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Abstract

In this work, the local decomposition of pressure in the Navier-Stokes equations is
dynamically refined to prove that a relevant critical energy of a Leray-type solution inside a
backward paraboloid—regardless of its aperture—is controlled near the vertex by a critical
behavior confined to a neighborhood of the paraboloid’s boundary. This neighborhood
excludes the interior near the vertex and remains separated from the temporal profile of the
vertex, except at the vertex itself. Moreover, we present a refined scaling-invariant regularity
result.
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1 Introduction

At the heart of fluid mechanics lie the incompressible Navier–Stokes equations:

∂tv −∆v + v · ∇v +∇p = 0, ∇ · v = 0, (1.1)

which describe the motion of a viscous incompressible fluid over a time interval (T∗, T
∗). Here,

v : R3 × (T∗, T
∗) → R3 denotes the fluid velocity field, and p : R3 × (T∗, T

∗) → R is a scalar
function whose gradient accounts for pressure forces within the system. The divergence-free
condition ∇ · v = 0 models the incompressibility constraint, and the pressure term acts as a
Lagrange multiplier that enforces this constraint throughout the evolution. In fact, under very
weak conditions, p is uniquely determined by the equation −∆p = ∂i∂j(uiuj), see [2, 19, 36].
The dynamics governed by (1.1) involve a delicate interplay between the nonlinear transport
term v ·∇v and the viscous dissipation term −∆v. This competition creates significant analytical
challenges, especially in understanding whether smooth initial data can evolve into singularities
in finite time.

The mathematical foundation for studying these equations was laid by the seminal work of
Leray [28] in 1934, which pioneered the use of weak solutions and distributional frameworks for
nonlinear partial differential equations.

Definition 1 (Leray-type solution1). Let (T∗, T
∗) be a non-empty time interval, let v ∈ L2

loc(R3×
(T∗, T

∗)) be a vector field, and let p be a distribution on R3 × (T∗, T
∗). We say that the pair

(v, p) is a Leray-type solution to the Navier–Stokes problem if the following conditions hold:

1We remark that we will include as a hypothesis in our results that v ∈ C∞((−c, T );C∞(B(b))) for some fixed
b, c > 0 and for all T ∈ (−c, 0), in order to analyze a potential singularity at (0, 0).
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• For every test function φ ∈ C∞
0 (R3 × (T∗, T

∗)) and every j ∈ {1, 2, 3},

−
∫
R3×(T∗,T ∗)

vj ∂tφdxdt =

∫
R3×(T∗,T ∗)

vj ∆φdxdt

+
3∑

i=1

∫
R3×(T∗,T ∗)

vivj ∂iφdxdt+ ⟨p, ∂jφ⟩ ,

and
3∑

i=1

∫
R3×(T∗,T ∗)

vi ∂iφdxdt = 0.

• p ∈ L1
loc(R3 × (T∗, T

∗)) and for every R > 0,

∫ T ∗

T∗

(∫
|x|≤R

(
|v(x, t)|3 + |p(x, t)|3/2

)
dx

)4/3

dt < ∞.

Leray found global weak solutions to the Navier–Stokes equations for initial data in the space
L2, satisfying the energy inequality

∥v(t)∥2L2 + 2

∫ t

0
∥∇v(s)∥2L2 ds ≤ ∥v(0)∥2L2 .

In particular, using interpolation and continuity of the Riesz transforms, one obtains that for
every s ∈ [2, 6] and r such that 2

r + 3
s = 3

2 , the solutions constructed by Leray satisfy the
integrability condition ∫ t

0

(∫
R3

(
|v|s + |p|

s
2

)
dx

) r
s

dτ < ∞.

While the existence of global Leray-type solutions has been widely established (see for instance
[8, 17, 18, 27]), the questions of uniqueness and regularity of such solutions remain open.

From a functional analytic perspective, potential singular behaviors are expected to occur
in spaces where the transport effect—which may induce singularities—matches or dominates
the regularizing effect of the viscous diffusion. One natural way to identify such spaces is to
consider those that are invariant under the natural scaling of the equations. Observe that the
Navier–Stokes equations satisfy the following scaling invariance: for any λ > 0, if (v, p) is a
solution of (1.1), then the rescaled pair (vλ, pλ) defined by

vλ(t, x) := λ v(λ2t, λx), pλ(t, x) := λ2 p(λ2t, λx)

is also a solution.
The norms appearing in Leray’s energy inequality are not scaling-invariant; in other words, they
are not critical, but instead exhibit a less favorable, so-called supercritical, behavior under this
scaling.

One of the major achievements in the critical regime is the well-posedness result for small
initial data in the critical space BMO−1, due to Koch and Tataru [23]; see also [3, 21, 22],
and [12, 26] for some extensions. The BMO−1 norm is defined by

∥v∥BMO−1 := sup
x∈R3, R>0

(
|B(x,R)|−1

∫
B(x,R)

∫ R2

0
|w|2 dt dy

)1/2

,

where w is the solution to the heat equation wt −∆w = 0 with initial data v.
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Complementarily, in a remarkable recent result, Coiculescu and Palasek [13] present a proof of
the non-uniqueness of smooth solutions to the incompressible Navier–Stokes equations on the
torus with an explicit large multi-scale initial datum belonging to BMO−1, using tools from
convex integration (see [9] for a survey on convex integration) and from solution completion via
perturbations (see [11]). Roughly speaking, Coiculescu and Palasek combine the regularizing
and transport effects inductively to construct two different solutions for the same initial data.
The required adjustments are made possible by relying on the notion of Mikado flows (see [15])
as a foundational building block and a Nash-type decomposition for symmetric positive-definite
matrices (see [29]). This groundbreaking result stands in sharp contrast to the still unresolved
question of regularity in large critical spaces without any smallness assumptions.

We recall that foundational work on regularity for the Navier–Stokes equations includes
the theory developed by Caffarelli, Kohn, and Nirenberg [10], where the smallness of certain
critical local quantities is shown to be sufficient to ensure regularity. In recent years, the
theory of regularity for the Navier–Stokes equations has developed along several directions. One
direction focuses on quantifying the blow-up of critical norms in the presence of hypothetical
singularities—an approach grounded in backward uniqueness results initiated by Tao in [34]
and further developed in works such as [5] and [24]. This framework has led to improvements
of celebrated results like that of Escauriaza, Seregin, and Šverák in [32] and the result in [16],
where it was essentially shown that in the presence of a singularity at time T ∗,

lim
t↑T ∗

∥v(·, t)∥L3(R3) = ∞.

It is also worth mentioning that other approaches to the study of regularity for weak solutions
include geometric characterizations of blow-up (see, for example, [14, 25, 33]) and the analysis
of critical spaces with anisotropic integrability across variables [35].

Another line of research aims to identify the scales that drive singular behavior, thereby
refining regularity criteria. In this context, we build upon the ideas of Neustupa [30, 31],
which were extended in [4]. Neustupa essentially proved that for r ∈ [3,+∞) and s ∈ (3, 9]
satisfying the scaling relation 2

r +
3
s = 1, the following condition written in terms of the function

θa(s) =
√
−as (posed on the exterior of a paraboloid),∫ 0

−1

(∫
B(

√
a)\B(θa(s))

|v(x, t)|s dx

) r
s

dt

 1
r

< ∞

ensures regularity up to the point (0, 0), where the opening parameter a ranges in the interval
a ∈ (0, 4λS(B(1))), and λS(B(1)) > π2 denotes the first eigenvalue of the Dirichlet–Stokes
operator on B(1).

Continuing the investigation conducted in [4] to address the endpoint critical case for the
regularity problem of the three dimensional Navier-Stokes equations. We aim to relax the
following hypothesis,

limsup
s→0+

∥v(·, s)∥L3(B(
√
a)\B(θa(s))) < ∞,

which was imposed in [4, Theorem A] on the exterior of the paraboloid

P√
a(−1) :=

⋃
s∈(−1,0)

{x : |x| = θa(s)} × {s},

with a small aperture
√
a ≈ 1, to propagate regularity up to (0, 0).

