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Abstract
We establish existence results for a quasilinear Schrödinger equation on the Heisen-
berg group, which appears naturally in several applications of mathematical physics
and conformal geometry. The nonlinearity considered in the equation depends on a
concave term and an exponential term that may be subcritical, critical, or supercritical
in the sense of the Trudinger–Moser inequality on the Heisenberg group. In such cases,
variational methods cannot be applied directly. Our approach is based on a suitable
change of variables, which transforms the original problem into an equivalent semi-
linear one. The positive solutions to semilinear equations are then presented using
an approximation scheme together with a variation of the fixed point theorem. An
important feature is that there are few works in the literature for the type of prob-
lem considered here, and the Galerkin method was not used to consider quasilinear
Schrödinger equations on the Heisenberg group.
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1 Introduction

Let Hn = C
n × R be the n-dimensional Heisenberg group, � be a bounded domain

of Hn with smooth boundary, Q = 2n + 2 be the homogeneous dimension of Hn ,
0 < p < Q − 1, κ > 0 and λ is a parameter. We study the quasilinear Schrödinger
equations with homogeneous boundary conditions on the Heisenberg group:

⎧
⎪⎨

⎪⎩

− �Qu − κ�Q(u2)u = λu p + exp(αu
Q

Q−1 ) in �,

u > 0 in �,

u = 0 on ∂�,

(1)

where �Q is the Q-Laplacian operator in H
n , which is defined by

�Q(·) = divHn (|∇Hn (·)|Q−2∇Hn (·)).

Here, we denote ∇Hn (·) as the horizontal gradient, that is,

∇Hn = (X1, X2, ..., Xn,Y1,Y2, ..., Yn)

where {X j ,Y j }, j = 1, . . . , n, is the standard basis of the horizontal left-invariant
vector fields on Hn with

X j = ∂

∂x j
+ 2y j

∂

∂t
and Y j = ∂

∂ y j
− 2x j

∂

∂t
for j = 1, . . . , n.

In recent years, quasilinear Schrödinger problems with homogeneous Dirichlet
conditions in Euclidean space have also received substantial research interest; see, for
example, [5, 6, 18, 19, 21, 48]. More precisely, in the aforementioned papers, various
forms of the problem

{
− �u + V (x)u − κ�(ρ(u2))ρ′(u2)u = f (x, u) in �,

u = 0 on ∂�,
(2)

were studied. Here � ⊂ R
N (N ≥ 2) is a bounded domain with smooth boundary,

V = V (x) is a given potential and f : � × R → R is a function.
Solutions of such equations (called soliton solutions) are related to the existence of

standing wave solutions for quasilinear Schrödinger equations of the form

i∂t	 = −�	 + W (x)	 + η(|	|2)	 − κ�ρ(|	|2)ρ′(|	|2)	, (3)

where	 : R×� → C is a complex function,W : � → R is a given potential, η and ρ

are real functions. There is a special interest in the case ρ(t) = t and in the existence of
standingwave solutions of the form	(t, x) = exp(−i Et)u(x) for equation (3), where
E > 0 and u(x) > 0 is a real function. The relationship between problem (2) and (3)
is that 	 satisfies the equation (3) if and only if the function u satisfies the quasilinear
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equation (2) with f (x, u) = η(u2)u. Equation (3) arises naturally in various branches
of mathematical physics, corresponding to various types of ρ (see [38]). The particular
caseρ(t) = t models the time evolution of the condensatewave function in a superfluid
film equation in plasma physics (see [30]). We also quote the applicability of equation
(3) in the study of self-trapped electrons, Brizhik et al. [10] considered theoretical
and numerical aspects. Furthermore, the function ρ(t) = √

1 + t describes the self-
channeling of a high-power ultra-short laser in matter (see [9, 40]) and in condensed
matter theory (see [34]).

