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Abstract

By a direct method it’s proved the existence of sign-changing and non-negative
ground states for the p-Schrödinger-Poisson system{

−∆pu + V (x)|u|p−2u + K(x)ϕ(x)|u|p−2u = a(x)|u|q−2u, x ∈ RN ,

−∆pϕ = K(x)|u|p, x ∈ RN ,

where N ∈ N, 2p = −1 +
√
1 + 8N < q < p∗ and the potentials a ̸= 0 and

V verify conditions that allow them to be sign-changing. Here ∆p denotes the
p-Laplace operator. We show that the sign-changing ground state has two nodal
domains. The energies of the found ground state solutions verify Weth’s energy
doubling property.

Keywords: p-Schrödinger-Poisson system, ground-state solution, sign-changing
solution, indefinite potential
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1 Introduction

The use of PDE models to theoretically study the phenomena of spatial diffusion for
biological populations started in the 1950’s with [34] and presents some advantages
over stochastic approaches. It allows, for example, to unveil ecological laws for the
space use, [37].

In [34] it was derived the equation,

∂tu−∆u = σ(u, x), t ≥ 0, x ∈ Ω,

where u = u(t, x) stands for the population density, Ω ⊆ RN is the habitat and
σ models the population supply due to births and deaths. As in the derivation of
the heat equation, it was assumed that the movement of the individuals is random,
meaning that they behave like non-living particles. A consequence of this tremendous
simplification is an infinite speed of propagation.

Migration of animals is not random, [23]; e.g., at a saturation point arctic squirrels
migrate to avoid crowding, [11]. Therefore, from the mathematical modeling point of
view, an important step was given in [24], where a continuum mechanics approach was
applied to get the equation

∂tu−∆η(u) = σ(u, x), t ≥ 0, x ∈ Ω, (1)

η being a non-linear function such that η′(0) = 0 and η′(s) > 0 if s > 0. Equation (1)
degenerates to a first-order equation when u = 0, a fact that makes a population that
initially lives in a bounded habitat to spread out of it at a finite speed.

The modeling of biological diffusion phenomena is now far from using the original
randomness assumption and it’s dealing with much more complicated situations which
in many cases produce equations with a non-local component, i.e., u depends on some
global information of u itself. Actually, a very general way to model the dynamics of
a population is obtained by using the equation

∂tu− Λu = σ(u, x), t ≥ 0, x ∈ Ω, (2)

where the operator Λ, which could be integral or integro-differential, captures the main
component of the diffusion process affected by non-local population information. Of
particular interest is to find solutions of the time-independent or stationary version of
(2),

−Λu = σ(u, x), x ∈ Ω, (3)

and, then, somehow determine if they are attractors, that is, if these solutions are
stationary states toward which a solution of (2) would tend to evolve if the initial
state u(0, ·) is close enough to some of them.

Let’s consider a couple of situations which are clearly of interest.

S1 To model cognitive processes like memory (see e.g. [22, 37]), it helps to assume
that the velocity of dispersion is given by v = −aI(u)∇u, where a > 0 and the dif-
fusion coefficient, aI(u), depends on population information like the total population,
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∫
Ω
|u|θdx (see e.g. [18–20])) or total energy,

∫
Ω
|∇u|θdx (see e.g. [2, 15, 38, 40])); here

θ ≥ 1. In this case, a balance of population produces an integro-differential equation,

∂tu− aI(u)∆u = σ(u, x), t ≥ 0, x ∈ Ω. (4)

The stationary counterpart of (4) is an elliptic equation of Schrödinger-Kirchhoff or
Kirchhoff-type. This kind of equations has been extensively studied from a mathemat-
ical point of view under different assumptions and with motivations coming mainly
from physics but, in last years, flowing also from biology; see e.g. [14, 16, 40, 43] for
the semilinear situation and [2, 27–31]) for the quasilinear counterpart.
S2 (3) has attracted particular attention for situations where the non-local non-linear
diffusion operator Λ equals or contains an integral operator given by

Lp
Ku(x) = −2 lim

ϵ↓0

∫
RN\Bϵ(x)

|u(x)− u(y)|p−2(u(x)− u(y))K(x− y) dy,

where p > 1. The function K : RN \ {0} −→ R is a perceptual kernel or detection
function, related to what an individual perceives, and Lp

Ku(·) could be interpreted
as a resource perception function, which is able to capture information of how the
individuals perceived the resources in their habitat, [36, 37]. In this way, the population
dynamics modeled by (2) would be directly affected by the capacity of learning of the
individuals thru perception.
S3 A characteristic of the biological evolution of a species yields in that

a) each individual’s behaviour is affected by the quality of the habitat, and, at the
same time,

b) the quality of the habitat is affected by the behaviour of the members of the
population.

Point a) has been widely considered in models whose stationary component is a
Schrödinger-Kirchhoff-type equation, even though the principal motivation did not
come from biology but from physics. In [31] is studied a situation involving one species
while in [30] is studied a model for several species interacting with each other.