To achieve this, we will make a dynamic partition of spatial scales and rely on L∞
t L3,∞ behavior

of v in a neighborhood of the paraboloid’s boundary with aperture
√
aN with N ≫ 1, this

neighborhood remains separated from the temporal profile.
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x

t
x =

√
a

Parabolic scales of order
√
aN : |x| =

√
−atN , N >> 1

Parabolic scales of order
√
a: |x| =

√
−at,

√
a ≈ 1

Figure 1: Parabolic scales

The central technical contribution of this work is a novel time-dependent decomposition of the
pressure used in the proof, see Section 3.1. Notably, this decomposition does not follow the
natural scaling of the equations (part A of Theorem 1), except when a weak critical condition
on the pressure is imposed (part B of Theorem 1). In both cases, the hypothesis are established
on a small neighborhood remaining separated from the temporal profile. We hope this approach
may find further applications in the regularity theory of the Navier–Stokes equations.
For the sake of completeness, we include here the straightforward yet somewhat cumbersome
details needed to cover the full range of paraboloid opening parameter a, within the complete
range a ∈ (0, 4λS(B(1))), as originally considered in [30], but not addressed in [4].

Before introducing the context and presenting our contributions, let us clarify the notations
used throughout this text.

1.1 Notations

We denote by B(r) the ball centered at the origin with radius r > 0 and for a > 0, θa(s) =
√
−as

where s ≤ 0. Throughout this work, C will represent a positive universal constant, which
may vary between different expressions or lines. Importantly, C remains independent of the
parameters a, γ, or N . When a constant depends on specific parameters b1, . . . , bk, we denote
it by Cb1,...,bk . To avoid renaming a list of expressions that will be analyzed individually, some
constants will be distinguished by superscripts to facilitate references in subsequent calculations,
such as CII and Cp2 .

Key ingredients for propagating regularity from the exterior of a paraboloid with small
aperture in the endpoint case, as discussed in [4, Theorem A], include the introduction of a
second aperture parameter N into the critical energy balance (3.2) and, along a wider paraboloid,
controlling the 2critical quantities f and g(·, 0), given by:

f(s) :=
1

θa(s)
∥ΨNv(·, s)∥2L2 , gγ(s, t) :=

∫ t

s

θa(τ)
γ−1

θa(s)γ+1
f(τ) dτ, γ > −1, (1.2)

where we consider ΨN (x, t) := φN

(
x

θa(t)

)
, and φN ∈ C∞

c (R3) is a smooth, compactly supported,

radially decreasing and positive function fulfilling φN (x) = 1 within the ball B(N), its support
satisfying suppφN ⊂ B(N + 1), and its gradient being bounded ∥∇φN∥L∞ ≲ 1 uniformly on N.
Consequently, ΨN (x, t) inherits these properties, which allows us to get for τ < 0,

∂t
(
Ψ2

N (x, ·)
)
(τ) ≤ 0,

supp(ΨN (·, τ)) ⊂ B ( (N + 1) θa(τ) ) and

2Criticality with respect to the scaling invariance for the Navier-Stokes equations is explained in Appendix A.
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supp(∇ΨN (·, τ)) ⊂ B ( (N + 1) θa(τ) ) \B (N (θa(τ)) ) . (1.3)

Thus, the integration domain of gγ(s) := gγ(s, 0) is contained within the region inside the
paraboloid (with aperture

√
a(N + 1)),⋃

τ∈(−s,0)

B ((N + 1)θa(τ)) × {τ}.

Reinjecting the bounds for f and gγ into the critical energy balance (3.2), we will obtain a bound
for hγ(s) := hγ(s, 0), defined by:

hγ(s, t) :=

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv(·, τ))∥2L2 dτ, γ > −1. (1.4)

2 Main results

Our main contribution is the following:

Theorem 1. Let 3 a, b, c > 0 with a ∈ (0, 4λS(B(1))) and let M ≥ 1. Let (v, p) be a Leray-type so-
lution4 to the Navier-Stokes equations (1.1) in R3×(−c, 0), such that v ∈ C∞((−c, T );C∞(B(b)))
for all T ∈ (−c, 0). Then,

A) there exists N0 > 0 such that for all N ≥ N0, if

ess sup
s∈(−c,0)

1

Nθa(s)

∫
B(b) ∩ B((N+1)θa(s))\B(θa(s))

|v(x, s)|2 dy ≤ CM, (2.1)

and
ess sup
s∈(−c,0)

∥v(·, s)∥L3,∞(B(b) ∩ B((N+3)θa(s)1/2)\B(N
2
θa(s)))

≤ M (2.2)

then the (N -dependent) scaling invariant function f defined in (1.2) is bounded. Moreover,
for γ > −1, the (N -dependent) scaling invariant functions gγ = gγ(·, 0) and hγ = hγ(·, 0)
(defined in (1.2) and (1.4)) are also bounded.

B) there exists N0 > 0 such that for all N ≥ N0, if

ess sup
s∈(−c,0)

1

Nθa(s)

∫
B(b) ∩ B((2N+2)θa(s))\B(θa(s))

|v(x, s)|2 dy ≤ CM, (2.3)

ess sup
s∈(−c,0)

∥v(·, s)∥L3,∞(B(b) ∩ B((2N+2)θa(s))\B(N
2
θa(s)))

≤ M (2.4)

and

ess sup
s∈(−c,0)

1

Nθa(s)

∫
B(b) ∩ B((2N+2)θa(s))\B((2N+1)θa(s))

|p(x, s)| dy ≤ CM, (2.5)

then the functions f , gγ and hγ are bounded, for γ > −1, and more precisely

1

Nθa(s)

∫
B( b

16
)
|ΨNv(x, s)|2dx ≤ Ca,γ,M ,

3Our hypotheses in part A are not scaling-invariant due to (2.2), as the set B((N + 3)θa(s)
1/2) \B(N0

2
θa(s))

is not parabolic. Thus, to address the general case, we introduce the parameters a, b, c, where a determines the
aperture of the paraboloid, b specifies the spatial localization of the hypotheses, and c defines the regularity
interval of the solution v.

4See Definition 1.
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1

N

∫ 0

s

θa(τ)
γ−2

θa(s)γ+1

∫
B( b

16
)
|ΨNv(x, τ)|2dx dτ ≤ Ca,γ,M

and
1

N

∫ 0

s

θa(τ)
γ

θa(s)γ+1

∫
B( b

16
)
|∇(ΨNv(·, τ))|2(x)dx dτ ≤ Ca,γ,M ,

where Ca,γ,M does not depend on N and

s ∈ (− c

2
, 0) ∩ (− 1

2a
, 0) ∩

(
− b2

a42(2N + 2)2
, 0

)
. (2.6)

t

|x| = θa(t)
|x| = N

2

√
−at = N

2 θa(t)

|x| = (N + 3)(−at)1/4 = (N + 3)θa(t)
1
2

Figure 2: Non scaling invariant region in Theorem 1 taking a = 1 and N = 6

Corollary 1. Let a, b, c > 0. Let (v, p) be a Leray-type solution to the Navier-Stokes equations
(1.1) in R3 × (−c, 0), such that v ∈ C∞((−c, T );C∞(B(b))) for all T ∈ (−c, 0). For N > 0 let
us assume the (N-dependent) function f is bounded. Then, for γ > −1, the (N-dependent)
functions gγ = gγ(·, 0) and hγ = hγ(·, 0) are bounded. Moreover,

ess sup
s∈(−c,0)

1

θa(s)2

∫ 0

s

∫
B(b)∩B(Nθa(s))

|v(x, τ)|3dxdτ < CN ,

and thus we can extract a sequence of times tk ↑ 0 such that
∫
B(Nθa(tk))

|v(·, tk)|3 ≤ CN .

Our strong localized version of the critical energy bound inside a paraboloid allows us to
establish a more general statement for [4, Theorem A].