The quasilinear Schrödinger problem (2) with ρ(t) = t , was previously considered
in the literature by several authors in RN . We refer the readers to the classical work of
Colin and Jeanjean [12] and the references [1, 33, 42, 47]. In those works, the authors
obtain the existence of a solution by considering a suitable change of variable that
transforms the quasilinear equation considered into a semilinear one, which is studied
by using variational techniques. When � ⊂ R

N is a bounded domain, f (x, u) = λu p

with p > 0 and λ ∈ R a parameter, V = 0 and κ > 0. In [20] the authors investigated
the existence, uniqueness, and asymptotic behavior of positive solutions to (2) have
been studied using different topological techniques. In [21], using the Nehari method,
the authors studied the existence and regularity of positive solutions to equation (2),
when V = 0, κ = 1 and f (x, u) = −λ|u|q−2u+|u|22∗−2u+μg1(x, u), where λ,μ >

0, 1 < q < 4, 2∗ = 4N/(N − 22∗), and g1 has a subcritical growth together with a
condition of monotonicity. Moreover, Severo and Carvalho [43] studied existence and
nonexistence of solutions for a similar quasilinear Schrödinger equation with critical
exponential growth in R

2, and more generally, Zhao et al. [48, 49] and Severo et al.
[44] also investigated existence results for a generalized Schrödinger equation with
critical exponential growth in the plane. This work extends these Euclidean results
to higher dimensions within the Heisenberg group and we are also able to treat the
subcritical, critical and supercritical, see Remarks 1.1 and 4.2.

There is extensive literature on problem (2) when V = 0, κ = 0 and f (x, u) is

a continuous function and behaves like exp(α|u| N
N−1 ) → 0 as |u| → +∞, that is,

the classical semilinear equation with nonlinearity exponential. See, for instance, [2,
13, 14, 16, 17, 31]. In particular, in [14] the authors proved existence of solutions
for the problem −�u = λu p + eαu2 on the plane with 0 < p < 1. In general, the
problem (2) on the Heisenberg group with exponential growth, to our knowledge has
not yet been investigated. A similar nonlocal Q-Laplacian equation on the Heisenberg
groupwith exponential behavior was studied in [32]. Here, we extend the results found
in these works for a more general operator that has multiple applications in various
branches of mathematical physics. A fundamental ingredient in those works is the
famous Trudinger–Moser inequality introduced in [35, 46] in Euclidean space. For
the Heisenberg group H

n , Cohn and Lu [11] have established a new version of the
Trudinger–Moser inequality: Let� ⊂ H

n and assume that |�| < ∞ and 0 < α ≤ αQ .
Then, there exists a constant C(Q) that depends on Q only, such that

sup
‖∇Hn u‖LQ (�)

≤1

∫

�

exp(α|u| Q
Q−1 ) ≤ C(Q)|�|, (4)
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where αQ = Qw
1

Q−1
Q and wQ = ∫

ρ(z,t) |z|Q dμ.

Remark 1.1 Dual to the Euclidean space, note that α < αQ , α = αQ and α > αQ

represent the subcritical, critical, and supercritical growth of exp(α|u| Q
Q−1 ) as |u| →

+∞, respectively.

The Heisenberg group has become a central object in quantum physics, ergodic
theory, representation theory of nilpotent Lie groups, harmonic analysis, differential
geometry, several complex variables, andCRgeometry (see [28]). Due to the analytical
non-Euclidean nature of this space despite its topological Euclidean nature, certain
fundamental concepts of analysis, including dilatations, must be reformulated (see
[39]). Folland and Stein [23] were the pioneering mathematicians who initiated the
research of subelliptic analysis on the Heisenberg group.

Over the last decade, analysis of PDEs on theHeisenberg group has received consid-
erable attention. Results such as Pansu’s differentiation theorem illustrate how analysis
on H

n extends and often contradicts Euclidean intuition [37]. A central equation on

H
n is �Hnv + H(v) = 0. When H(u) = u

Q+2
Q−2 the existence of solutions is tied to

the homology of the domain [3]. More generally, Garofalo and Lanconelli proved the
uniqueness of weak solutions whenever H(v) = o (|v|(Q+2)/(Q−2)) as |v| → +∞.
Furthermore, non-existence results in the same spirit follow from Pohozaev-type
identities for the Kohn-Laplace operator (see [26]).

Despite this progress, no results were available for nonlinearities that combine a
concave power term with an exponential term of Trudinger–Moser type, these terms
together with the generalized Schrödinger operator, have created some outstanding
difficulties in standard methods for attacking these problems. For instance, variational
methods do not work when applied to prove existence results for a large class of these
equations.