As far as we know, the coupling a)-b) has not been considered in the literature of
population dynamics. On the other hand, our attention was called by the paper [41]
which study a semilinear Schrödinger-Kirchhoff equation, because, from our point of
view, it’s quasilinear version is adaptable to situations in the mathematical modeling
of biological evolution. That’s what we deal with here. Starting from this work and
considering the results obtained in [13, 14, 17, 27–31, 36, 37] and other papers, we
are currently studying the existence of attractors for several settings motivated by
population dynamics that mix components S1, S2 and S3, as mentioned before.

Let’s consider a theoretical model for the spatial evolution of a species, (2), when
the habitat is the whole space and the diffusion process is quasilinear and mainly
governed by p-Laplace operator,

∆pv = div(|∇v|p−2∇v),
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p > 1, and the population supply attends the coupling a)-b) by means of a p-Poisson
equation: {

∂tu−∆pu = σϕ(u, x), t ≥ 0, x ∈ RN ,

−∆pϕ = K(x)|u|p, x ∈ RN ,
(5)

with
σϕ(u, x) = a(x)|u|q−2u− [V (x) +K(x)ϕ]|u|p−2u.

The interest yields in finding stationary solutions than can eventually be attractors for
the dynamical system (5), i.e., solutions of the following p-Schrödinger-Poisson system,{

−∆pu+ V (x)|u|p−2u+K(x)ϕ|u|p−2u = a(x)|u|q−2u, x ∈ RN ,

−∆pϕ = K(x)|u|p, x ∈ RN .
(SP)

We assume that the quality of the habitat is not homogeneous, modeled by the space-
dependent potential V , and that its quality is linked to the behaviour of the members
of the population, a factor modeled by the potential Kϕ via the p-Poisson equation.
In this context, it’s natural to allow the potentials V and a to be indefinite in the
sense that they are not necessarily non-negative.

In the physics framework, the case of N = 3 and p = 2 for (SP) is important, for
example, in the study of standing wave solutions of the time-dependent Schrödinger-
Poisson system, that is, solutions having the form e−iωtu(x). In this context V (x)
corresponds to the perturbation of a group of many particles at the point x ∈ R3 while
the function K models a charge corrector to the density u2, acting thru the Poisson
equation. The right side of the Schrödinger equation in (SP) captures the interaction
among the particles. For more information on this situation both from the physical
and mathematical point of view, we refer the reader to [3, 4, 6, 33] and the references
therein.

Remark 1 Given a real function f , we shall denote by f+ and f− its positive and negative
part, respectively, so that f = f+ + f−.

Before introducing the conditions we shall deal with and writing our main result in
a precise way, let’s introduce the product space where we will find two weak solutions
for (SP):

(ϕ0, u0), (ϕ1, u1) ∈ D1,p(RN )×Wp
V (R

N );

see Theorem 1 below.
As usual, D1,p(RN ) stands for the homogeneous Sobolev space equipped with the

norm given by

∥ϕ∥D1,p =

(∫
RN

|∇ϕ|pdx
)1/p

.

We denote by S the best constant for the Sobolev embedding, [35],

W1,p(RN ) ⊆ D1,p(RN ) ⊆ Lp∗
(RN ), (6)
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i.e.,

S = inf
ϕ∈D1,p(RN )

∥ϕ∥pD1,p

∥ϕ∥p
Lp∗ (RN )

> 0,

so that

∀ϕ ∈ D1,p(RN ) : ∥ϕ∥Lp∗ (RN ) ≤
1

S1/p
∥ϕ∥D1,p . (7)

To introduce the space Wp
V (RN ), let’s observe that by condition (V), (7), (6) and

Hölder’s inequality, we have, for u ∈ W1,p(RN ), that∣∣∣∣∫
RN

V −(x)|u|pdx
∣∣∣∣ ≤ (∫

RN

|V −(x)|N/pdx

)p/N (∫
RN

|u|p
∗
dx

)(N−p)/N

≤ ∥u∥pD1,p ,

so that

∥u∥V,p =

(∫
RN

[|∇u|p + V (x)|u|p] dx
)1/p

defines a norm on W1,p(RN ) which (see e.g. [7, Sec.2]) is equivalent to the usual norm
of W1,p(RN ). We denote

Wp
V (R

N ) = (W1,p(RN ), ∥·∥V,p),

so that there exist C∗, Č, Ĉ > 0 such that

∀u ∈ Wp
V (R

N ) : ∥u∥Lp∗ (RN ) ≤ C∗ ∥u∥V,p , (8)

∀u ∈ Wp
V (R

N ) : Č ∥u∥V,p ≤ ∥u∥W1,p(RN ) ≤ Ĉ ∥u∥V,p . (9)

Along the paper we assume that

2p = −1 +
√
1 + 8N < q < p∗ = pN/(N − p) (10)

and that the following conditions hold.

(V) V − ∈ LN/p(RN ) with ∥V −∥LN/p(RN ) < S and

V (x) −→ V∞ > 0, as |x| −→ +∞;

(K) K ∈ Lp(RN ) is non-negative;
(a) a ∈ C(RN ) ∩ Ls(RN ), a ̸= 0, where s = pN/(Np+ pq −Nq).