Corollary 2. Assume the parameters a, b, c,M,N0, N and the solution (v, p) of (1.1) satisfy
the same conditions as in Theorem 1 part A, or the same conditions as in part B. Then, if v
fulfills the following bound:

ess sup
s∈(−c,0)

1

θa(s)2

∫ 0

s

∫
B(b)\B(Nθa(s))

|v(x, τ)|3dxdτ < ∞, (2.7)

we conclude (0, 0) is a regular point.

2.1 Structure of the paper

Section 3 recalls the energy balance in the interior of paraboloids and local estimates for the
pressure terms (with the new dynamic decomposition).
To bound the critical quantities f , gγ and hγ

5 through the energy balance, as in [4] we perform
a spatially localized decomposition of the pressure. We will describe our technical modification
compared to the approach in [4] in Section 3.1.

We remark that the authors in [4] observed that applying a parabolic cut-off for the spatial
localization of the pressure very close to the aperture

√
a (and hence far from the aperture

√
aN)

5See (1.2) and (1.4)
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allows them to absorb the non-local effect of the pressure and bound a local critical energy using
a Gronwall type inequality, following the ideas in [30]. For this reason, the cut-off is applied
very close to the aperture

√
a.

In Section 3.1 and Section 3.2, we will prove that, to bound the key term in the balance∫ t

s

θa(τ)
γ−1

θa(s)γ+1

∫
supp(∇ΨN (·,τ))

|pvΨN | dx dτ, (2.8)

it is more effective to employ a dynamic localization and consider a parabolic cut-off for the
localization that optimally absorbs the non-local effect of the pressure.

Section 4 is dedicated to proving Theorem 1 part A. The restriction for a arises in Section
4.2 from the need to gain critical L2 information at the inner scales (within the paraboloid of
aperture

√
aN) through critical L2 information on the gradient of the fluid at those scales (see

Section 4.1). The use of a Poincaré inequality to achieve this imposes a bound on the aperture
parameter a. Consequently, we are compelled to assume information at intermediate scales
(between

√
a and

√
aN). This critical information is L2 in nature for the velocity, and thus it is

significantly weaker than the information assumed in [4, Theorem A].
In Section 5, using a recalibration of the dynamic decomposition, we prove Theorem 1 part

B. Finally, Section 6 concludes the proof of Corollary 1 and 2.

3 Local energy in the interior of paraboloids

Let us briefly recall the method for obtaining the energy balance on the paraboloid. Consider
N > 0 and s satisfying

s ∈ (− c

2
, 0) ∩ (− 1

2a
, 0) ∩

(
− b4

a44(N + 3)4
, 0

)
=: Ia,b,c,N , (3.1)

so that for τ ∈ (s, 0),

B((N + 1)θa(τ)) ⊂ B((N + 3)θa(τ)
1/2) ⊂ B(

b

4
).

We test the Navier-Stokes equations (1.1) with 6

θγa(τ)Ψ
2
N (x, τ)v(x, τ), τ < 0,

and we integrate over R3 × (s, t), where t ∈ (s, 0). Following [4], this leads to:

θa(t)
γ

θa(s)γ+1
∥ΨNv(·, t)∥2L2 +

aγ

2

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv∥2L2 dτ + 2

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv)∥2L2 dτ

−
∫ t

s

θa(τ)
γ−2

θa(s)γ+1

∫
R3

(
1

2
ax · ∇Ψ2

N

)
|v|2 dx dτ

=
1

θa(s)
∥ΨNv(·, s)∥2L2 +

∫ t

s

θa(τ)
γ

θa(s)γ+1

∫
R3

[
2|∇ΨN |2|v|2 + (|v|2 + 2p)(v · ∇Ψ2

N )
]
dx dτ. (3.2)

Without extra assumptions on 7 f , we need to assume γ > 0 to give sense to the energy terms
on the left hand side. In addition to the observations in [4], we note that the term

−
∫ t

s

θa(τ)
γ−2

θa(s)γ+1

∫
R3

(
1

2
ax · ∇Ψ2

N

)
|v|2 dx dτ, (3.3)

6ΨN is defined in (1.2) together with f and gγ .
7If we assume f to be bounded (which will be the case later in Section 4.5), the terms on the right-hand side

of (3.2) are well-defined for γ > −1, as we will see in Section 3.2.
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placed on the left-hand side is positive because

0 ≥ ∂t
(
Ψ2

N (x, ·)
)
(τ) = 2ΨN (x, τ)∇φN

(
x

θa(τ)

)
·
(

a

2 θa(τ)3
x

)
=

a

2
θa(τ)

−22ΨN∇ΨN · x

= θa(τ)
−2 1

2
ax · ∇Ψ2

N .

Thus, we do not need to control (3.3). While this term is not particularly challenging to handle,
we prefer to focus our study on the key terms.

Note that (3.2) can be expressed in terms of f and gγ , as defined in (1.2). Moreover, the
more subtle quantity f can be expressed in terms of gγ in the following way:

f(s) = a
(γ + 1)

2
gγ(s, t)− θa(s)

2∂gγ
∂s

(s, t). (3.4)

To verify this, we simply calculate the s-derivative of gγ(·, t),

∂gγ
∂s

(s, t) = a(γ + 1)θa(s)
−(γ+3)

∫ t

s
θa(τ)

γ−2∥ΨNv(·, τ)∥2L2 dτ − θa(s)
−(γ+1)θa(s)

γ−1f(s)

= θa(s)
−2

[
a
(γ + 1)

2
gγ(s, t)− f(s)

]
.

Thus, although it may not initially be clear how to argue using Gronwall’s inequality for a bound
on the energy appearing in (3.2), Neustupa demonstrates in 8 [30] that one approach is to seek
a differential inequality of the form θa(s)

2∂sgγ(s, t) +Agγ(s, t) ≤ C, with A > 0. We will revisit
this argument after bounding the terms in the energy balance.

3.1 Dynamic Decomposition of the Pressure

The key idea of the proof is to introduce a dynamic localization adapted to both the term (2.8)
and the specific context. For instance, in Theorem 1 Part A, we work in the setting of Leray-type
solutions, while in Part B, an additional critical condition on the pressure provides a more
favorable framework. This allows us to apply a different, parabolic-type localization tailored to
the setting of Part B.
For Part A, we fix the dynamic localization as follows:

ηN (x, τ) = φN+2

(
x

θa(τ)1/2

)
.

Then, we have

supp(∇ηN (·, τ)) ⊂ B
(
(N + 3)θa(τ)

1/2
)
\B

(
(N + 2)θa(τ)

1/2
)

(3.5)

and the following bounds hold: |∇ηN | ≲ C
θa(t)1/2

and |∇2ηN | ≲ C
θa(t)

.

Then, using the identity

ηN (x, τ)p(x, τ) = − 1

4π

∫
R3

1

|x− y|
[∆(ηNp)](y, τ) dy,

the fact that ∆p = −∂i∂j(vivj), and some standard computations one can verify the pressure
decomposition

ηN (x)p(x, τ) := p1(x, τ) + p2(x, τ) + p3(x, τ), (3.6)

8Neustupa works with renormalized variables in the non endpoint critical case with γ = 1/3, without parameters
M and N .
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t

|x| = (N + 3)(−at)1/4 = (N + 3)θa(t)
1
2

|x| = N
2

√
−at = N

2 θa(t)

Figure 3: Regions in dynamic decomposition with a = 1 and N = 6

where

p1(x, τ) :=
1

4π

∫
B((N

2
+1))θa(τ))

∂2

∂yi∂yj

(
1

|x− y|

)
[ηNvivj ](y, τ) dy,

p2(x, τ) :=
1

4π

∫
B((N+3)θa(τ)1/2)\B((N

2
+1))θa(τ))

∂2

∂yi∂yj

(
1

|x− y|

)
[ηNvivj ](y, τ) dy

and

p3(x, τ) :=
1

2π

∫
supp(∇ηN (·,τ))

xi − yi
|x− y|3

(
∂ηN
∂yj

vivj

)
(y, τ) dy

+
1

4π

∫
supp(∇ηN (·,τ))

1

|x− y|

(
∂2ηN
∂yi∂yj

vivj

)
(y, τ) dy

+
1

2π

∫
supp(∇ηN (·,τ))

xi − yi
|x− y|3

(
∂ηN
∂yj

p

)
(y, τ) dy

+
1

4π

∫
supp(∇ηN (·,τ))

1

|x− y|
(∆ηNp)(y, τ) dy.