In this paper, we aim to contribute to the existing literature by investigating the
problems with quasilinear Schrödinger operator and nonlinearity exponential with
subcritical, critical or supercritical growth on the Heisenberg group. Specifically, fol-
lowing the approach of Colin and Jeanjean [12] in the Euclidean space, based on a
suitable change of variables that transforms the original problem into an equivalent
semilinear one, we establish the existence of positive solutions to this class of problems
on the Heisenberg group. The positive solutions to the semilinear equation are then
presented using nonvariational techniques based on theGalerkinmethod, togetherwith
a variation of the fixed point theorem, ideas are borrowed from [14, 45]. Due to the
presence of the quasilinear Schrödinger operator on the Heisenberg group, a suitable
modification to the approximating scheme was necessary, along with the exponential
term exp(α|u|Q/(Q−1)) that generates some difficulties, we take a new approach, and
some estimates are totally different. For example, in W 1,Q

0 (�) we need to assume a
Schauder basis instead of the Hilbert basis considered in [14], which becomes some
additional difficulty. To the best of our knowledge, this is the first article to address the
existence of a solution for quasilinear Schrödinger equation on the Heisenberg group
with exponential nonlinearity. Our first main contribution fills this gap.
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Theorem 1.2 Let � ⊂ H
n be a bounded domain with smooth boundary, Q = 2n + 2,

0 < p < Q − 1 and κ > 0 fixed parameters. Then there exist constants λ∗ > 0
and α∗ > 0 (depending only on p, κ , Q and �) such that, for every 0 < λ < λ∗
and 0 < α < α∗, the boundary-value problem (1) admits at least one positive weak
solution u ∈ W 1,Q

0 (�).

Remark 1.3 The conclusions of the paper can be generalized to establish the existence
of positive weak solution to the following �-linearly coupled quasilinear systems with
homogeneous Dirichlet conditions, u1, . . . , u� variables and � equations:

−�Qui − κi�Q(u2i )ui = λi u
pi
i + exp(αi u

Q
Q−1
j )

where 0 < pi < Q − 1, κi > 0, λi > 0 is a parameter, j = σ(i) and
σ : {1, 2, . . . , �} → {1, 2, . . . , �} is a permutation such that σ k(i) 
= i for k =
1, 2, . . . , � − 1 and σ�(i) = i , the index k stands for composition of functions.

The remainder of the paper is structured as follows. In Sect. 2, we present some
basic definitions and properties of the Heisenberg group H

n , as well as the classical
Sobolev spaces on the Heisenberg group. In Sect. 3, we introduce a suitable change
of variables via v = h−1(u) that transforms the original problem into a semilinear
one. Then, in Sect. 4, we consider a suitable finite space and investigate the existence
of solutions vm for the semilinear problem (6) in finite dimension. Finally, we prove
Theorem 1.2 using the fact that the solutions vm of (6) are bounded and converge to a
positive solution of the semilinear problem (6).

2 Preliminaries and auxiliary results

2.1 Heisenberg group

In this section, we present a brief overview of the Heisenberg group as a Lie group
and present some auxiliary results that will be used throughout the paper.

Analysis on the Heisenberg group is very interesting because this space is topolog-
ically Euclidean, but analytically non-Euclidean, and so some basic ideas of analysis,
such as dilations, must be developed again. One of the main differences with the
Euclidean case is that the homogeneous dimension Q = 2n + 2 of the Heisenberg
group plays a role analogous to the topological dimension in the Euclidean context.
For a more detailed discussion, we refer to [4, 24, 41].

Geometrically, the Heisenberg group is the simplest non-Abelian, stratified Lie
group and the canonical model of a sub-Riemannian manifold. Its intrinsic geometry
governs the CR manifolds and several complex variables [24]. Because the Kohn-
Laplace operator on theHeisenberg group is hypoelliptic, rather than elliptic, the group
provides a natural laboratory to study subelliptic PDEs and sharp functional inequal-
ities [7]. Sharp Sobolev and isoperimetric inequalities, as well as the CR Yamabe
problem, attain their extremal in this setting [28].
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Let Hn be the Heisenberg group, which is topologically equivalent to R
2n+1, with

its Lie group structure given by the operation

ξ ◦ ξ ′ = (x, y, t) ◦ (x ′, y′, t ′) =
(

x + x ′, y + y′, t + t ′ + 2
n∑

i=1

(yi x
′
i − xi y

′
i )

