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Local ground-state and mountain pass solutions
for a p-Kirchhoff equation with critical exponent
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Abstract We study a Kirchhoff-type equation where the diffusion coefficient
is non-locally affected, the nonlinear diffusion phenomena is governed by the
p-Laplace operator and the population supply presents critical growth. The
energy functional associated to the equation is not bounded from below so that
there is no global ground-state; however, we prove the existence of a positive
local ground-state. We also prove that the equation has a positive solution of
mountain pass type. The concentration-compactness principle is a main tool
in our approach.
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1. Introduction

In the early 1950’s the theoretical study of spatial diffusion of biological populations
with PDEs started, [27], by naively considering the individuals as non-living parti-
cles, i.e., assuming that their movement is random. It was produced the equation

∂tu = ∆u+ σ(u), t ≥ 0, x ∈ Ω,

where u = u(t, x) denotes the population density, Ω ⊆ RN is the habitat and σ(u)
denotes the population supply due to births and deaths. Similar to the case of the
heat equation, the randomness assumption implies that the speed of propagation
becomes infinite. Obviously, the population supply could also be time-dependent
but, to simplify the presentation, we don’t consider this situation. PDE approaches
have some advantages over stochastic ones as PDEs allow to consider the influence of
spatial structure while probability frameworks are not so helpful to unveil ecological
laws for the space use, [24].
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Actually, the migration of individuals is not random. For example, in some
species, like arctic squirrels, the individuals migrate to avoid crowding, [5, 14]. So,
an important modeling advance came in [15], where, using the tools of continuum
mechanics, it was obtained the equation

∂tu = ∆η(u) + σ(u), t ≥ 0, x ∈ Ω, (1.1)

where η is a non-linear function such that η′(0) = 0 and η′(s) > 0 if s > 0. Equation
(1.1) is parabolic but degenerates to a first-order equation when u = 0, provoking
that a population, initially living in a bounded habitat, spreads out of it at a finite
velocity.

The theoretical study of biological diffusion is nowadays far from considering
individuals as non-living particles and it’s dealing even with cognitive processes,
[13, 24]. In this modeling context, there naturally appear situations where the
velocity of dispersion is given by

v = −aI(u)∇u, (1.2)

where a > 0 and the diffusion coefficient, ď = aI(u), is affected by non-local popu-
lation information like

I(u) =

∫
Ω

|u|θdx or I(u) =

∫
Ω

|∇u|θdx,

corresponding, respectively, to total population, (see e.g. [9–11]), and total energy
(see e.g. [1, 7, 19, 21, 22, 25, 35]); here θ ≥ 1. In the case of (1.2), a balance of
population gives the integro-differential equation

∂tu = aI(u)∆u+ σ(u), t ≥ 0, x ∈ Ω. (1.3)

Remark 1.1. Let p > 1. Let’s recall that the p-Laplace operator and the p-
biharmonic operator, given by ∆pw = div(|∇w|p−2∇w) and ∆2

pw = ∆(|∆|p−2∆w),
are quasilinear and, for p = 2, coincide with the Laplace operator and the bihar-
monic operator, respectively.

Since the difficulty to model biological situations just increases, the correspond-
ing equations will certainly have to consider additional non-linear ingredients, [24,
35, 37], and could even become of higher order, as it’s the case with the modeling
of physical phenomena, [26, 31, 32]. Then, both from the mathematical point of
view and from the theoretical population modeling perspective, it’s interesting to
question if it’s possible to achieve results for quasilinear models (see e.g. [36]) as it’s
the situation when the diffusion phenomenon is mainly governed by the p-Laplace
operator or the p-biharmonic operator; see e.g. [19, 20,22,36]).

Remark 1.2. Let’s recall that Kirchhoff’s original equation, [16],

∂ttu−
(
a+ b

(∫
RN

|∇u|2dx
))

∆u = σ(x, u),

is a non-local wave equation that considers changes in lenght of a string that are
produced by transverse vibrations. Its time-independent counterpart has been ex-
tensively studied under different conditions on σ; see e.g. [6, 8, 35,37]
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In this paper we study the stationary counterpart of a Kirchhoff-type equation
of the form

∂tu = ď∆pu+ σ(x, u), t ≥ 0, x ∈ RN , (Mt,p)

where the diffusion coefficient is given by

ď = a+ b

(∫
RN

|∇u|pdx
)p−1

,

with N ∈ N, p > 1 and a, b > 0. It’s known that Kirchhoff and Schrödinger-
Kirchhoff type problems can serve as models in physics and for the evolution of
biological species because they can help to understand situations of one species or
multiple species; see e.g. [12,22,31–33]. In (Mt,p), the non-linear population diffusion
is guided by the population energy, which gives the non-local condition to (Mt,p) and
helps to model cognitive processes like learning, memory and perception, [13, 24],
and the p-Laplace operator.

A number of open problems have to do with the stationary counterparts of
models for the space evolution of biological populations, [24]. Our study is mo-
tivated by [6], where, for p = 2, a positive local ground state was found for a
three-dimensional time-independent version of (Mt,p).

Let’s consider a population supply given by

σ(x, s) = |s|p
∗−2s+ λ ζ(x)γ(s),

where λ > 0 and p∗ = pN/(N − p) is the critical value for the Sobolev embed-
ding. It’s assumed that the functions ζ and γ verify the following conditions which
generalize those considered in [6]:

(ζ1) the function ζ is non-zero, non-negative and, for some values r, q ∈]p2, p2+2[,
it belongs to Lp∗/(p∗−q)(RN ) ∩ Lp∗/(p∗−r)(RN );

(ζ2) there exist x0 ∈ RN , δ̃, ρ̃ > 0 and β ∈]N − r(N − p)/p,N [ such that ζ(x) ≥
δ̃|x− x0|−β if |x− x0| < ρ̃;

(γd) γ ∈ C(R) is odd and γ(s) > 0, for every s > 0;

(γ0) γ(s)/(|s|q−2s) −→ 1, as s −→ 0;

(γ∞) γ(s)/(|s|r−2s) −→ 1, as |s| −→ +∞.

Then, we consider the problem

−

[
a+ b

(∫
RN

|∇u|pdx
)p−1

]
∆pv = |u|p

∗−2u+ λζ(x)γ(u), x ∈ RN , (Mp)

for u ∈ D1,p(RN ). Here D1,p(RN ) = {u ∈ Lp∗
(RN ) / |∇u| ∈ Lp(RN )} is the

homogeneous Sobolev space equipped with the norm given by

∥w∥D1,p =

(∫
RN

|∇w|pdx
)1/p

.