In the part p1, from (1.3) we observe that

dist
(
supp(∇ΨN (·, τ)), B((

N

2
+ 1)θa(τ))

)
≥ (

N

2
− 1)θa(τ), (3.7)

which immediately implies that for x ∈ supp(∇ΨN (·, τ)),

|p1(x, τ)| ≤
C

N3θa(τ)3

∫
B(N

2
θa(τ))

|v(y, τ)|2 dy. (3.8)

For p3, we observe that for τ ∈
(
− 1

4a , 0
)
(and hence θa(τ) <

1
2),

dist
(
supp(∇ΨN (·, τ)), supp(∇ηN (·, τ))

)
≥ (N + 2)θa(τ)

1/2 − (N + 1)θa(τ)

≥ Cθa(τ)
1/2.

which implies that

|p3(x, τ)| ≤
C

θ(τ)
3
2

∫
supp(∇ηN (·,τ))

(
|v|2 + |p|

)
(y, τ) dy. (3.9)

For p2, the singularity arises, and we invoke Calderón-Zygmund’s theorem, which provides,

∥p2(·, τ)∥
L

3
2 ,∞(supp(∇ΨN (·,τ)))

≤ C∥v(·, τ)∥2
L3,∞(B((N+3)θa(τ)1/2)\B((N

2
+1)θa(τ)))

. (3.10)

We will verify that, with this decomposition, the rest of the regularity analysis proceeds correctly
essentially from the hypothesis (2.2),

ess sup
s∈(−c,0)

∥v(·, s)∥L3,∞(B(b) ∩ B((N+3)θa(s)1/2)\B(N
2
θa(s)))

≤ +∞.
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3.2 Boundedness of the right-hand side terms in the energy balance

We first identify the pressureless terms in the energy balance (3.2)

KI(s, t) =

∫ t

s

θa(τ)
γ

θa(s)γ+1

∫
R3

[
2|∇ΨN |2|v|2 + |v|2v · ∇Ψ2

N

]
dx dτ (3.11)

and the pressure term

KII(s, t) =

∫ t

s

θa(τ)
γ

θa(s)γ+1

∫
R3

2p(v · ∇Ψ2
N ) dx dτ. (3.12)

Observe that we can estimate the gradient of Ψ2
N since

∇Ψ2
N (x, τ) =

2

θa(τ)
ΨN (x, τ)∇φN

(
x

θa(τ)

)
.

Thus, using the notation from the pressure decomposition (3.6),

|KII(s, t)| ≤ C

∫ t

s

θa(τ)
γ−1

θa(s)γ+1

∫
supp(∇ΨN (·,τ))

|pvΨN | dx dτ

≤ CII

θa(s)γ+1

∫ t

s
θa(τ)

γ−1

∫
supp(∇ΨN (·,τ))

(
|p1(x, τ)|+ |p2(x, τ)|+ |p3(x, τ)|

)
|v(x, τ)ΨN (x, τ)| dx dτ.

(3.13)

The p1 part. Remember the Lorentz space property

∥1supp(∇ΨN (·,τ))∥L 3
2 ,1(R3)

≤ CN2θa(τ)
2 (3.14)

so by Hölder’s inequality for Lorentz spaces, using (1.3) and the hypothesis (2.2),∫
supp(∇ΨN (·,τ))

|v(x, τ)| dx ≤ CN2θa(τ)
2∥v(·, τ)∥L3,∞(supp(∇ΨN (·,τ)))

≤ CN2Mθa(τ)
2.

Then, using this bound and (3.8), we obtain for all s ∈ Ia,b,c,N and t ∈ (s, 0],

CII

∫ t

s
θa(τ)

γ−1

∫
supp(∇ΨN (·,τ))

|p1(x, τ)| |v(x, τ)ΨN | dx dτ

≤ C

N3

∫ t

s
θa(τ)

γ−4

(∫
B((N

2
+1)θa(τ))

|v(x, τ)|2 dx

)(∫
supp(∇ΨN (·,τ))

|v(x, τ)| dx

)
dτ

≤ C∗M

N

∫ t

s
θa(τ)

γ−2

∫
B((N

2
+1)θa(τ))

|v(x, τ)|2 dx dτ,

where C∗ ∈ (0,∞) is a universal constant.
This small part (N >> 1) will be absorbed in a similar, yet more optimal, manner compared to
[4], thanks to our choice of ηN .
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The p2 part. Using the remark (3.10) we obtain for all s ∈ Ia,b,c,N and t ∈ (s, 0],

CII

∫ t

s
θa(τ)

γ−1

∫
supp(∇ΨN (·,τ))

|p2(x, τ)| |v(x, τ)ΨN | dx dτ

≤ C

∫ t

s
θa(τ)

γ−1∥p2(·, τ)∥
L

3
2 ,∞(supp(∇ΨN (·,τ)))

∥v(·, τ)ΨN∥L3,1(R3) dτ

≤ C

∫ t

s
θa(τ)

γ−1∥v(·, τ)∥2
L3,∞(B((N+3)θa(τ)1/2)\B((N

2
+1)θa(τ)))

∥v(·, τ)ΨN∥L3,1(R3) dτ.

Then, by the assumption (2.2), along with the interpolation of L3,1 spaces between L2 and L6

[6, Theorem 5.3.1], the Sobolev inequality, and Young’s inequality,

CII

∫ t

s
θa(τ)

γ−1

∫
supp(∇ΨN (·,τ))

|p2(x, τ)| |v(x, τ)ΨN | dx dτ

≤ Cp2M2

∫ t

s
θa(τ)

γ− 3
2 ∥ΨNv(·, τ)∥L2(R3) dτ + Cp2M2

∫ t

s
θa(τ)

γ− 1
2 ∥∇(ΨNv(·, τ))∥L2(R3) dτ,

where Cp2 ∈ (0,∞) is a universal constant.
For γ > 0 and a ∈ (0, 4λS(B1)), we choose 9 εa > 0 sufficiently small to ensure that

(2− εa)λS(B1)−
a

2
>

aεa
4

>
aγ

2
− aγ

2 + εa/γ
> 0. (3.15)

Observe that the choice εa = 4λS(B1)−a
16λS(B1)

is feasible because for ε > 0,

aγ

2
− aγ

2 + ε/γ
=

aγε

2(2γ + ε)
<

aγε

2(2γ)
=

aε

4

and

(2− ε)λS(B1)−
a

2
>

aε

4
⇐⇒ ε < 2

(
4λS(B1)− a

a+ 4λS(B1)

)
.

Then, using Young’s inequality, we obtain the following result:

Cp2M2

∫ t

s
θa(τ)

γ− 3
2 ∥ΨNv(·, τ)∥L2(R3) dτ

≤ Cp2M4

(
aγ

2
− aγ

2 + εa/γ

)−1 θa(s)
γ+1

a(γ + 1)
+
1

2

(
aγ

2
− aγ

2 + εa/γ

)∫ t

s
θa(τ)

γ−2∥ΨNv(·, τ)∥2L2(R3)dτ,

where we have used 10
∫ 0
s θa(τ)

γ−1 = 2θa(s)
γ+1/(a(γ + 1)), which yields for γ > −1.

Similarly,

Cp2M2

∫ t

s
θa(τ)

γ− 1
2 ∥∇(ΨNv(·, τ))∥L2(R3) dτ

≤ Ca,γM
4θa(s)

γ+1 +
εa
2

∫ t

s
θa(τ)

γ∥∇(ΨNv(·, τ))∥2L2(R3)dτ.