)

,

for all (x, y, t), (x ′, y′, t ′) ∈ R
n × R

n × R = H
n . The identity element is 0, and

the inverse of ξ ∈ H
n , denoted by ξ−1, is −ξ . From this operation, one obtains the

following left-invariant vector fields:

T = ∂

∂t
, X j = ∂

∂x j
+ 2y j

∂

∂t
, Y j = ∂

∂ y j
− 2x j

∂

∂t
,

for j = 1, . . . , n. These vector fields form the basis for the Lie algebra of Hn and
satisfy the Heisenberg commutation relations. In particular,

[X j ,Yk] = −4δ jkT , [X j , Xk] = [X j , Xk] = [Y j ,Yk] = [X j , T ] = 0.

We now define the horizontal gradient and the Kohn-Laplace operator on H
n by

∇Hn = (X1, X2, . . . , Xn,Y1,Y2, . . . ,Yn)

and

�Hn =
n∑

j=1

(X2
j + Y 2

j ) =
n∑

j=1

[
∂2

∂x2j
+ ∂2

∂ y2j
+ 4y j

∂2

∂x j ∂t
− 4x j

∂2

∂ y j ∂t
+ 4(x2j + y2j )

∂2

∂t2

]

,

it is not difficult to check that �Hn is a degenerate elliptic operator.
Regarding its metric structure, there are several ways to define left-invariant and

homogeneous metrics on the Heisenberg group H
n . Here, we use the Korányi norm

ρ(ξ) = (|(x, y)|4 + t2)
1
4 =

⎛

⎝

(
n∑

i=1

x2i + y2i

)2

+ t2

⎞

⎠

1
4

, ξ ∈ H
n .

This norm is homogeneous of degree 1 with respect to the dilation δr : (x, y, t) →
(r x, r y, r2t), r > 0. In fact, for each ξ = (x, y, t) ∈ H

n ,

ρ(δr (ξ)) = ρ(r x, r y, r2t) = (|(r x, r y)|4 + r4t2)
1
4 = rρ(ξ).

The corresponding Korányi distance is

dK (ξ, ξ ′) = ρ(ξ−1 ◦ ξ ′) for all (ξ, ξ ′) ∈ H
n,
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and the open ball of radius r centered at ξ0 is

Br (ξ0) = {ξ ∈ H
n : dK (ξ, ξ0) < r}.

For simplicity BR denotes the ball of radius r centered on ξ0 = 0.
A straightforward calculation shows that the Haar measure on H

n coincides with
the Lebesgue measure on R

2n+1. It is invariant under the left translations, namely

∫

R2n+1
f (ξ) dξ =

∫

R2n+1
f (x, y, t) dx dy dt =

∫

R2n+1
f ((x, y, t) ◦ (x ′, y′, t ′)) dx dy dt

for every integrable function f : R
2n+1 → R and (x ′, y′, t ′) ∈ R

n × R
n × R =

H
n . Moreover, it is Q-homogeneous under the dilations, in the sense that for every

measurable set E ⊂ R
2n+1 and r > 0

|δr E | = |{δrξ : ξ ∈ E}| = r Q |E |,

where | · | denotes the Lebesgue measure.

2.2 Classical Sobolev spaces in the Heisenberg group

As usual, for any measurable set � ⊂ H
n and for any general exponent q, with

1 ≤ q < ∞, we denote by Lq(�) the canonical Banach space, endowed with the
norm

‖u‖Lq(�) =
(∫

�

|u|q dξ

) 1
q

.

All the usual properties about the Lebesgue spaces continue to be valid.
For a smooth function u : � → R we define the norm

‖∇Hn u‖Lq(�) =
⎛

⎝
n∑

j=1

∫

�

(|X ju|q + |Y ju|q) dξ

⎞

⎠

1/q

.