Our main result extends what was obtained in [6], where the authors dealt with
the simpler case of N = 3 and p = 2:
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Theorem 1.1. Let N ≥ 3. Assume conditions (ζ1)-(γ∞) and that

4p = 2N + 1 +
√
4N2 − 12N + 1. (N)

Then, there exists λ0 > 0 such that, for every λ ∈]0, λ0[,

i) problem (Mp) has a positive solution of mountain-pass type;

ii) problem (Mp) has a local non-negative ground-state solution, if 0 < a < p.

Remark 1.3. Observe that condition (N) implies that 1 < p < N ; see Table 1.

Table 1. Some values of p(N).

N p N p

3 2.0 6 5.38600

4 3.28077 7 6.40754

5 4.35078 N >> 1 ≈ N − 1/2

Example 1.1. Let’s consider a three-dimensional setting for Theorem 1.1. Con-
cretely, let’s consider that N = 3, p = 2, p∗ = 6, r = 9/2, q = 5, ρ̃ = 1, δ̃ = 1,
β = 3/4 + ε for some very small ε > 0, x0 = 0, and, denoting B = B(0, 1),

ζ(x) ≥ 1/|x|3/4+ε, x ∈ B;

ζ|B , the restriction of ζ to B, belongs to L6(B), and ζ − ζ|B is, for example, a
Schwartz function, i.e., a smooth function which together with its derivatives decay
at infinity faster than any polynomial. Now let’s denote by u a non-negative solution
provided by Theorem 1.1. Then, the population supply, σ = σ(x, u), is composed by
two terms: a principal autonomous component with critical growth, u5, and a non-
autonomous perturbation, λζ(x)γ(u), which has to be small enough (0 < λ < λ0).
Observe that if we are far from the center of the habitat, x0 = 0, i.e., if |x| >> 1,
then i) ζ(x) << 1, i.e., the position-dependent part of the perturbation term is
very small, and ii) one expects that also the population density becomes very small,
0 ≤ u(x) << 1, so that, by (γ0), we have γ(u) ≈ u4, for the density-dependent part
of the perturbation term. For the theoretical study of spatial diffusion of biological
populations, it is of natural interest to compute the solutions whose existence is
provided by Theorem 1.1, both for the setting just described and other situations of
biological interest, and, then, determine - at least numerically - if they are attractors
for the evolution equation (Mt,p), that is, if these solutions are stationary states
toward which a system would tend to evolve if the initial state is close enough to
them.

Remark 1.4. Let’s recall (see e.g. [3]) that on RN Baire measures coincide with
Borel and Radon measures; we denote this space by M̃. Given an element of M̃ in
its Jordan decomposition µ = µ+−µ−, we write |µ| = µ++µ− and ∥µ∥ = |µ|(RN ).
As usual, weak convergence in M̃ corresponds to convergence in the weak * topology
σ(M̃,Cb(RN )): µn ⇀ µ, as n −→ +∞ iff for every f ∈ Cb(RN ),

∫
RN fdµn −→∫

RN fdµ, as n −→ +∞. Let’s write M+ = {µ ∈ M̃ / µ = µ+ ∧ µ(RN ) < +∞},
and by δx the Dirac measure concentrated at x ∈ RN .
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To prove Theorem 1.1, our main tool is the concentration-compactness principle,
[18, Lemma I.1] and [30, Lemma 4.3]:

Lemma 1.1. Let (un)n∈N ⊆ D1,p(RN ) be such that

un ⇀ u, as n −→ +∞, in D1,p(RN ), (1.4)

|∇un|⇀ µ and |un|p
∗
⇀ ν, as n −→ +∞, in M+, (1.5)

Then there exist I ⊆ N, (xj)j∈I ⊆ RN , ν0, µ0 ≥ 0, (νj)j∈I ⊆]0,+∞[ and (µj)j∈I ⊆
]0,+∞[ such that

ν = |u|p
∗
+ ν0δ0 +

∑
j∈I

νjδxj
, µ ≥ |∇u|p + µ0δ0 +

∑
j∈I

µjδxj
, (1.6)

µ∞ ≥ Spν
p/p∗

∞ , µj ≥ Spν
p/p∗

j , j ∈ I ∪ {0}, (1.7)

lim
n−→+∞

∫
RN

|un|p
∗
dx =

∫
RN

|u|p
∗
dx+ ∥ν∥+ ν∞, (1.8)

where µ∞ = lim
R→+∞

lim
n→+∞

∫
|x|>R

|∇un|p and ν∞ = lim
R→+∞

lim
n→+∞

∫
|x|>R

|un|p
∗
.

Remark 1.5. Observe that, up to a subsequence, any bounded sequence (un)n∈N ⊆
D1,p(RN ) verifies (1.4)-(1.5).

As it will be shown (see Remark 3.1), the energy functional associated to (Mp) is
not bounded from below and, consequently, (Mp) can not have a global ground-state
solution. Point ii) of Theorem 1.1 is obtained by the direct method of the Calculus
of Variations and the mentioned concentration-compactness principle. There, by
local ground-state solution, it’s understood some u∗ ∈ D1,p(RN ) which is a weak
solution of (Mp) and verifies

J(u∗) = inf
u∈K

J(u),

where K = {u ∈ D1,p(RN ) \ {0} / J ′(u) = 0}, and the energy functional associated
to (Mp), J : D1,p(RN ) −→ R, is given by

J(u) = aN (u) + bB(u)− C(u)− λF(u), (1.9)

where, denoting Γ(s) =
∫ s

0
γ(t)dt, s ∈ R,

N (u) =
1

p
∥u∥pD1,p , C(u) = 1

p∗
∥u∥p

∗

Lp∗ (RN )
,

B(u) = 1

p2
∥u∥p

2

D1,p , F(u) =

∫
RN

ζ(x) Γ(u(x)) dx.

Point i) of Theorem 1.1 is obtained by the classical mountain-pass theorem (see
e.g. [2]) that we are about to introduce. In a Banach space E, a sequence (un)n∈N
is said to be a (PS) (Palais-Smale) sequence for a functional Q ∈ C1(E) iff i)
(Q(un))n∈N ⊆ R is bounded, and ii) Q′(un) −→ 0, as n −→ +∞, in E′. If, instead
of i), we assume i’) for some c ∈ R, Q(un) −→ c, as n −→ +∞, we say that (un)n∈N
is a (PS)c sequence for the functional Q. It’s said that the functional Q verifies the
(PS) condition if every (PS) sequence has a convergent subsequence. In the same
way, the functional Q verifies the (PS)c condition at the level c ∈ R if every (PS)c
sequence has a convergent subsequence.
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Theorem 1.2. Let E be a Banach space, I ∈ C1(E), O ⊆ E open, u∗i ∈ O and
u∗e ∈ E \ O such that

inf
w∈∂O

I(w) > max{I(u∗i ), I(u∗e)}.