9As we will see, this choice allows us to prove our result with a spanning the entire interval (0, 4λS(B(1))).
10This computation is valid for γ > −1.
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The p3 part. Using the observation (3.9) and, once again, the gradient property of ηN from
(3.5), together with Hölder’s inequality for Lorentz spaces and the assumption (2.1), we obtain
the following for all s ∈ Ia,b,c,N and t ∈ (s, 0]:

CII

∫ t

s
θa(τ)

γ−1

∫
supp(∇ΨN (·,τ))

|p3(x, τ)| |v(x, τ)ΨN | dx dτ

≤ CN2M

∫ t

s
θa(τ)

γ− 1
2

(∫
supp(∇ηN (·,τ))

(
|v|2 + |p|

)
dx

)
dτ

≤ CMN3

∫ t

s
θa(τ)

γ

(∫
supp(∇ηN (·,τ))

(
|v|3 + |p|

3
2

)
dx

) 2
3

dτ.

Then, recalling the range for s from (3.1), we obtain the following bound:

CII

∫ t

s
θa(τ)

γ−1

∫
supp(∇ΨN (·,τ))

|p3(τ)| |v(x, τ)ΨN | dx dτ

≤ CMN3

(∫ t

s
θa(τ)

2γ dτ

) 1
2

∫ 0

− c
2

(∫
B( b

4
)

(
|v|3 + |p|

3
2

)
dx

) 4
3

dτ


1
2

≤ CSMN3 θa(s)
γ+1√

a(γ + 1)
, (3.16)

where we have used 11
(∫ 0

s θa(τ)
2γ
) 1

2
= θa(s)

γ+1/
√
a(γ + 1), and the fact that for a Leray-type

solution12,

S =

∫ 0

− c
2

(∫
B( b

4
)

(
|v|3 + |p|

3
2

)
dx

) 4
3

dτ


1
2

< ∞.

In summary, from the pressure estimates above, we deduce that for all s ∈ Ia,b,c,N and t ∈ (s, 0],

KII(s) ≤C∗M

N

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, τ)∥2L2 dτ +

1

2

(
aγ

2
− aγ

2 + εa/γ

)∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, τ)∥2L2 dτ

+
εa
2

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv(·, τ))∥2L2(R3)dτ + Ca,γ(M

4 + SMN3). (3.17)

For KI(s), we observe that∫ t

s
θa(τ)

γ

∫
R3

|v|2v · ∇Ψ2
N dx dτ

≤ C

∫ t

s
θa(τ)

γ−1∥v(·, τ)∥2L3,∞(supp(∇ΨN (·,τ)))∥v(·, τ)ΨN∥L3,1(supp(∇ΨN (·,τ)) dτ

using interpolation and Young inequalities once again, together with our assumptions (2.1) and
(2.2), we get

|KI(s)| ≤1

2

(
aγ

2
− aγ

2 + εa/γ

)∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, τ)∥2L2 dτ

+
εa
2

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv(·, τ))∥2L2 dτ + Ca,γM

4. (3.18)

11This computation is valid for γ > −1.
12See Definition 1.
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Then, from (3.2) combined with (3.18) and (3.17), we find for s ∈ Ia,b,c,N , and t ∈ (s, 0],

θa(t)
γ

θa(s)γ+1
∥ΨNv(·, t)∥2L2 +

aγ

2 + εa/γ

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, τ)∥2L2 dτ

+ (2− εa)

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv(·, τ))∥2L2 dτ

≤ 1

θa(s)
∥ΨNv(·, s)∥2L2 +

C∗M

N

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, τ)∥2L2 dτ + Ca,γ(M

4 + SMN3), (3.19)

where the constant C∗ ∈ (0,∞) comes from the p1 part.

4 Boundedness of the Scale-Invariant Energy

The objective of this section is to prove Theorem 1. We assume13 first γ > 0. We rewrite (3.19)
using the definitions of f and gγ provided in (1.2), as follows:

θa(t)
γ+1

θa(s)γ+1
f(t) +

aγ

2 + εa/γ
gγ(s, t) + (2− εa)

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv)(·, τ)∥2L2 dτ

≤ f(s) +
C∗M

N
gγ(s, t) + Ca,γ

(
M4 + SMN3

)
. (4.1)

Then we replace the identity (3.4) in (4.1) to get for s ∈ Ia,b,c,N , and t ∈ (s, 0],

θa(t)
γ+1

θa(s)γ+1
f(t) + θa(s)

2∂gγ
∂s

(s, t) +

(
aγ

2 + εa/γ
− aγ

2
− a

2
− C∗M

N

)
gγ(s, t)

+ (2− εa)

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv)(·, τ)∥2L2 dτ

≤ Ca,γ(M
4 + SMN3). (4.2)

We observe that
(

aγ
2+εa/γ

− aγ
2 − a

2 − C∗M
N

)
is negative. Therefore, it is necessary to obtain

additional information in damping form to integrate the differential inequality and bound the
energy.

4.1 Gaining Damping with the Gradient Part

Let us observe that in this subsection we do not use hypothesis (2.2), but only hypothesis
(2.1). For this part, we follow exactly the computations in [4], while verifying control under our
assumptions (2.1) and (2.2). In this section s ∈ Ia,b,c,N (see (3.1)).

Let us take ξ ∈ (0, 1) and a test function φξ
1 defined as:

φξ
1(x) =


1, if |x| < 1 + 1

4ξ,

∈ [0, 1], if 1 + 1
4ξ < |x| < 1 + 3

4ξ,

0, if 1 + 3
4ξ < |x|,

and satisfying the gradient bound
|∇φξ

1| ≤ 4ξ−1. (4.3)

We let φξ
N,2 := φN −φξ

1. Furthermore, we define Ψξ
1(x, t) := φξ

1

(
x

θa(t)

)
and Ψξ

N,2 := φξ
N,2

(
x

θa(t)

)
.

Thus, it follows that ΨN = Ψξ
1 +Ψξ

N,2.

13The proof requires several steps. In particular, it begins by considering γ > 0 and proving the boundedness of
f . This immediately implies the boundedness of gγ for γ > −1. It is then interesting to observe that the range of
γ can be improved in the energy (3.2), so that hγ will be bounded for γ > −1.
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From the control

∥∇(Ψξ
1v)∥

2
2 = ∥Ψξ

1∇v∥22 + 2⟨Ψξ
1∇v,∇(Ψξ

1)⊗ v⟩L2 + ∥∇(Ψξ
1)⊗ v∥22

≤ ∥∇v∥2
L2(supp(Ψξ

1))
+

∫
R3

∂i
(
(Ψξ

1)
2
)
vj∂ivj dx+ ∥∇(Ψξ

1)⊗ v∥22

≤ ∥∇(ΨNv)∥22 −
1

2

∫
R3

∆((Ψξ
1)

2)|v|2 dx+ ∥∇(Ψξ
1)⊗ v∥22,

we get ∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv)(τ) ∥22 dτ ≥

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(Ψξ

1v)(τ) ∥
2
2 dτ − c1(s, t, a, ξ), (4.4)

letting

c1(s, t, a, ξ) :=

∫ t

s

θa(τ)
γ

θa(s)γ+1

(
− 1

2

∫
supp(∇Ψξ

1)
∆((Ψξ

1)
2)|v|2 dx+ ∥∇(Ψξ

1)⊗ v∥22
)
dτ.

Remembering the formula

∇Ψξ
1 =

1

θa(t)
∇φξ

1

(
x

θa(t)

)
,

we can verify

|c1(s, t, a, ξ)| ≤
C

ξ2

∫ t

s

θa(τ)
γ−2

θa(s)γ+1

∫
supp(∇Ψξ

1)
|v(x, τ)|2 dx dτ,

and then by Hölder’s inequality and the assumption (2.1), the constant c1 is well controlled,

−c1(s, t, a, ξ) ≥ − C

aξ
5
3 (γ + 1)

M2.