For smooth u, w the Gauss-Green identity

∫

�

w �Hn u dξ = −
∫

�

∇Hnw ·∇Hn u dξ +
∫

∂�

w ∇Hn u ·νHn d�

is holds, where ν is the outer Euclidean normal and

νHn (ξ) = σ(ξ) ν(ξ), σ (ξ) =
(
In 0 2y
0 In −2x

)

.
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We define the classical Sobolev space W 1,Q
0 (�) as the closure of C∞

0 (�) under to
the norm

‖u‖
W 1,Q

0 (�)
= ‖∇Hn u‖LQ(�).

Then W 1,Q
0 (�) is a real separable and uniformly convex Banach space. Moreover,

it is well known that in general the embedding theorem W 1,q
0 (�) is continuously

embedded into Lq(�), for q ∈ [1,∞) and W 1,q
0 (�) is compactly embedded into

Lq(�), for q ∈ [Q,∞) (see [22]).

3 Auxiliary dual semilinear problem

In this section, we will use the dual approach developed in the papers [12, 33] to study
problem (1) in the Heisenberg group. We first convert the quasilinear equation into a
semilinear one via a suitable change of variables. Specifically, we perform the change
of variables v = f −1(u), where f : R → R is a solution of the ordinary differential
equation (ODE)

f ′(t) = 1

(1 + 2Q−1 f (t)Q)
1
Q

for t > 0 and f (0) = 0, (5)

and is extended to t < 0 by oddness, that is f (t) = − f (−t).
In the following results, we summarize the main properties of f . For the detailed

proofs of such results, one can see [6, 12] and references therein.

Lemma 3.1 The function f satisfies the following properties:

(i) f is uniquely defined and it is an increasing C2-diffeomorphism invertible with

f ′′(t) = −2Q−1 f ′(t)Q+2 f (t)Q−1 for all t > 0;

(ii) 0 < f ′(t) ≤ 1 for all t ∈ R;
(iii) | f (t)| ≤ |t | for all t ∈ R;
(iv) | f (t)| ≤ 21/(2Q)|t |1/2 for all t ∈ R;
(v) f (t)/2 ≤ t f ′(t) ≤ f (t) for all t ∈ R;
(vi) f (t)/t → 1 as t → 0;
(vii) f (t)/

√
t → 21/(2Q) as t → +∞ and f (t)/t → 0 as t → ∞;

(vii) there exist constants C > 0 and A > 0 such that

| f (t)| ≥ C |t | 12 for all |t | > A.
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With the substitution u = f (v) to transform the quasilinear equation (1) into a
semilinear one. In fact, consider the problema semilinear

{

− �Hnv = λ f (v)p f ′(v) + exp(α f (v)
Q

Q−1 ) f ′(v) in �,

v = 0 on ∂�.
(6)

A weak solution for (6) is a function v ∈ W 1,Q
0 (�) satisfying v > 0 in � and

∫

�

∇Hnv∇Hnψ dξ = λ

∫

�

f (v)p f ′(v) ψ dξ +
∫

�

exp(α f (v)
Q

Q−1 ) f ′(v) ψ dξ,

for every ψ ∈ W 1,Q
0 (�).

Remark 3.2 Similarly, as in [12], if v ∈ W 1,Q
0 (�) is a classical solution of (6), then

u = h(v) is a classical solution to problem (1).

4 Semilinear equation in finite dimension

In this section we study the existence of a solution tothe semilinear equation (6) in a
finite dimensional space. Our main tool is the Brouwer’s fixed point theorem, which
is established below. The proof may be found in [29].

Lemma 4.1 Suppose that ϒ : R
m → R

m is a continuous function such that
〈ϒ(η), η〉 ≥ 0 on |η| = r for some r > 0. Then there exists z0 ∈ Br (0) = {ξ ∈
R
m : |ξ |m ≤ r} such that ϒ(z0) = 0.