Let’s denote Υ̂ = {Υ ∈ C([0, 1], E) /Υ(0) = u∗i ∧ Υ(1) = u∗e} and

c = inf
Υ∈Υ̂

max
s∈[0,1]

I(Υ(s)).

Then,

i) there exists a (PS)c-sequence for I;

ii) if I verifies (PS)c, c is a critical value of I and c > max{I(u∗i ), I(u∗e)}.

The rest of this paper is organized in the following way. In Section 2, we present
some notation and preliminary results. In Section 3 we prove point i) of Theorem
1.1, i.e., the existence of a positive mountain-pass solution of (Mp); see Proposition
3.1. In Section 4 we prove point ii) of Theorem 1.1, i.e., the existence of a positive
local ground-state solution of (Mp); see Proposition 4.1.

2. Preliminaries

Let’s observe that, by (N), we have a couple of points that will be useful:

2(p− 1) =
p∗

p
− 1, p∗ = 2p2 − p,

1

2Np
=
p∗ − p2

p∗p2
,
1

N
=
p∗ − p

pp∗
, (2.1)

2 ≤ p < N ≤ p+ 1 < p2 ≤ p∗ − 2. (2.2)

In the space D1,p(RN ) the balls and spheres centered at zero with radius α > 0
shall be denoted byBα = {u ∈ D1,p(RN ) / ∥u∥D1,p < α}, Bα = {u ∈ D1,p(RN ) / ∥u∥D1,p ≤
α} and Σα = {u ∈ D1,p(RN ) / ∥u∥D1,p = α}.

The best constant for the embedding D1,p(RN ) ⊆ Lp∗
(RN ) is given (see e.g. [28])

by

Sp = inf
u∈D1,p(RN )

u̸=0

∫
RN

|∇u(x)|p dx(∫
RN

|u(x)|p
∗
dx

)p/p∗ ,

so that
∀u ∈ D1,p(RN ) : ∥u∥Lp∗ (RN ) ≤ S−1/p

p ∥u∥D1,p . (2.3)

It’s known that the infimum in the definition of Sp is achieved at the function given

by v(x) = [1 + |x|p/(p−1)
]−(N−p)/p as well as at the functions given by

Uϵ(x) = ϵ(N−p)/p2
(
ϵ+ |x− x0|p/(p−1)

)−(N−p)/p

, (2.4)

where ϵ > 0; for convenience, x0 is the element appearing in (ζ2).
A number of consequences can be derived from (γd)-(γ∞). First, by (γd), the

mappings Γ, F and J are even, so that

∀u ∈ D1,p(RN ) : J(u) = J(|u|). (2.5)
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Lemma 2.1. Assume (γd)-(γ∞). Then, there exist b1, b2, b3, b4, θ0,M > 0 and
s̃ ≥ p2 such that

∀s ∈ R : |γ(s)| ≤ b1|s|q−1 + b2|s|r−1 ∧ |Γ(s)| ≤ b1|s|q + b2|s|r, (2.6)

∀|s| ≤ θ0 : Γ(s) ≥ b3|s|q ∧ s γ(s) ≥ b3|s|q, (2.7)

∀|s| ≥ θ0 : Γ(s) ≥ b4|s|r ∧ s γ(s) ≥ b4|s|r, (2.8)

∀|s| ≥M : 0 < s̃Γ(s) ≤ s γ(s). (2.9)

Proof. Let’s just prove the first estimate in (2.6) as the other points are worked
out in a similar way. By (γ0), for every ϵ > 0, there exists µϵ > 0 such that
|γ(s)− |s|q−2s| < ϵ|s|q−1 if |s| < µϵ. Therefore, for every s ∈]− µ1, µ1[,

|γ(s)| ≤ |γ(s)− |s|q−2s|+ |s|q−1 ≤ 2|s|q−1. (2.10)

By (γ∞), for every ϵ > 0, there exists Mϵ > 0 such that |γ(s) − |s|r−2s| < ϵ|s|r−1

if |s| > Mϵ. Therefore, by choosing M̃ > max{M1, µ1}, we have, for every s ∈
]−∞,−M̃ [∪]M̃,+∞[,

|γ(s)| ≤ |γ(s)− |s|r−2s|+ |s|r−1 ≤ 2|s|r−1. (2.11)

By (γd), there exist b̃1, b̃2 > 0 such that

∀s ∈ [−M̃1,−µ1] ∪ [µ1, M̃1] : |γ(s)| ≤ b̃1|s|q−1 + b̃2|s|r−1. (2.12)

Now we choose b1 = max{b̃1, 2} and b2 = max{b̃2, 2}. We conclude by combining
(2.10)-(2.12).

Working in a standard way, it’s proved that all the functionals appearing in (1.9)
are of class C1. We have, for u, h ∈ D1,p(RN ), that

⟨N ′(u), h⟩ =
∫
RN

|∇u|p−2∇u∇h dx,

⟨B′(u), h⟩ =
(∫

RN

|∇u|pdx
)p−1 ∫

RN

|∇u|p−2∇u∇h dx,

⟨C′(u), h⟩ =
∫
RN

|u|p
∗−2uh dx,

⟨F ′(u), h⟩ =
∫
RN

ζ(x) γ(u)h dx.

A function u0 ∈ D1,p(RN ) is a critical point of J , as well as a weak solution of
(Mp), iff ⟨J ′(u0), h⟩ = 0, for every h ∈ D1,p(RN ).

Let’s also consider the functional κ : D1,p(RN ) −→ R, given by

κ(u) =

∫
RN

ζ(x)uγ(u) dx.

Working as in the proof of [34, Lemma 2.13] and using Lemma 2.1, we get the
following result.

Lemma 2.2. Assume (N) and conditions (ζ1)-(γ∞). The functional κ is weakly
continuous, i.e., if un ⇀ u, as n −→ +∞, weakly in D1,p(RN ), then κ(un) −→ κ(u),
as n −→ +∞.
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Let’s recall that given Ω ⊆ RN open with finite Lebesgue measure, |Ω| < +∞,
and 1 ≤ α < θ < +∞, it holds

∀u ∈ Lθ(Ω) : ∥u∥Lα(Ω) ≤ |Ω|
θ−α
θα ∥u∥Lθ(Ω) . (2.13)

For a radius R > 0 and any center y ∈ RN , VR = |B(y,R)| = πN/2RN/Γ̃(1 +
N/2), where Γ̃ denotes the classical gamma function. On Rm, we consider the norms

given by |(a1, ..., am)|1 =
∑m

k=1 |ak|, |(a1, ..., am)|η = (
∑m

k=1 |ak|η)
1/η

, η > 1. Let’s
pick zη,m > 0 such that |y|1 ≤ zη,m|y|η, for every y ∈ Rm.