4.2 Poincaré inequality with the new localization

From the fact ∫
B((1+ξ)θa(τ))

∇(Ψξ
1) · v = 0,

we can apply a right inverse of the divergence operator14 to obtain the existence of a function

wξ(·, τ) ∈ W 1,2
0 (B((1 + ξ)θa(τ))),

for which
∇ · wξ(·, τ) = ∇(Ψξ

1) · v(·, τ)

and
∥∇wξ∥L2(B((1+ξ)θa(τ))) ≤ C∥∇(Ψξ

1) · v∥L2 .

This Ψξ
1v − wξ is divergence-free in B((1 + ξ)θa(τ)) and have zero trace on the boundary. Then,

Poincaré’s inequality for divergence-free functions with zero trace, we get

∥Ψξ
1v − wξ∥L2(B((1+ξ)θa(τ))) ≤

1√
λS(B((1 + ξ)θa(τ)))

∥∇(Ψξ
1v − wξ)∥L2(B((1+ξ)θa(τ))), (4.5)

being λS(B(r)) the first eigenvalue of the Dirichlet-Stokes operator on the ball B(r). Using
homogeneity we also get

1√
λS(B((1 + ξ)θa(τ)))

=
(1 + ξ)θa(τ)√

λS(B(1))
. (4.6)

14Bogovskii operator in [20] or [7, Theorem 4].
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Thus, using Poincaré’s inequality (4.5), the scaling property (4.6), and the bound on the test
function gradient (4.3), we find

∥Ψξ
1v∥2 ≤ ∥Ψξ

1v − wξ∥L2(B((1+ξ)θa(τ))) + ∥wξ∥2

≤ (1 + ξ)θa(τ)√
λS(B(1))

∥∇(Ψξ
1v − wξ)∥L2(B((1+ξ)θa(τ))) +

(1 + ξ)θa(τ)

π
∥∇wξ∥L2(B((1+ξ)θa(τ)))

≤ (1 + ξ)θa(τ)√
λS(B(1))

∥∇(Ψξ
1v)∥L2(B((1+ξ)θa(τ))) +

C(1 + ξ)

ξπ
∥v∥L2(B((1+ξ)θa(τ))\B(θa(τ))).

In order to conserve the constant for ∥∇(Ψξ
1v)∥L2(B((1+ξ)θa(τ))) small, we introduce a small κ > 0

such that

∥Ψξ
1v∥

2
L2 ≤ (1 + ξ)2(1 + κ)θa(τ)

2

λS(B(1))
∥∇(Ψξ

1v)∥
2
L2(B((1+ξ)θa(τ)))

+ Cξ,κ∥v∥2L2(B((1+ξ)θa(τ)))
.

Replacing this control into (4.4) we find∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv)∥2L2 dτ ≥ λS(B(1))

(1 + κ)(1 + ξ)2

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥Ψξ

1v∥
2
L2 dτ − c2(s, t, a, ξ, κ), (4.7)

letting

c2(s, t, a, ξ, κ) =
Cξ,κλS(B(1))

(1 + κ)(1 + ξ)2

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥v∥2L2(B((1+ξ)θa(τ))\B(θa(τ)))

dτ + c1(s, t, a, ξ).

As we have done for c1, we can control

−c2(s, t, a, ξ, κ) ≥ −
Cξ,κ

a(γ + 1)
M2.

Then, with the help of the identity

∥Ψξ
1v∥

2
L2 = ∥ΨNv∥2L2 − 2⟨ΨNv,Ψξ

N,2v⟩L2 + ∥Ψξ
N,2v∥

2
L2

from (4.7) we find∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv)∥2L2 dτ ≥ λS(B(1))

(1 + κ)(1 + ξ)2

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv∥2L2 dτ − c3(s, t, a, ξ, κ),

with

c3(s, t, a, ξ, κ) :=
λS(B(1))

(1 + κ)(1 + ξ)2

∫ t

s

θa(τ)
γ−2

θa(s)γ+1

[
2⟨ΨNv,Ψξ

N,2v⟩2 − ∥Ψξ
N,2v∥

2
2

]
dτ + c2(s, t, a, ξ, κ).

Observing that Ψξ
N,2(·, t) is supported on B((N + 1)θa(τ)) \B(θa(τ)), from the assumption

15(2.1) and the Holder’s inequality,

−c3(s, t, ξ, κ) ≥ −
Cξ,κ

a(γ + 1)
NM2.

Thus, we get for s ∈ Ia,b,c,N and t ∈ (s, 0].∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv)(·, τ)∥22 dτ ≥ λS(B(1))

(1 + κ)(1 + ξ)2
gγ(s, t)−

Cξ,κ

a(γ + 1)
NM2. (4.8)

15This is the only point where small-order scales (close to the aperture
√
a) are used, that is, we use hypothesis

(2.1).
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4.3 Gronwall’s type estimate

The Poincaré-estimate (4.8) and the energy control (4.2) implies for s ∈ Ia,b,c,N , and t ∈ (s, 0],

θa(t)
γ+1

θa(s)γ+1
f(t) + θa(s)

2∂sgγ(s, t) +

(
(2− εa)λS(B1)

(1 + κ)(1 + ξ)2
− a

2
+

aγ

2 + εa/γ
− aγ

2
− C∗M

N

)
gγ(s, t)

≤ Ca,γ(M
4 + SMN3) +

Cξ,κ

a(γ + 1)
NM2.

We consider t = 0. Defining

A =
(2− εa)λS(B1)

(1 + κ)(1 + ξ)2
− a

2
+

aγ

2 + εa/γ
− aγ

2
− C∗M

N

and

B := Ca,γ(M
4 + SMN3) +

Cξ,κ

a(γ + 1)
NM2,

the inequality writes as

d

ds

(
gγ(·, 0)

)
(s) +

A

θa(s)2
gγ(s, 0) ≤

B

θa(s)2
.

We multiply this expression by the time weight

k(s) =

(
θa(s)

θa(s0)

)− 2A
a

, (4.9)

for which the integrating factor property fulfills

dk

ds
=

A

θa(s)2

(
θa(s)

θa(s0)

)− 2A
a

=
A

θa(s)2
k(s),

in order to find
d

ds

(
kgγ(·, 0)

)
(s) ≤ B

A

(
A

θa(s)2
k(s)

)
.

Integration over [s0, s] followed by multiplication by k−1(s) gives

gγ(s, 0) ≤ gγ(s0, 0)
1

k(s)
+

B

A

(
1− 1

k(s)

)
. (4.10)

4.4 Boundedness of gγ and f

From our choice (3.15) of εa, we observe we can take κ(a), ξ(a) > 0 small enough to get

(2− εa)λS(B1)

(1 + κ)(1 + ξ)2
− a

2
+

aγ

2 + εa/γ
− aγ

2
> 0

and then the parameter N(a,M, ξ(a), κ(a)) large enough to have

A =
(2− εa)λS(B1)

(1 + κ)(1 + ξ)2
− a

2
+

aγ

2 + εa/γ
− aγ

2
− C∗M

N
> 0.

Then, from the definition of k in (4.9) we get, 1/k(s) converges to 0 when s ↑ 0, and thus by
(4.10) we conclude gγ(·, 0) is bounded on [s0, 0).
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Since f is independent of γ, the boundedness of f(s) can be established by setting γ = 1 and
relying on the control provided by g1. Consider any t1 ∈ [s0/2, 0) and define s1 := 2t1. This
ensures s1 < t1 < 0 and satisfies the relation

2(t1 − s1) = −s1 =
θa(s1)

2

a
.

Additionally, for τ ∈ (s1, t1), the inequality

1√
2
θa(s1) = θa(t1) < θa(τ) < θa(s1) =

√
2θa(t1),

holds. Consequently, we obtain:

1

t1 − s1

∫ t1

s1

f(τ)dτ ≤ 2a

θa(s1)2

∫ t1

s1

f(τ)dτ ≤ 2a

∫ 0

s1

1

θa(s1)2
f(τ)dτ = 2ag1(s1, 0).