Finite-dimensional spaces.SinceW 1,Q
0 (�) is a reflexive and separableBanach space,

there is a Schauder basis B = {w1, w2, . . . , w2n+1, . . .} for W 1,Q
0 (�) satisfying

〈wi , w j 〉 = δi j and wi ∈ L∞(�),

where 〈·, ·〉 is the usual inner product in W 1,Q
0 (�) and δi j is the Kroenecker symbol

(see [25]). For each fixed � ∈ N, we consider m = 2� + 1 and define

Bm = [w1, w2, . . . , wm],

to be the m-dimensional space generated by {w1, w2, . . . , wm} with norm ‖ · ‖m
induced from W 1,Q

0 (�). Let η = (η1, . . . , ηm) ∈ R
m . Notice that

|η|m :=
∥
∥
∥
∥
∥
∥

m∑

j=1

η jw j

∥
∥
∥
∥
∥
∥
W 1,Q

0 (�)
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defines a norm in R
m . Furthermore, the spaces (Bm, ‖ · ‖m) and (Rm, | · |m) are

isometrically isomorphic by the natural linear transformation

u =
m∑

j=1

η jw j ∈ Bm �→ η = (η1, . . . , ηm) ∈ R
m .

Existence of solution in finite dimension. For every m ∈ N, equation (6) has a
weak solution vm ∈ Bm . In fact, for each positive integer n, by considering the
aforementioned identifications, we define the operator ϒ : Rm → R

m such that

ϒ(η) = (ϒ1(η),ϒ2(η), . . . , ϒm(η)),

where η = (η1, η2, . . . , ηm) ∈ R
m ,

ϒ j (η) =
∫

�

|∇Hnv|Q−2∇Hnv∇Hnw j − λ

∫

�

f (v+)p f ′(v+)w j

−
∫

�

exp(α| f (v+)| Q
Q−1 ) f ′(v+)w j ,

for each j = 1, 2, . . . ,m, v = ∑m
i=1 ηiwi belonging to Bm .

In view of Lemma 3.1, Trudinger–Moser inequality and standard arguments we
showed that ϒ is a continuous operator, i.e., give (ηk) in R

m and η ∈ R
m such that

ηk → η we obtain ϒ(ηk) → ϒ(η).
Furthermore, since 〈·, ·〉 denotes the usual inner product in W 1,Q

0 (�), then one has

〈ϒ(η), η〉 =
m∑

j=1

ϒ j (η)η j

=
∫

�

|∇Hnv|Q − λ

∫

�

f (v+)p f ′(v+)v −
∫

�

exp(α| f (v+)| Q
Q−1 ) f ′(v+)v

where v+ = max{0, v} and v− = v+ − v. Now, we estimate each term in 〈ϒ(η), η〉.
Since 0 < p < Q − 1, by Lemma 3.1 (iii)–(iv) and the Sobolev embedding theorem
we obtain

∫

�

f (v+)p f ′(v+)v ≤
∫

�

|v|p+1 = ‖v‖p+1
L p+1(�)

≤ kp‖v‖p+1

W 1,Q
0 (�)

. (7)

By Lemma 3.1 (ii)–(iii) and Hölder inequality, we find

∫

�

exp(α| f (v+)| Q
Q−1 ) f ′(v+)v ≤

∫

�

exp(α|v| Q
Q−1 )v

≤
(∫

�

|v|Q′
) 1

Q′ (∫

�

exp(αQ|v| Q
Q−1 )

) 1
Q
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≤ ‖v‖LQ′
(�)

(∫

�

exp(αQ|v| Q
Q−1 )

) 1
Q

(8)

where 1
Q′ + 1

Q = 1.

From (7), (8) and the Sobolev embedding theorem, we get

〈ϒ(η), η〉 ≥ ‖v‖Q
W 1,Q

0 (�)
− λkp‖v‖p+1

W 1,Q
0 (�)

− k1‖v‖
W 1,Q

0 (�)

(∫

�

exp(αQ|v| Q
Q−1 )

) 1
Q

. (9)

Suppose that ‖v‖ = r for some r > 0 to be fixed later. We have

∫

�

exp
(
αQ|v| N

N−1

)
=

∫

�

exp

(

αQr
Q

Q−1

( |v|
‖v‖

) Q
Q−1

)

≤
∫

�

exp

⎛

⎝αQr
Q

Q−1

(
|v|

‖v‖
W 1,Q

0 (�)

) Q
Q−1

⎞

⎠ . (10)

Applying the Trudinger–Moser inequality (4) we require αQr
Q

Q−1 ≤ αQ , and hence

r ≤ 1

2

(
αQ

αQ

) Q−1
Q

.