3. A mountain-pass solution

Let’s first show that the functional J presents a mountain-pass geometry.

Lemma 3.1. Assume (N) and conditions (ζ1)-(γ∞). Then,

i) there exists α, ρ > 0 such that J(u) ≥ α, for every u ∈ Σρ;

ii) there exists u0 ∈ D1,p(RN ) \Bρ such that J(u0) < 0.

Proof. Let u ∈ D1,p(RN ) \ {0}. By (2.3) and Hölder’s inequality with P =
p∗/(p∗ − q) and P ′ = p∗/q, we have that∫

RN

ζ(x)|u|q ≤ ∥ζ∥
L

p∗
p∗−q

∥u∥q
Lp∗ (RN )

≤ S−q/p
p ∥ζ∥

L
p∗

p∗−q (RN )
∥u∥qD1,p . (3.1)

In the same way, we get that∫
RN

ζ(x)|u|r ≤ ∥ζ∥
L

p∗
p∗−r

∥u∥rLp∗ (RN ) ≤ S−r/p
p ∥ζ∥

L
p∗

p∗−r (RN )
∥u∥rD1,p . (3.2)

By (1.9), (2.6), (3.1) and (3.2), we get, for ρ > 0 small enough, u ∈ Sρ and
α = aρp/p2,

J(u) = aN (u) + bB(u)− C(u)− λF(u)

≥ a

p
∥u∥pD1,p +

b

p2
∥u∥p

2

D1,p − 1

p∗Sp∗/p
p

∥u∥p
∗

D1,p − λ

∫
RN

ζ(x) (b1|u|q + b2|u|r)

≥ a

p
∥u∥pD1,p +

b

p2
∥u∥p

2

D1,p − 1

p∗Sp∗/p
p

∥u∥p
∗

D1,p − λb1 ∥ζ∥
L

p∗
p∗−q (RN )

∥u∥qD1,p

− λb2 ∥ζ∥
L

p∗
p∗−r (RN )

∥u∥rD1,p ⪆
aρp

p
> α.

Now let’s choose u ∈ D1,p(RN ) so that ∥u∥Lp∗ (RN ) = 1. By (ζ1), (2.2), (3.1) and

(3.2), we have, for t > ρ big enough, that u0 = tu verifies

J(u0) = aN (tu) + bB(tu)− C(tu)− λF(tu)

=
atp

p
∥u∥pD1,p +

btp
2

p2
∥u∥p

2

D1,p − tp
∗

p∗
∥u∥p

∗

Lp∗ (RN )
− λ

∫
RN

ζ(x)Γ(tu)dx ≈ − t
p∗

p∗
.
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Remark 3.1. Point 3 in the proof of Lemma 3.1, actually shows that

J(u) −→ −∞, as ∥u∥D1,p −→ +∞.

Let’s write

Λ =
A

N

(
a+

b

2p
Ap−1

)
and

A = 2−1/(p−1)

[
bSp∗/p

p +

√
b2S2p∗/p

p + 4aSp∗/p
p

]1/(p−1)

.

Lemma 3.2. Assume (N) and conditions (ζ1)-(γ∞). Let (un)n∈N ⊆ D1,p(RN ) be
a Palais-Smale sequence for the functional J at level c < Λ−C0λ, for some C0 > 0.
Then, there exists u ∈ D1,p(RN ) such that

∥un∥Lp∗ (RN ) −→ ∥u∥Lp∗ (RN ) , as n −→ +∞.

Proof. 1) Let’s prove that (un)n∈N is bounded in D1,p(RN ), i.e., there exists z > 0
such that, for every n ∈ N, ∥un∥D1,p ≤ z. Since (un)n∈N is a Palais-Smale sequence
at the level c, we have that

⟨J ′(un), un⟩ = apN (un) + bp2B(un)− ∥un∥p
∗

Lp∗ (RN )
− λκ(un) −→ 0, (3.3)

whence it is proved that there exists Ĉ > 0 such that ∥un∥Lp∗ (RN ) ≤ Ĉ, for every

n ∈ N. For each n ∈ N, let’s write Tn = B(0, n) ∩ {x ∈ RN / |un(x)| ≤ M}. Then,
by (2.6) and using Hölder’s inequality, we get∣∣∣∣∫

Tn

ζ(x)

[
1

p2
unγ(un)− Γ(un)

]
dx

∣∣∣∣ ≤ ∫
Tn

ζ(x)

∣∣∣∣ 1p2unγ(un)− Γ(un)

∣∣∣∣ dx
≤
(
1 +

1

p2

)∫
Tn

ζ(x) [b1|un|q + b2|un|r] dx

≤
[
1 +

1

p2

] [
b1 ∥ζ∥

L
p∗

p∗−q (Tn)
∥un∥q/p

∗

Lp∗ (Tn)
+ b2 ∥ζ∥

L
p∗

p∗−r (Tn)
∥un∥r/p

∗

Lp∗ (Tn)

]
≤ C0,

where

C0 =

[
1 +

1

p2

](
b1 ∥ζ∥

L
p∗

p∗−q (RN )
Ĉq/p∗

+ b2 ∥ζ∥
L

p∗
p∗−r (RN )

Ĉr/p∗
)
.

It follows, for every n ∈ N, that∫
Tn

ζ(x)

[
1

p2
unγ(un)− Γ(un)

]
dx ≥ −C0.

Then, for n big enough, we have, by (2.6), (2.9), (3.1) and (3.2), that

c+
1

p2
Ĉp∗

+ λ
1

p2

(
b1 ∥ζ∥

L
p∗

p∗−q (RN )
Ĉq + b2 ∥ζ∥

L
p∗

p∗−r (RN )
Ĉr

)
≥ J(un)−

1

p2
⟨J ′(un), un⟩
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≥ a(p− 1)

p
N (un) +

p∗ − p2

p2
C(un) + λ

∫
Tn

ζ(x)

[
1

p2
unγ(un)− Γ(un)

]
dx

+ λ

∫
RN\Tn

ζ(x)

[
1

p2
unγ(un)− Γ(un)

]
≥ a(p− 1)

p2
∥un∥pD1,p − λC0 ≥ −λC0.

