ(h0, x0) = N
((

h0
x0

)
;

[
0
0

]
,

[
η γη
γη 1

])
(7)

pθ(ht|ht−1, xt−1) = N (ht; aht−1 + cxt−1, α), (8)
pθ(xt|ht−1:t, xt−1) = N (xt; bht + eht−1 +fxt−1, β), (9)

where θ = (a, b, c, e, f, α, β, η, γ). The linear and Gaussian
SRNN coincides with e = f = 0, γ = b, while the linear and
Gaussian HMM also satisfies c = 0.

A study in [20] has made a comparison between the lin-
ear and Gaussian HMM, RNN and SRNN which satisfy con-
straint (6). In particular, it has been shown that the linear and
Gaussian SRNN (e = f = 0, γ = b in (7)-(9)) is able to
model any centered Gaussian distribution with a geometric
Toeplitz covariance matrix,

p(xT ) = N (xT ;0; Σ), (10)
Σ(t, t+ k) = cov(xt, xt+k) = Ak−1B, (11)

for all T ≥ 0, t ≥ 0 and k ≥ 0. More precisely, Ak−1B
defines valid covariance sequence if−1 ≤ A ≤ 1 and A−1

2 ≤
B ≤ A+1

2 , and it has been shown that for a given (A,B)
satisfying this condition, it is always possible to find a set
of parameters θ = (a, b, c, α, β, η) such that pθ(xT ) satisfies
(10)-(11).



Now, we study the impact of the new parameters e, f and
γ which describe the PMM (7)-(9) w.r.t. the SRNN. We start
by adding a transition between ht−1 and xt, i.e. e 6= 0. We
then have the following original result.

Proposition 1 Let p(xT ) be a Gaussian distribution satisfy-
ing for all positive integers T, t, k

p(xT ) = N (xT ;0; Σ̃), (12)

cov(xt, xt+k) =

{
Ãk if k is even

Ãk−1B̃ otherwise. , (13)

such that Ã and B̃ defines a valid covariance matrix. Then
for such (Ã, B̃), it exists a set of parameters θ = (a, b, c, e 6=
0, α, β, η) such that pθ(xT ) = p(xT ).

In other words, this proposition shows that the linear
and Gaussian PMM can model some Gaussian distributions
which cannot be modeled by the previous linear and Gaussian
SRNN. The proof is omitted due to lack of space but proceeds
as follows. First, the covariance matrix of pθ(xT ) satisfies
(13) with Ã =

√
ce and B̃ = b

(
c(1 − b2η) + eη

)
. Next, we

identify all the valid covariance matrices satisfying (13). This
step relies on the Caratheodory theorem [21] from which we
deduce the constraints −1 ≤ Ã ≤ 1, − Ã

2+1
2 ≤ B̃ ≤ Ã2+1

2 .
Finally, we show that for any Ã and B̃ satisfying these con-
straints, it is possible to identify a set of parameters θ such
that pθ(xT ) = p(xT ).

Let us finally consider the full PMM case, where all the
parameters are considered. This case is more difficult to ana-
lyze, but we have the following intermediate result

Proposition 2 Let pθ(ht, xt|ht−1, xt−1) be a linear and
Gaussian PMM described by (7)-(9) and satisfying (6). Then
the associated generative distribution reads, for all positive
integers T, t, k,

pθ(xT ) = N (xT ;0; Σ), (14)

cov(xt, xt+k) = A
k
(B +

1

2
)− Ck(B − 1

2
), (15)

where

A =
a+ bc+ f −K

2
, (16)

B =
a− bc− f − 2γη(ab+ e)

2K
, (17)

C =
a+ bc+ f +K

2
, (18)

K =
√

(a+ bc+ f)2 − 4(af − ce) (19)

and where the following constraints are satisfied :

γη = bη + (ae+ afγ + ceγ) + fc, (20)

0 ≤ (1− a2 − 2acγ)η − c2, (21)

0 ≤ 1− b2η − 2bη(γ − b)− eη(e+ 2fγ)− f2. (22)

The proof is omitted due to lack of space. This results gener-
alizes the form of the previous covariance matrices as it can
be checked by setting e = f = 0 or e = 0, for example. At
this point of our work, we have not identified if the full linear
and Gaussian PMM pθ(x) can model any Gaussian distribu-
tion with a covariance matrix satisfying (15), except in some
particular cases (see e.g. Proposition 1).