Therefore, we obtain

sup
‖v‖

W1,Q
0 (�)

≤1

∫

�

exp
(
αQ|v| Q

Q−1

)
≤ C(Q)|�|. (11)

Hence, using (9) we have

〈ϒ(η), η〉 ≥ r Q − λkpr
p+1 − k1C

1
Q (Q)|�| 1

Q r . (12)

Next, choose r such that

r ≥
[
4k1C

1
Q (Q)|�| 1

Q

] 1
Q−1

,

then

r Q − 2k1C
1
Q (Q)|�| 1

Q r ≥ r Q

2
.
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Moreover, if we consider

α∗ = αQ

2Q
[
4k1C

1
Q (Q)|�| 1

Q

] 1
(Q−1)2

, (13)

then

[
4k1C

1
Q (Q)|�| 1

Q

] 1
Q−1

<
1

2

(
αQ

αQ

) Q−1
Q

, ∀α ∈ (0, α∗).

Therefore, for α ∈ (0, α∗), choose r > 0 satisfying

[
4k1C

1
Q (Q)|�| 1

Q

] 1
Q−1 ≤ r <

1

2

(
αQ

αQ

) Q−1
Q

, (14)

and so we have

〈ϒ(η), η〉 ≥ r Q

2
− λkpr

p+1.

Defining ρ1 = r Q
4 − λkpr p+1. If we take

λ∗ = r (Q−1)−p

4kp
> 0,

then ρ1 > 0 for every λ < λ∗.

Remark 4.2 According to the definitionofα∗ in (13), if |�| is sufficiently small or large,
then α∗ is small or large, respectively. Thus, we are in the subcritical or supercritical
range.

Let η ∈ R
m such that |η|m = r , then for λ < λ∗ we deduce

〈ϒ(η), η〉 ≥ ρ1

2
> 0.

Hence, by the Brouwer fixed point theorem, see Lemma 4.1, for every n ∈ N there
exists y ∈ R

2n+1 with |y| ≤ r such that ϒ(y) = 0, that is, there exists vm ∈ Bm

verifying
‖vm‖

W 1,Q
0 (�)

≤ r for every n ∈ N (15)

and such that

∫

�
|∇Hnvm |Q−2∇Hnvm∇Hnψ = λ

∫

�
f (vm+)p f ′(vm+)ψ +

∫

�
exp(α| f (vn)|

Q
Q−1 ) f ′(vn)ψ

(16)
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for every ψ ∈ Bm .

Proof of Theorem 1.2 We have that problem (1) admits a sequence of positive solutions
vm ∈ Bm for each m ∈ N. The sequence (vm) converges to a solution v ∈ W 1,Q

0 (�)

of problem (1). In effect, according to the estimate (15), since Bm ⊂ W 1,Q
0 (�) for

every m ∈ N and r does not depend on m, the sequence (vm) is bounded inW 1,Q
0 (�).

Then, up to a subsequence, there exists v ∈ W 1,Q
0 (�) such that

vm⇀v weakly in W 1,Q
0 (�). (17)

By Sobolev embedding theorem, for every 1 ≤ σ < ∞, we get

vm → v in Lσ (�) and a.e. in �. (18)

From (15) and (17), we can conclude that

‖v‖
W 1,Q

0 (�)
≤ lim inf

m→∞ ‖vm‖
W 1,Q

0 (�)
≤ r , ∀m ∈ N. (19)

We claim that the sequence (vm) is such that

vm → v in W 1,Q
0 (�). (20)

In fact, since B = {w1, w2, . . . , wm, . . .} is a Schauder basis of W 1,Q
0 (�), for every

v ∈ W 1,Q
0 (�) there exists a unique sequence (an) in R such that v = ∑∞

j=1 a jw j .
Thus, we find that

ζm =
m∑

j=1

a jw j → v in W 1,Q
0 (�) as m → ∞ (21)

Let ψ = (vm − ζm) ∈ Bm be a test function in (16), then we have

∫

�

|∇Hnvm |Q−2∇Hnvm∇Hn (vm − ζm) = λ

∫

�

f (vm+)p f ′(vm+)(vm − ζm)

+
∫

�

exp(α1| f (vn)|
Q

Q−1 ) f ′(vn)(vm − ζm)

(22)