2) By (2.5), we can assume that, for every n ∈ N, un(x) ≥ 0, for a.e. x ∈ RN . Then,
by Remark 1.5 and Lemma 1.1 (whose notation is compatible with this proof), up
to a subsequence, there exists u ∈ D1,p(RN ) such that un ⇀ u, as n −→ +∞, and
u(x) ≥ 0, for a.e. x ∈ RN . Now, given j ∈ I and ϵ > 0 small enough, we choose
φϵ,j ∈ C∞

0 (RN ) such that

φ1) 0 ≤ φϵ,j(x) ≤ 1 and ∇φϵ,j(x) ≤ 4/ϵ, if x ∈ RN ;

φ2) φϵ,j(x) = 1 if x ∈ B(xj , ϵ); and

φ3) φϵ,j(x) = 0 if x ∈ RN \B(xj , 2ϵ).

Then, for every n ∈ N, we have, by (2.13), (2.3) and φ1)-φ3), that

∥φϵ,jun∥D1,p =

∫
RN

|∇(φϵ,jun)|pdx ≤
∫
Bϵ,j

(φϵ,j |∇un|+ un|∇φϵ,j |)pdx

≤
∫
Bϵ,j

(
|∇un|dx+

4

ϵ
un

)p

dx ≤ zpp,2

∫
Bϵ,j

(
|∇un|pdx+

4p

ϵp
upn

)
dx

≤ zpp,2

[∫
Bϵ,j

|∇un|pdx+
4p

ϵp
V

p∗−p
p∗

2ϵ ∥un∥Lp∗ (Bϵ,j)

]

≤ zpp,2 ∥un∥
p
D1,p

[
1 +

4p

ϵp
V

p∗−p
p∗

2ϵ S−1
p

]
,

where Bϵ,j = B(xj , 2ϵ). Then, by point 1, (φϵ,jun)n∈N is bounded in D1,p(RN ).
3) By point 1) and (1.9), we have that

⟨aN ′(un) + bB′(un)− C′(un)− λF ′(un), φϵ,jun⟩ −→ 0, as n −→ +∞,

whence,∫
RN

|un|p
∗
φϵ,jdx+ λ

∫
RN

ζ(x)γ(un)φϵ,jundx (3.4)

=
(
a+ b ∥un∥p

2−p
D1,p

)∫
RN

[
|∇un|p−1

un∇φϵ,j + |∇un|p φϵ,j

]
dx+ o(1).

a) Let’s prove that

lim
ϵ→0

lim
n→+∞

(
a+ b ∥un∥p

2−p
D1,p

)∫
RN

|∇un|p−1
un∇φϵ,jdx = 0.

By using (2.1), φ1)-φ3), Hölder’s inequality and point 1), we have that∣∣∣∣ lim
n→+∞

∫
RN

|∇un|p−1
un∇φϵ,jdx

∣∣∣∣ ≤ lim
n→+∞

4

ϵ

∫
Bϵ,j

|∇un|p−1 |un| dx

≤ 4

ϵ
lim

n→+∞

(∫
Bϵ,j

|∇un|p dx

) p−1
p
(∫

Bϵ,j

|un|p dx

) 1
p
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≤ 4zp−1V
p∗−p
pp∗

2ϵ

ϵ
lim

n→+∞
∥un∥Lp∗ (Bϵ,j)

=
8zp−1π1/2

N

√
Γ̃(1 + N

2 )
lim

n→+∞
∥un∥Lp∗ (Bϵ,j)

.

b) By Remark 1.5, φ1), (1.5) and (1.6) we have that

lim
ϵ→0

lim
n→+∞

∫
RN

|un|p
∗
φϵ,j(x)dx = lim

ϵ→0

∫
RN

φϵ,j(x)dν = νj , (3.5)

lim
n→+∞

∫
RN

|∇un|p φϵ,j(x)dx =

∫
RN

φϵ,j(x)dµ

≥
∫
Bϵ,j

φϵ,j |∇u|p dx+

∫
Bϵ,j

φϵ,j d

(
µ0δ0 +

∑
k∈I

µkδk

)
≥ µj ,

so that

lim
n→+∞

(
a+ b ∥un∥p

2−p
D1,p

)∫
RN

|∇un|p φϵ,jdx (3.6)

≥ lim
n→+∞

[
a+ b

(∫
RN

|∇un|p φϵ,j

)p−1
]∫

RN

|∇un|p φϵ,jdx ≥
(
a+ bµp−1

j

)
µj .

c) By (2.6) and Hölder’s inequality, we get∣∣∣∣limϵ→0
lim

n→+∞

∫
RN

φϵ,j(x)ζ(x)γ(un)undx

∣∣∣∣ ≤ lim
ϵ→0

∫
Bϵ,j

ζ(x) [b1 |u|q + b2 |u|r] dx

≤ b1S−q/p
p ∥ζ∥

L
p∗

p∗−q (Bϵ,j)
lim
ϵ−→0

∥∇u∥qLp(Bϵ,j)

+ b2S−r/p
p ∥ζ∥

L
p∗

p∗−r (Bϵ,j)
lim
ϵ−→0

∥∇u∥rLp(Bϵ,j)
= 0. (3.7)

d) From (3.4)-(3.7) we get νj ≥ aµj+bµ
p
j , which, together with (1.7) and (2.1), imply

that µj

(
µ
2(p−1)
j − bSp∗/p

p µp−1
j − aSp∗/p

p

)
≥ 0 and µ

p∗/p
j ≥ aSp∗/p

p µj + bSp∗/p
p µp

j , so

that either
(i) µj = 0 or (ii) µj ≥ A.

4) By using a family of cut-off functions (ηR)R>0 ⊆ C∞
0 (RN ) such that

η1) 0 ≤ ηR(x) ≤ 1 and ∇ηR(x) ≤ 4/R, if x ∈ RN ;

η2) ηR(x) = 0 if x ∈ B(0, R); and

η3) ηR(x) = 1 if x ∈ RN \B(0, 2R);

and working as in point 3), it can be proved that ν∞ ≥ aµ∞+ bµp
∞. Then, by using

the first inequality in (1.7), we get that either

(iii) µ∞ = 0 or (iv) µ∞ ≥ A.