3. VARIATIONAL INFERENCE FOR PMMS

The previous section has illustrated the modelling power of
PMM in a linear and Gaussian framework. We now focus on
general PMMs (i.e. non linear and/or non Gaussian PMMs)
and we look for estimating the parameter θ from a realiza-
tion xT . Here, we focus on variational Bayesian approaches
which are particularly suitable for high dimensional mod-
els [18]. Let us first review the rationale of the variational
Bayesian estimation.

3.1. Variational Bayesian estimation

If pθ(xT ) aims at the distribution of the observations, maxi-
mum likelihood estimation consists in computing the estimate
θ̂ which maximizes pθ(xT ). A direct maximization of pθ(xT )
is not always possible, particularly in models with latent vari-
ables where the likelihood pθ(xT ) =

∫
pθ(xT ,hT )dhT may

be not computable . However, let us remark that for any “vari-
ational” distribution qφ(hT |xT ),

log(pθ(xT )) ≥ Q(θ, qφ), (23)

Q(θ, qφ) = −
∫

log

(
qφ(hT |xT )

pθ(xT ,hT )

)
qφ(hT |xT )dhT . (24)

The exact alternate maximization of Q(θ, qφ) w.r.t. θ and
qφ coincides with the Expectation-Maximisation (EM) algo-
rithm [22] but relies on the computation of pθ(hT |xT ). In the
general case, a class of variational distributions qφ(hT |xT )
parametrized by φ is introduced such that the Evidencial
Lower Bound (ELBO) Q(θ, φ) is computable or can be ap-
proximately and efficiently maximized [23]. A simple way
to approximate Q(θ, φ) is to choose a parametric distribution
qφ(hT |xT ) such that a sample h

(i)
T ∼ q(hT |xT ) can be writ-

ten as a differentiable function of φ [24]. This technique is
called the reparametrization trick.

3.2. Variational inference for PMMs

In the case of the PMM, remember that p(xT ,hT ) coincides
with (5). Thus, the ELBO in (24) reads

Q(θ, φ) = −
∫

log

(
qφ(h0|xT )

p(x0, h0)

)
qφ(h0|xT )dhT

−
T∑
t=1

∫
log

(
qφ(ht|ht−1,xT )

pθ(ht, xt|ht−1, xt−1)

)
qφ(ht|xT )dht (25)

Since pθ(ht|ht−1,xT ) is generally not computable in PMM
models (except in the linear and Gaussian case (7)-(9) where



it is possible to derive a Kalman smoother) we choose a vari-
ational distribution which satisfies

qφ(ht|ht−1,xT ) = qφ(ht|ht−1,xt), (26)

and from which a sample can be obtained with the reparametriza-
tion trick. An example of such a variational distribution is

qφ(ht|ht−1,xt) = N (ht; fφ(ht−1,xt); diag(gφ(ht−1,xt))),
(27)

where fφ and gφ are parametrized and differentiable functions
of φ, diag(.) denotes the diagonal matrix deduced from the
values of gφ and where a sample h(i)t ∼ qφ(ht|ht−1,xt) can
be obtained as

h
(i)
t = fφ(ht−1,xt) + (diag(gφ(ht−1,xt))

1
2 × ε(i), (28)

with ε(i) ∼ N (0, I). Note that for this choice of vari-
ational distribution, the components ht are independently
given (ht−1,xt) in the regard of the variational distribution
qφ.

Thus, by sampling h
(i)
T ∼ q(h0|x0)×

∏T
t=1 qφ(ht|ht−1,xt),

for all i, 1 ≤ i ≤ N , Q(θ, φ) in (25) can be approximated by
(up to the term associated to t = 0 that we omit for clarity)

Q̂(θ, φ) = −
N∑
i=1

T∑
t=1

log

(
qφ(h

(i)
t |h

(i)
t−1,xt)

pθ(h
(i)
t , xt|h(i)t−1,xt−1)

)
(29)

and optimized with a gradient ascent algorithm w.r.t. (θ, φ).