Moreover, there exists s′1 ∈ (s1, t1) such that

f(s′1) ≤
1

t1 − s1

∫ t1

s1

f(τ)dτ ≤ 2a sup
s∈[s0,0)

g1(s, 0). (4.11)

By combining inequality (4.1), evaluated at t = t1 and s = s′1, with (4.11), we obtain:

1

2
f(t1) ≤

θa(t1)
2

θa(s′1)
2
f(t1)

≤ f(s′1) +
C∗M

N
g1(s

′
1, 0) + Ca,γ(M

4 + SMN3)

≤ 2a sup
s∈[s0,0]

g1(s, 0) +
C∗M

N
g1(s

′
1, 0) + Ca,γ(M

4 + SMN3).

Hence, f remains bounded on a small, non-empty interval [s0/2, 0), and subsequently on (−c, 0)
by leveraging the boundedness of the energy for s ∈ (−c, s0/2). Consequently, we conclude:

ess sup
s∈(−1,0)

1

θa(s)
∥ΨNv(·, s)∥22 < +∞,

which implies the boundedness of gλ for λ > −1,

ess sup
s∈(−c,0)

∫ 0

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(τ)∥22dτ < +∞.

4.5 Boundedness of hγ

Utilizing the boundedness of f and gγ , we can now revisit the computations that yield the
estimates for KI and KII , this time without the need to absorb terms, to obtain

|KII(s)| ≤C∗M

N

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, τ)∥2L2 dτ + C

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, τ)∥2L2 dτ

+
1

2

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv(·, τ))∥2L2 dτ + Ca,γ

(
M4 + SMN3

)
and

|KI(s)| ≤C

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, τ)∥2L2 dτ

+
1

2

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv(·, τ))∥2L2 dτ + Ca,γM

4.
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These computations16 are valid for γ > −1, and from the balance (3.2), we obtain:

ess sup
s∈Ia,b,c,N

∫ 0

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv)∥22dτ

≤ ess sup
s∈Ia,b,c,N

(
1

θa(s)
∥ΨNv(s)∥22 +

(
C +

C∗M

N
− aγ

2

)∫ 0

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(τ)∥22dτ

)
+ C

(
M4 + SMN3

)
,

which implies hγ is bounded for γ > −1 and we conclude the proof of Theorem 1 part A.

5 Proof of Theorem 1 Part B

We need to recalibrate our dynamic decomposition. Now, we consider

ηN (x, τ) = φ2N+1

(
x

θa(τ)

)
Then, we have

supp(∇ηN (·, τ)) ⊂ B ((2N + 2)θa(τ)) \B ((2N + 1)θa(τ))

with the following bounds: |∇ηN | ≲ C
Nθa(t)

and |∇2ηN | ≲ C
N2θa(t)2

.

For the time variable s in the set

s ∈ (− c

2
, 0) ∩ (− 1

2a
, 0) ∩

(
− b2

a42(2N + 2)2
, 0

)
=: I

B)
a,b,c,N , (5.1)

which implies for τ ∈ (s, 0),

B((N + 1)θa(τ)) ⊂ B((2N + 2)θa(τ)) ⊂ B(
b

4
),

we focus on the boundedness of

KII(s, t) =

∫ t

s

θa(τ)
γ

θa(s)γ+1

∫
R3

2p(v · ∇Ψ2
N ) dx dτ

≤ CII

θa(s)γ+1

∫ t

s
θa(τ)

γ−1

∫
supp(∇ΨN (·,τ))

(
|p1(x, τ)|+ |p2(x, τ)|+ |p3(x, τ)|

)
|vΨN | dx dτ.

where

p1(x, τ) :=
1

4π

∫
B((N

2
+1))θa(τ))

∂2

∂yi∂yj

(
1

|x− y|

)
[ηvivj ](y, τ) dy,

p2(x, τ) :=
1

4π

∫
B((2N+2)θa(τ))\B((N

2
+1))θa(τ))

∂2

∂yi∂yj

(
1

|x− y|

)
[ηvivj ](y, τ) dy

and

p3(x, τ) :=
1

2π

∫
supp(∇ηN (·,τ))

xi − yi
|x− y|3

(
∂η

∂yj
vivj

)
(y, τ) dy

+
1

4π

∫
supp(∇ηN (·,τ))

1

|x− y|

(
∂2η

∂yi∂yj
vivj

)
(y, τ) dy

+
1

2π

∫
supp(∇ηN (·,τ))

xi − yi
|x− y|3

(
∂η

∂yj
p

)
(y, τ) dy

+
1

4π

∫
supp(∇ηN (·,τ))

1

|x− y|
(∆ηp)(y, τ) dy.

16Since f is bounded, there is no longer a need to select εa or assume γ > 0.
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Observe that the bound for the term p1 remains the same:

CII

∫ t

s
θa(τ)

γ−1

∫
supp(∇ΨN (·,τ))

|p1(x, τ)| |v(x, τ)ΨN | dx dτ

≤ C∗M

N

∫ t

s
θa(τ)

γ−2

∫
B((N

2
+1)θa(τ))

|v(x, τ)|2 dx dτ.

For p2, by Calderón-Zygmund’s theorem and (2.4),

∥p2(·, τ)∥
L

3
2 ,∞(supp(∇ΨN (·,τ)))

≤ C∥v(·, τ)∥2
L3,∞(B((2N+2)θa(τ))\B((N

2
+1)θa(τ)))

≤ CM2.

Then, by choosing εa as in (3.15) and proceeding as before under our new hypothesis (2.3) and
(2.4), we obtain a similar bound:

CII

∫ t

s
θa(τ)

γ−1

∫
supp(∇ΨN (·,τ))

|p2(x, τ)| |v(x, τ)ΨN | dx dτ

≤ 1

2

(
aγ

2
− aγ

2 + εa/γ

)∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, τ)∥2L2 dτ

+
εa
2

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, τ)∥2L2 dτ + Ca,γM

4.

For p3, we observe that

dist
(
supp(∇ΨN (·, τ)), supp(∇ηN (·, τ))

)
≥ (2N + 1)θa(τ)− (N + 1)θa(τ)

≥ Nθa(τ),

which implies

|p3(x, τ)| ≤
C

N3θ(τ)3

∫
supp(∇ηN (·,τ))

(
|v|2 + |p|

)
(y, τ) dy.

Hence, by utilizing the weak critical hypothesis (2.5) on the pressure p, we obtain the following

for all s ∈ I
B)
a,b,c,N and t ∈ (s, 0]:

CII

∫ t

s
θa(τ)

γ−1

∫
supp(∇ΨN (·,τ))

|p3(x, τ)| |v(x, τ)ΨN | dx dτ

≤ CM

N

∫ t

s
θa(τ)

γ−2

(∫
supp(∇ηN (·,τ))

(
|v|2 + |p|

)
dx

)
dτ

≤ CM2

∫ t

s
θa(τ)

γ−1

= CM2 θa(s)
γ+1

a(γ + 1)
.

Thus, the right-hand side of the energy balance (3.2) can be controlled for γ > 0 as follows:

θa(t)
γ+1

θa(s)γ+1
f(t) +

aγ

2 + εa/γ
gγ(s, t) + (2− εa)

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNv)(·, τ)∥2L2 dτ

≤ f(s) +
C∗M

N
gγ(s, t) + Ca,γM

4.

It is interesting to observe that our control in the right hand side does not grow as N → ∞.
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Now, once again replacing f(s) in terms of gλ as indicated in (3.4), and applying Poincaré’s
inequality, we obtain:

θa(t)
γ+1

θa(s)γ+1
f(t) + θa(s)

2∂sgγ(s, t) +

(
(2− εa)λS(B1)

(1 + κ)(1 + ξ)2
− a

2
+

aγ

2 + εa/γ
− aγ

2
− C∗M

N

)
gγ(s, t)

≤ Ca,γM
4 +

Cξ,κ

a(γ + 1)
NM2,

where ξ and κ can be taken arbitrarily small. Proceeding as in Section 4.10 and Section 4.4, for
k defined in (4.9) and s0 chosen in (5.1), we obtain:

gγ(s, 0) ≤ gγ(s0, 0)
1

k(s)
+

B

A

(
1− 1

k(s)

)
,

with

A =
(2− εa)λS(B1)

(1 + κ)(1 + ξ)2
− a

2
+

aγ

2 + εa/γ
− aγ

2
− C∗M

N
> 0

and

B := Ca,γM
4 +

Cξ,κ

a(γ + 1)
NM2.