5) We claim that the cases (ii) and (iv), appearing in points 3.d) and 4), do not
happen. With this we conclude. Let’s prove the claim. Let’s assume that (iv) holds.
By (2.9), (3.3) and the weak lower semicontinuity of ∥·∥D1,p , we get

c = lim
n−→+∞

(
J(un)−

1

p2
⟨J ′(un), un⟩

)
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= lim
n−→+∞

(
a(p− 1)

p
N (un) +

p∗ − p2

p2
C(un)

+λ

∫
RN

ζ(x)

[
1

p2
unγ(un)− Γ(un)

]
dx

)

≥ a
p− 1

p2
µ∞ +

p∗ − p2

p∗p2
ν∞ +

p∗ − p2

p∗p2

∫
RN

|un|p
∗
dx− λC0

≥ a
p− 1

p2
A+

p∗ − p2

p∗p2
(aA+ bAp)− λC0

=
p∗ − p

p∗p
aA+

p∗ − p2

p∗p2
bAp − λC0 =

A

N

(
a+

b

2p
Ap−1

)
− λC0 = Λ− λC0,

which is a contradiction. Also by contradiction it’s proved that there is no j for
which (ii) holds.

For ϵ > 0, let’s consider the non-negative function uϵ ∈ D1,p(RN ), given by
uϵ(x) = φR(x)Uϵ(x), x ∈ RN , where Uϵ is given in (2.4) and, for some R > 0,
φR ∈ C∞

0 (RN ) verifies 0 ≤ φR(x) ≤ 1 if x ∈ RN ; φR(x) = 1 if x ∈ B(0, R); and
φR(x) = 0 if x ∈ RN \B(0, 2R). Whenever 0 < ϵ << 1, [34], there exist K1,K2 > 0,
such that

∥∇uϵ∥pLp(RN ) = K1 +O
(
ϵ1/p

)
, ∥uϵ∥pLp∗ (RN )

= K2 +O (ϵ) , (3.8)∫
RN

|uϵ|p dx = O
(
ϵ1/p

)
,

K1

K2
= Sp. (3.9)

Lemma 3.3. Assume (N) and conditions (ζ1)-(γ∞). Then, there exist λ0 > 0 and
ǔ ∈ D1,p(RN ) such that sup

t≥0
J(tǔ) < Λ− C0λ, whenever λ ∈]0, λ0[.

Proof. 1) Let’s prove that there exist t0, t1 > 0 and tϵ ∈ [t0, t1] such that

J(tϵuϵ) = sup
t≥0

J(tuϵ).

Since J(0) = 0, by reasoning as in points 2) and 3) in the proof of Lemma 3.1, there
exists tϵ > 0 such that

J(tϵuϵ) = sup
t≥0

J(tuϵ),
dJ(tuϵ)

dt

∣∣∣∣
t=tϵ

= 0 and
d2J(tuϵ)

dt2

∣∣∣∣
t=tϵ

≤ 0. (3.10)

a) By the inequality in (3.10), (2.6) and (ζ1), we get

0 ≥ ap(p− 1)tp−2
ϵ N (uϵ) + bp2(p2 − 1)tp

2−2
ϵ B(uϵ)− p∗(p∗ − 1)tp

∗−2
ϵ C(uϵ)

− λ

∫
RN

ζ(x)
[
b1(q − 1)tq−2

ϵ |uϵ|q + b2(r − 1)tr−2
ϵ |uϵ|r

]
, (3.11)

whence, we deduce that there is some t0 > 0 such that tϵ ≥ t0, for every ϵ > 0.
In fact, if this were not the case, we could pick a sequence (tϵk)k∈N ⊆]0,+∞[ such
that tϵk −→ 0, as k −→ +∞ and so, by (3.11), for k big enough, 0 ≥ a(p −
1)tp−2

ϵk
∥uϵk∥

p
D1,p , producing uϵk = 0, which is false.
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b) From the second equality in (3.10) and (2.6), we get

0 ≤ aptp−1
ϵ N (uϵ) + bp2tp

2−1
ϵ B(uϵ)− p∗tp

∗−1
ϵ C(uϵ) + λ

∫
RN

ζ(x)γ(tϵuϵ)uϵdx

≤ aptp−1
ϵ N (uϵ) + bp2tp

2−1
ϵ B(uϵ)− p∗tp

∗−1
ϵ C(uϵ)

+ λ

∫
RN

ζ
[
b1 |tϵuϵ|q−1

+ b2 |tϵuϵ|r−1
]
uϵdx,

so that

0 ≤ a
∥uϵ∥pD1,p

tp
2−p

ϵ

+ b ∥uϵ∥p
2

D1,p − tp
∗−p2

ϵ

∫
RN

|uϵ|p
∗
dx

+ λ

∫
RN

ζ(x)
[
b1t

q−p2

ϵ |uϵ|q + b2t
r−p2

ϵ |uϵ|r
]
dx,

whence, by (ζ1), (3.8) and (3.9) and working by contradiction, we deduce that there
is some t1 > 0 such that tϵ ≤ t1, for every ϵ > 0, small enough.
2) Let’s prove that there exists C∗ > 0 such that for every ϵ > 0 small,

w(tϵ) ≤ Λ + C∗ϵ
1/p,

where w(t) = aN (tuϵ) + bB(tuϵ)− C(tuϵ), t ≥ 0.
a) Since w(0) = 0, by working as in points 2 and 3 in the proof of Lemma 3.1, we
get that w(t) −→ −∞, as t −→ +∞ and w(t) > 0 whenever 0 < t << 1. Then,
there exists t̃ϵ > 0 such that w(t̃ϵ) = sup

t≥0
w(t) and, consequently, w′(t̃ϵ) = 0. The

last, together with (2.1), implies that

apN (uϵ) + bp2B(uϵ)t̃p
2−p

ϵ − p∗C(uϵ)t̃p
∗−p

ϵ = 0,

p∗C(uϵ)t̃2p(p−1)
ϵ − bp2B(uϵ)t̃p(p−1)

ϵ − apN (uϵ) = 0,

so that t̃ϵ = (b1/b2)
1/p(p−1), where b2 = 2 ∥uϵ∥p

∗

Lp∗ (RN )
and

b1 = b ∥uϵ∥p
2

D1,p +

√
b2 ∥uϵ∥2p

2

D1,p + 4a ∥uϵ∥pD1,p ∥uϵ∥p
∗

Lp∗ (RN )
.

b) By using (2.1), (3.8) and (3.9), we get

∥uϵ∥p(p−1)
D1,p

t̃
−p(p−1)
ϵ

=
b ∥uϵ∥2p

2−p
D1,p +

√
b2 ∥uϵ∥2(2p

2−p)
D1,p + 4a ∥uϵ∥2p

2−p
D1,p ∥uϵ∥p

∗

Lp∗ (RN )

2 ∥uϵ∥p
∗

Lp∗ (RN )