4. SIMULATIONS

4.1. Deep generative PMM model

In this section, we use a similar model as the VRNN [12],
which is a particular instance of SRNN. The model is as fol-
lows, we set ht = (zt, ht) and p(ht, xt|ht−1, xt−1) in (5) is
described with the following set of equations:

pθ(ht,xt|ht−1, xt−1)=pθ(xt|ht−1:t,xt−1)pθ(ht|ht−1,xt−1),

zt = f(ψx(xt−1), ψh(ht−1), zt−1), (30)

pθ(ht|zt−1:t,ht−1, xt−1)=N(ht;µph,t; diag(σph,t)), (31)

pθ(xt|ht−1:t, xt−1, zt−1:t) = Ber(xt; ρx,t), (32)

where f is a deterministic non-linear function describring a
RNN cell, [µ·,t, σ·,t] and ρx,t denote the parameters of the
Gaussian and Bernoulli distributions respectively, which can
be produced by any highly flexible function ψ(·) such as neu-
ral networks,

[µph,t, σph,t] = ψph(zt), (33)

ρx,t = ψpx(ψh(ht), ψh1
(ht−1), ψxp

(xt−1), zt, zt−1). (34)

The variational distribution qφ is given by

qφ(ht|ht−1,xt) = N (ht;µqh,t; diag(σqh,t)), (35)
[µqh,t, σqh,t] = ψqh(ψx(xt), zt). (36)

4.2. Results

In the experiments, we used the MNIST data set [25] which
contains 60000 (resp. 10000) train (resp. test) 28× 28 binary
images. An observation xt consists of a column of the image
(dim(xt) = 28), and the length of a sequence is T = 28.
Each model was trained with stochastic gradient descend on
the negative evidence lower bound using the Adam optimizer
[26] with a learning rate of 0.001 and a batch size of 512.

We compare the VRNN with different sub classes of
PMM models. The PMM-III is the most general model de-
fined by (30)-(36), where ψh1

, ψh, ψx, ψxp
are taken as the

identity function. For the PMM-II, we have ψh1
= 0; for the

PMM-I, ψh1
= 0 and (34) does not depend on zt−1; finally,

the VRNN satisfies ψh1
= ψxp = 0 and (34) does not depend

on zt−1. For each model, ψph, ψqh, ψpx have two hidden
layers using rectified linear units, with appropriate outputs
(linear, softplus and sigmoid). We consider two configura-
tions, the first one has 100 hidden units for each hidden layer.
The second one has 100 (resp. 95, 79, 78) hidden units for the
VRNN (resp. PMM-I, PMM-II, PMM-III) in order to have a
similar number of parameters.

Model Config. 1 Config. 2
ELBO approx. LL ELBO approx. LL

VRNN -67,248 -64,760 -67,222 -64,762
PMM-I -66,544 -64,076 -67,322 -64,698
PMM-II -66,784 -64,201 -66,815 -64,255
PMM-III -66,518 -63,876 -67,513 -64,876

Table 1. Average evidence lower bound (ELBO) and approx-
imated log-likelihood (approx. LL) of the observations on the
test set with two different configurations.

The performance of the models is evaluated in terms of
the ELBO and approximated log-likelihood of the observa-
tions of the test data set based on a particle filtering using 100
samples [27]. In Table 1, we report the average ELBO and
the average approximated log-likelihood (approx. LL) on the
test set assigned by our models. The results with the Config.1
(resp. Config. 2) show that PMM-III (resp. PMM-II) has
the higher average ELBO and average approx LL, in general,
higher is better. As we see, the PMM performs better than
VRNN. Due to lack of space, additional results on other data
set are not presented here.

5. CONCLUSIONS

In this paper, we have included popular generative models for
times series modelling into a common model, the PMM. We
have shown that this model may be more relevant to model
complex distribution w.r.t. the SRNN, and the increase of
modelling power has been measured in the linear and Gaus-
sian case. For general PMM models, a parameter estimation
algorithm has been provided.
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