Thus, the function 1
N gγ is bounded by a constant that depends on the parameters M and

a, but not on N , over the interval I
B)
a,b,c,N . Following the computations used to bound the

N -dependent functions f and hγ , we see that similar bounds hold for 1
N f and 1

N hγ over the

interval I
B)
a,b,c,N . This completes the proof of Part B).

6 Proof of Corollary 1 and 2

6.1 Corollary 1

The fact that the boundedness of the function f implies the boundedness of the functions gγ
and hγ follows directly as a corollary of the proof of Theorem 1. It remains to establish the
boundedness of the L3L3 critical quantity. By interpolation between L2 and L6, we obtain

1

−s

∫ 0

s

∫
supp(ΨN )

|ΨNv|3(x, τ) dx dτ

≤ a

θ(s)2

∫ t0

s

(
θ(τ)−

1
4 ∥ΨNv∥

3
2
2

)(
θ(τ)

1
4 ∥ΨNv∥

3
2
6

)
dτ

≤ 2a

3
3
4πθ(s)2

(∫ t0

s
θ(τ)−1∥ΨNv∥62 dτ

) 1
4
(∫ t0

s
θ(τ)

1
3 ∥∇(ΨNv)∥22 dτ

) 3
4

,

so that

1

−s

∫ 0

s

∫
supp(ΨN )

|ΨNv|3(x, τ) dx dτ

≤ 2a

3
3
4π

[ess sup
s<τ<0

θ(τ)
1
3

θ(s)
4
3

∥ΨNv(·, τ)∥22

]2 ∫ 0

s

θ(τ)−
5
3

θ(s)
4
3

∥ΨNv∥22 dτ

 1
4

×

(∫ 0

s

θ(τ)
1
3

θ(s)
4
3

∥∇(ΨNv)∥22 dτ

) 3
4

.
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Hence, employing the boundedness of f , gγ and hγ for γ = 1
3 , we get

ess sup
s∈Ia,b,c,N

1

θa(s)2

∫ 0

s

∫
|ΨNv(x, τ)|3dxdτ < CN < +∞. (6.1)

We now construct an increasing sequence tk ↑ 0 for which

sup
k

∫
B(Nθa(tk))

|v(·, tk)|3 dx

is bounded, using an inductive pigeonhole argument.
Let us choose s1 ∈ (−c, 0) ∩ (2−1, 0) such that the bound holds:∫ 0

s1

∫
|ΨNv(x, t)|3 dx dt ≤ −CNas1.

Since the integral is finite, by the mean value theorem for integrals, there exists t1 ∈ (s1, 0) such
that ∫

|ΨNv(x, t1)|3 dx ≤ 1

|s1|

∫ 0

s1

∫
|ΨNv(x, t)|3 dx dt ≤ CNa.

Then, choose s2 ∈ (t1, 0) ∩ (2−2, 0) such that the bound again holds:∫ 0

s2

∫
|ΨNv(x, t)|3 dx dt ≤ −CNas2.

Hence there exists t2 ∈ (s2, 0), such that∫
|ΨNv(x, t2)|3 dx ≤ CNa.

Proceeding inductively, we build sequences

s1 < t1 < s2 < t2 < · · · < 0, with tk ↑ 0,

such that ∫
|ΨNv(x, tk)|3 dx ≤ CNa for all k.

Corollary 1 is proved.

6.2 Corollary 2

Utilizing (6.1) and (2.7), we have

ess sup
s∈(−c,0))

1

θa(s)2

∫ 0

s

∫
B(b)

|v(x, τ)|3dxdτ < C < ∞.

We now construct a strictly increasing sequence tk ↑ 0 fulfilling

sup
k

∫
B(b)

|v(x, tk)|3 dx

is uniformly bounded.
Let us choose s1 ∈ (−c, 0) ∩ (2−1, 0) such that the bound holds:∫ 0

s1

∫
B(b)

|v(x, t)|3 dx dt ≤ −Cas1.
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By the mean value theorem for integrals, there exists t1 ∈ (s1, 0) such that∫
B(b)

|v(x, t1)|3 dx ≤ 1

|s1|

∫ 0

s1

∫
B(b)

|v(x, t)|3 dx dt ≤ Ca.

Now, choose s2 ∈ (t1, 0) ∩ (2−2, 0) such that the bound again holds:∫ 0

s2

∫
B(b)

|v(x, t)|3 dx dt ≤ −Cas2.

Then there exists t2 ∈ (s2, 0), in particular t2 > t1, such that∫
B(b)

|v(x, t2)|3 dx ≤ Ca.

Proceeding inductively, we construct

s1 < t1 < s2 < t2 < · · · < 0, with tk ↑ 0,

such that ∫
B(b)

|v(x, tk)|3 dx ≤ Ca for all k.

By [1, Theorem 1.1] we get that (0, 0) is a regular point.

A Scaling invariance of f , gγ and hγ

In this section, we specify the scaling invariance property for the principal functions under
consideration. Although f , gγ , and hγ inherently depend on N , we omit this subscript as the
scaling invariance is intrinsic to the paraboloid and remains independent of N . Denoting:

gv(s, t) =

∫ t

s

θa(τ)
γ−2

θa(s)γ+1
∥ΨNv(·, s)∥2L2dτ

and
vλ(x, τ) = λ−1v(λ−1x, λ−2τ),

we obtain by performing a change of variables

gvλ(s, t) =

∫ t

s

θa(τ)
γ−1

θa(s)γ+1
∥ΨNvλ(·, τ)∥2L2dτ

=

∫ t/λ2

s/λ2

θa(λ
2τ)γ−2

θa(s)γ+1

∫
R3

∣∣∣∣φN

(
λx√
−aλ2τ

)
1

λ
v(x, τ)

∣∣∣∣2 λ3dxλ2dτ

=

∫ t/λ2

s/λ2

θa(τ)
γ−2

θa(s/λ2)γ+1
∥ΨNv(·, τ)∥2L2dτ

= gv(s/λ
2, t/λ2).

Similarly, for hγ , since ∇(ΨNvλ)(λx, λ
2τ) = 1

λ∇(ΨNvλ(λ·, λ2τ))(x), applying the same change
of variables in the integral, we obtain:

hvλ(s, t) :=

∫ t

s

θa(τ)
γ

θa(s)γ+1
∥∇(ΨNvλ)(·, τ)∥2L2dτ

=

∫ t/λ2

s/λ2

θa(λ
2τ)γ

θa(s)γ+1

∫
R3

∣∣∣∣ 1λ∇
(
φN

(
λ·√

−aλ2τ

)
1

λ
v(·, τ)

)
(x)

∣∣∣∣2 λ3dxλ2dτ

=

∫ t/λ2

s/λ2

θa(τ)
γ

θa(s/λ2)γ+1
∥∇(ΨNv(·, τ))∥2L2dτ

= hv(s/λ
2, t/λ2)
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and

fvλ(s) :=
1

θa(s)

∫
|ΨNvλ(·, s)|2 dx =

1

θa(s)

∫ ∣∣∣∣φN

(
λx√
−aλ2τ

)
1

λ
v(·, s/λ2)

∣∣∣∣2 λ3dx = fv(s/λ
2).
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[18] P.G Fernández-Dalgo and P.G. Lemarié–Rieusset. Weak solutions for Navier–Stokes equa-
tions with initial data in weighted L2 spaces. Arch. Rational Mech. Anal. 237, 347–382
(2020).
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[26] P.G. Lemarié-Rieusset, Forces for the Navier–Stokes equations and the Koch and Tataru
theorem, J. Math. Fluid Mech. 25 (2023), no. 3, Paper No. 51, 16 pp

24
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