=
bSp∗/p

p +

√
b2S2p∗/p

p + 4aSp∗/p
p

2
+O(ϵ

1
p ) = Ap−1 +O(ϵ1/p). (3.12)

c) Since w is increasing on [0, t̃ϵ], it follows, by (3.12) and (2.1), that

w(tϵ) ≤ w(t̃ϵ) = aN (t̃ϵuϵ) + bB(t̃ϵuϵ)− C(t̃ϵuϵ)

=
a

p

(
∥uϵ∥p(p−1)

D1,p t̃p(p−1)
ϵ

)1/(p−1)

+
b

p2

(
∥uϵ∥p(p−1)

D1,p t̃p(p−1)
ϵ

)p/(p−1)
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− ∥uϵ∥−p∗

D1,p ∥uϵ∥p
∗

Lp∗ (RN )

(
∥uϵ∥p(p−1)

D1,p t̃p(p−1)
ϵ

)p∗/[p(p−1)]

= A

[
a

p
+

b

p2
Ap−1 − 1

p∗Sp∗/p
p

A2(p−1)

]
+O

(
ϵ1/p

)

= A

a
p
+
b2Sp∗/p

p

2p2
+
b

√
b2S2p∗/p

p + 4aSp∗/p
p

2p2

− 1

p∗Sp∗/p
p

b2S2p∗/p
p

2
+
bSp∗/p

p

√
b2S2p∗/p

p + 4aSp∗/p
p

2
+ aSp∗/p

p

+O
(
ϵ1/p

)

= A

ap∗ − p

p∗p
+ b

p∗ − p2

p∗p2
·
bSp∗/p

p +

√
b2S2p∗/p

p + 4aSp∗/p
p

2

+O
(
ϵ1/p

)
=
A

N

(
a+

b

2p
Ap−1

)
+O

(
ϵ1/p

)
= Λ+O

(
ϵ1/p

)
.

3) Working by contradiction, it’s proved that tϵuϵ(x) ≥ θ0, for every x ∈ B(x0, ρ̃),
where θ0 and ρ̃ are given in Lemma 2.1 and (ζ2), respectively. Then, using (2.1), we
can see that θ0 ≤ tεuε(x0) = tϵφR(x0)/ϵ

1/2p. By (ζ1), (ζ2), (2.7), (2.8) and writing
Θ0 = {x ∈ RN / tϵuϵ(x) ≥ θ0}, we get, for some d1, d2 > 0, that for every ϵ > 0

such that ϵ < min
{
(t0φR(x0)/θ0)

2p
, ρ̃p/(p−1)

}
,

F(tϵuϵ) =

∫
Θc

0

ζ(x)Γ(tϵuϵ)dx+

∫
Θ0

ζ(x)Γ(tϵuϵ)dx

≥ b3

∫
Θc

0

ζ(x) |tϵuϵ|q dx+ b4

∫
Θ0

ζ(x) |tϵuϵ|r dx ≥ b4

∫
Θ0

ζ(x) |tϵuϵ|r dx

≥ b4δ̃t
r
ϵ

∫
B(x0,ρ̃)

φr
R |x− x0|−β

ϵ
(N−p)r

p2[
ϵ+ |x− x0|

p
p−1

] (N−p)r
p

≥ d1ϵ
(N−p)r

p2 trϵ

∫ ρ̃

0

ρN−1−βdρ[
ϵ+ ρ

p
p−1

] (N−p)r
p

,

= d2t
r
ϵ expϵ

(
(p− 1)

[
N

p
− r(N − p)

p2
− β

p

])
. (3.13)

By (ζ2), we have that Np− r(N − p)− pβ < 0. Now we choose

0 < λ0 = min
{
1, [d2t

r
1/(C0 + C∗)]

Np−r(N−p)−pβ
p

}
and consider λ ∈]0, λ0[. By choosing ϵ = λp, we have that

expϵ

(
(p− 1)

[
N

p
− r(N − p)

p2
− β

p

])
> 1.

Then, by (3.13), we get

J(tϵuϵ) = Λ + C∗ϵ
1/p − λd2t

r
1 expϵ

(
[p− 1]

[
N

p
− r(N − p)

p2
− β

p

])
< Λ− C0λ,

whence we get the function ǔ ∈ D1,p(RN ) we are looking for.
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Proposition 3.1. Assume (N) and conditions (ζ1)-(γ∞). For every λ ∈]0, λ0[,
problem (Mp) has a positive solution of mountain-pass type.

Proof. We shall apply Theorem 1.2 with E = D1,p(RN ), O = Bρ, ∂O = Σρ,
u∗i = 0, u∗e = u0, I = J , J(u∗i ) = J(0) = 0 and, by Lemma 3.1, J(u∗e) = J(u0) < 0,
so that the mountain pass geometry holds.
1) By point i) in Theorem 1.2, there exists a (PS)c-sequence for J , say (un)n∈N ⊆
D1,p(RN ), where

c = inf
Υ∈Υ̂

max
s∈[0,1]

J(Υ(s)).

Then, by Lemma 3.3,

0 < α < c ≤ max
t∈[0,1]

J(tǔ) ≤ sup
t≥0

J(tǔ) < Λ− C0λ. (3.14)

Moreover, by (2.3) and Lemma 3.2, (un)n∈N is bounded in D1,p(RN ) and Lp∗
(RN ).

By Remark 1.5, up to a subsequence, there exists u∗ ∈ D1,p(RN ) such that un ⇀ u∗,
as n −→ +∞, weakly in D1,p(RN ).
2) As in point 2 in the proof of Lemma 3.2, we can assume that un(x) ≥ 0, for
a.e. x ∈ RN , for every n ∈ N. Then, point 1) implies, up to a subsequence, that
u∗(x) ≥ 0, for a.e. x ∈ RN . Now we claim that

un −→ u∗, as n −→ +∞, in D1,p(RN ). (3.15)

Then, J verifies the (PS)c condition and therefore, by the continuity of J and point
ii) in Theorem 1.2,

J(u∗) = c > α > 0,

so that u∗ ̸= 0. The last, together with u∗ ≥ 0 a.e. and the fact that −∆pu∗ ≥ 0
weakly, allow us to show, by the strong maximum principle for the operator −∆p

(see e.g. [17, 23,29]), that u∗ is a positive solution of (Mp).
3) Let’s prove (3.15). Without loss of generality, in (ζ1) we can assume that q ≤ r,
so that (q − 1)/(r − 1) ≤ 1.
a) Given u ∈ D1,p(RN ), we have, by (2.6), (2.1)-(2.2) and the triangle inequality,
that

∥γ(u)∥
L

p∗
r−1 (Bc)

≤
∥∥b1|u|q−1 + b2|u|r−1

∥∥
L

p∗
r−1 (Bc)

≤ b1 ∥u∥q−1

L
p∗(q−1)

r−1 (Bc)

+ b2 ∥u∥r−1

Lp∗ (Bc)
< +∞. (3.16)

b) Let’s show that, for every ψ ∈ D1,p(RN ),∫
RN

ζ(x)γ(un)ψ(x)dx −→
∫
RN

ζ(x)γ(u∗)ψ(x)dx, as n −→ +∞.