By virtue of (18) and (21) we obtain

∫

�

f (vm+)p f ′(vm+)(vm − ζm) → 0 as m → ∞. (23)

Moreover, thanks to Hölder inequality and Sobolev embedding theorem, we have

∫

�

exp(α2Q
′| f (vm)| Q

Q−1 ) f ′(vm+) ≤
∫

�

exp(α2Q
′|vm | Q

Q−1 )
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≤
(∫

�

1

) Q−2
Q−1

(∫

�

exp(αQ|vm | Q
Q−1 )

) 1
Q−1

= |�| Q−2
Q−1

(∫

�

exp(αQ|vm | Q
Q−1 )

) 1
Q−1

(24)

where 1
N ′ + 1

N = 1.
It follows from (19) and Trudinger–Moser inequality (4) that

∫

�

exp(α2Q
′| f (vm)| Q

Q−1 ) f ′(vm+) ≤ C1, ∀n ∈ N (25)

where C1 does not depend on n.
Also, by (18), we have

exp(α| f (vm)| Q
Q−1 ) f ′(vm) → exp(α| f (v)| Q

Q−1 ) f ′(v) a.e. in �.

Hence, from [27, Theorem 13.44] we get

exp(α| f (vm)| Q
Q−1 ) f ′(vm)⇀exp(α| f (v)| Q

Q−1 ) f ′(v) weakly in LQ′
(�). (26)

So we have from (21) and (26) that

∫

�

exp(α| f (vm)| Q
Q−1 )(vm − ζm) f ′(vm) → 0 as m → ∞. (27)

In view of (23) and (27) we get

∫

�

|∇Hnvm |Q−2∇Hnvm∇Hn (vm − ζm) → 0 as m → ∞. (28)

By virtue of (28) we obtain

∫

�

|∇Hnvm |Q−2∇Hnvm∇Hn (vm − v) → 0 as m → ∞. (29)

Now, applying the (S+)-property of �Q , see [36, Proposition 3.5], we conclude that
(20) is true.

Let k ∈ N, then for every m ≥ k we have

∫

�
|∇Hnvm |Q−2∇Hnvm∇Hnψk = λ

∫

�
f (vm+)p f ′(v)ψk +

∫

�
exp(α| f (vn)|

Q
Q−1 ) f ′(vm)ψk

(30)

for every ψk ∈ Bk .
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Using (17), we obtain

∫

�

|∇Hnvm |Q−2∇Hnvm∇Hnψk →
∫

�

|∇Hnv|Q−2∇Hnv∇Hnψk (31)

as m → ∞.
On the other hand, it follows from (26), (31) and Sobolev compact embedding,

letting m → ∞ in (30), that

∫

�
|∇Hn v|Q−2∇Hn v∇Hnψk = λ

∫

�
f (v+)p f ′(v+)ψk +

∫

�
exp(α| f (v)|

Q
Q−1 )′(v) f ′(v)ψk (32)

for every ψk ∈ Bk .
Since [Bk]k∈N is dense in W 1,Q

0 (�), we conclude that

∫

�

|∇Hnv|Q−2∇Hnv∇Hnψ = λ

∫

�

f (v+)p f ′(v+)ψ +
∫

�

exp(α| f (v)| Q
Q−1 ) f ′(v)ψ

(33)

for every ψ ∈ W 1,Q
0 (�).

Furthermore, v ≥ 0 a.e. in �. In fact, since v− ∈ W 1,Q
0 (�), then from (33) we

obtain
∫

�

|∇Hnv|Q−2∇Hnv∇Hnv− = λ

∫

�

f (v+)p f ′(v+)v− +
∫

�

exp(α| f (v)| Q
Q−1 ) f ′(v)v−.

Hence, we get

−
∫

�

|∇Hnv−|Q ≥
∫

�

|∇Hnv|Q−2∇Hnv∇Hnv−

=
∫

�

exp(α| f (v)| Q
Q−1 ) f ′(v)v− ≥ 0,

which implies that v− = 0. Since v 
= 0, the strong maximum principle v > 0 in �

(see [8]).
Consequently, we deduce that v is a positive solution to the equation (6), and thus

u = f (v) is a positive solution for the original problem (1).The proof of Theorem 1.2
is complete. ��
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