Let ψ ∈ D1,p(RN ) and ϵ > 0. By (ζ1), we choose R > 0 such that

max
{
∥ζ∥Lp∗/(p∗−q)(Bc) , ∥ζ∥Lp∗/(p∗−q)(Bc)

}
< ϵ,

where we have written B = B(0, R). By Hölder’s inequality, (3.16) and the bound-
edness of (un)n∈N ⊆ D1,p(RN ), we find a constant V1 > 0 such that, for every
n ∈ N,∣∣∣∣∫

RN

ζ(x)[γ(un)− γ(u∗)]ψ(x)dx

∣∣∣∣ ≤ ∥ζ∥
L

p∗
p∗−r (Bc)

∥[γ(un)− γ(u)]ψ∥
L

p∗
r (Bc)
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≤ ϵ ∥ψ∥Lp∗ (Bc) ∥γ(un)− γ(u∗)∥
L

p∗
r−1 (Bc)

≤ ϵ ∥ψ∥Lp∗ (Bc)

(
b1 ∥un∥q−1

L
p∗(q−1)

r−1 (Bc)

+ b2 ∥un∥r−1

Lp∗ (Bc)

+b1 ∥u∗∥q−1

L
p∗(q−1)

r−1 (Bc)

+ b2 ∥u∗∥r−1

Lp∗ (Bc)

)
≤ V1ϵ. (3.17)

On the other hand, by using the continuity of γ and that un −→ u∗, as n −→ +∞,
in Lι

loc(RN ), q ≤ ι ≤ r, we get that

γ(un) −→ γ(u∗), as n −→ +∞, in Lι
loc(RN ).

Using the last and Hölder’s inequality, it’s found a constant V2 > 0 such that, for
n ∈ N big enough, ∣∣∣∣∫

B

ζ(x)[γ(un)− γ(u∗)]ψ(x)dx

∣∣∣∣ ≤ V2ε,

which, together with (3.17), allows us to conclude.
c) By using Lemma 3.2, it’s proved that, for every ψ ∈ D1,p(RN ),∫

RN

up
∗−1

n ψdx −→
∫
RN

up
∗−1

∗ ψdx, as n −→ +∞,

which, together with point b), implies that, for every ψ ∈ D1,p(RN ),

⟨J ′(un), ψ⟩ −→ 0 = ⟨J ′(u∗), ψ⟩ , as n −→ +∞.

The last combined with ⟨J ′(un), un⟩ −→ 0, as n −→ +∞, produces ∥un∥D1,p −→
∥u∗∥D1,p , as n −→ +∞. Then, [4, Prop.3.32] allow us to conclude.

4. A local ground-state solution

In this section we prove point ii) of Theorem 1.1.

Proposition 4.1. Assume (N), conditions (ζ1)-(γ∞) and that 0 < a < p. For
every λ ∈]0, λ0[, problem (Mp) has a local non-negative ground-state solution.

Proof. 1) Let’s prove that J is bounded from below on K, i.e.,

m = inf
u∈K

J(u) > −∞.

By Proposition 3.1, K ≠ ∅. Let u ∈ K. By adapting the argument used in point 1
of Lemma 3.2, we get that∫

RN

ζ(x)

[
1

p2
γ(u)u− Γ(u)

]
dx ≥ −C0.

Therefore, by (1.9), (2.2) and ⟨J ′(u), u⟩ = 0, we have that

J(u) = a

[
1− a

p

]
N (u) +

[
p∗

p2
− 1

]
C(u) + λ

∫
RN

ζ(x)

[
1

p2
γ(u)u− Γ(u)

]
dx
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≥ −C0.

2) By point 1) and (2.5), we can pick (un)n∈N ⊆ D1,p(RN ) \ {0}, a Palais-Smale
sequence at level m formed by non-negative elements: J(un) −→ m and J ′(un) −→
0, as n −→ +∞, and un(x) ≥ 0, for every x ∈ RN and n ∈ N. Since (un)n∈N is
bounded in D1,p(RN ), up to a subsequence, there exists û ∈ D1,p(RN ) such that
un ⇀ û, as n −→ +∞. We claim that û ̸= 0. Working as in point 3) of the proof
of Proposition 3.1, we get that

un −→ û, as n −→ +∞, in D1,p(RN ).

Since J is of class C1, we have that û is a non-negative local ground-state solution
of (Mp). By the strong maximum principle for −∆p, as it was used in point 2 of
the proof of Proposition 3.1, we actually have that û is positive.

3) Let’s prove the claim. Let’s assume that û = 0. Then, by Lemma 2.2, it follows
that

κ(un) −→ 0, as n −→ +∞.

The last implies that

a ∥un∥pD1,p + b ∥un∥p
2

D1,p − ∥un∥p
∗

Lp∗ (RN )
= o(1),

a ∥un∥pD1,p + b ∥un∥p
2

D1,p − S−p∗/p
p ∥un∥p

∗

D1,p ≤ o(1). (4.1)

By (2.3), (4.1) and denoting H = lim
n−→+∞

∥un∥D1,p , we obtain

0 ≤ Hp
(
H2p(p−1) − bSp∗/p

p Hp(p−1) − aSp∗/p
p

)
,

2Hp(p−1) ≥ bSp∗/p
p +

√
b2S2p∗/p

p + 4aSp∗/p
p = 2Ap−1,

so that

Hp ≥ A. (4.2)

By working as in point 3.b) of the proof of Proposition 3.1, we get∫
RN

ζ(x)Γ(un)dx −→ 0, as n −→ +∞. (4.3)

By the last, (2.1), (4.1), (4.2) and (4.3), we get

m = lim
n−→+∞

{aN (un) + bB(un)− C(un)− λF(un)}

= lim
n→+∞

[
a
p∗ − p

p∗p
∥vn∥pD1,p + b

p∗ − p2

p2p∗
∥vn∥p

2

D1,p

]
=

a

N
Hp + b

1

2Np
Hp2

≥ A

N

[
a+

b

2p
Ap−1

]
= Λ,

which, by Lemma 3.3 and point 1), implies that Λ ≤ m < Λ−C0λ, a contradiction.
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