Theorem 1 Suppose that conditions (V), (K), and (a) hold. Then, there exist
(ϕ0, u0), (ϕ1, u1) ∈ D1,p(RN )×Wp

V (RN ) weak solutions of (SP) such that

i) u0 is a sign-changing ground state solution with energy m;
ii) u0 has exactly two nodal domains;
iii) u1 is a non-negative ground state solution with energy c;
iv) Weth’s doubling energy holds: m ≥ 2c.
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In Theorem 1,
I(u0) = m = inf

u∈M
I(u) (11)

and
I(u1) = c = inf

u∈N
I(u), (12)

where it’s considered the natural energy functional I : Wp
V (RN ) −→ R, given by

I(u) = O(u) + Ψ(u)− Λ(u), (13)

with

O(u) =
1

p
∥u∥pV,p , Λ(u) =

1

q

∫
RN

a(x)|u|qdx, (14)

Ψ(u) =
1

2p

∫
RN

K(x)ϕu(x)|u|pdx, (15)

on two different sets: the sign-changing Nehari manifold

M =
{
u ∈ Wp

V (R
N ) / u− ̸= 0, u+ ̸= 0,

〈
I ′(u), u+

〉
=
〈
I ′(u), u−〉 = 0

}
(16)

for point i), and
N =

{
u ∈ Wp

V (R
N ) \ {0} / ⟨I ′(u), u⟩ = 0

}
for point ii). It’s immediate that

M ⊆ N . (17)

Before getting the minimizations (11) and (12), we shall transform (SP) into a
Schrödinger equation containing a non-local term; for this we shall verify, using a
Minty-Browder’s theorem, that there is only one solution for the Poisson equation of
the system so that (15) is well defined. This is done in Section 2.

To attack Theorem 1, some preliminary results, like regularity properties of the
energy functional I, are needed. For this a number of inequalities are very useful,
Remark 3. This is done in Section 3.

In Section 4 we work out the proof of Theorem 1. To get point i) of Theorem 1,
we shall first show that a) M ≠ ∅ (an immediate consequence of Lemma 12), b) there
exists u0 ∈ M verifying (11), and c) by using a deformation lemma, u0 is in fact a
sign-changing ground state solution of the Schrödinger equation in (SP). Point ii) is
obtained by Reduction ad Absurdum. Point iii) is obtained following the scheme used
for point i) and, in its turn, point iii) allows to get point iv) in a very direct way.

2 Uniqueness for the p-Poisson equation

Let’s fix an element u ∈ Wp
V (RN ). We want to show that the p-Poisson equation,

−∆pϕ = K(x)|u|p, x ∈ RN , (P)

has only one solution ϕu ∈ D1,p(RN ).
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To achieve our goal, we shall use a Minty-Browder’s theorem which is a nonlin-
ear extension of Stampacchia’s theorem; see e.g. [8, Th.5.6&5.16]. Minty-Browder’s
theorem is proved by using Galerkin’s method, [10]. In [21] are provided other exten-
tions of Stampacchia and Lax-Milgram theorems to deal with equations involving the
p-Laplace operador.

Theorem 2 (Minty-Browder’s theorem) Let E be a reflexive Banach space and A : E −→ E′

a continuous nonlinear map which is strictly monotone and coercive. Then, for every η ∈ E′,
there exists a unique solution u ∈ E such that

A(u) = η.

In Theorem 2, that A is strictly monotone and coercive means, respectively, that

∀v1, v2 ∈ E, v1 ̸= v2 : ⟨A(v1)−A(v2), v1 − v2⟩ > 0,

⟨A(v), v⟩
∥v∥E

−→ +∞, as ∥v∥E −→ +∞.

On D1,p(RN ) the functionals naturally associated to (P) are given by

J(w) =
1

p

∫
RN

|∇w|pdx and ⟨bu, w⟩ =
∫
RN

K(x)|u|pw(x)dx. (18)

In fact, if bu and J ′ verify the conditions of Theorem 2, then there exists a unique
ϕu ∈ D1,p(RN ) such that, for every h ∈ D1,p(RN ),∫

RN

|∇ϕu|p−2∇ϕu∇hdx =

∫
RN

K(x)|u|ph(x)dx, (19)

i.e., ϕu is the unique solution of (P). This is done in Lemmas 3—5.

Remark 2 As usual, the conjugate of a number α > 0 is denoted by α′, so that 1/α+1/α′ = 1.
For future use, let’s write

p• = (p∗)′ =
Np

Np−N + p
, (20)

τ =
Np−N + p

p2 + p−N
and τ ′ =

Np−N + p

p(N − p)
. (21)

By (10), p2 + p−N = N , so that

τp• = p and pp•τ ′ = p∗. (22)

Remark 3 Before getting into the proofs let’s introduce a number of useful inequalities mainly
taken from [26]. Let l ∈ N and x, y ∈ Rl. Then,

22−p|y − x|p−1 ≥
∣∣∣|y|p−2y − |x|p−2x

∣∣∣ , if 1 ≤ p ≤ 2; (23)

7



〈
|y|p−2y − |x|p−2x, y − x

〉
≥ (p− 1)|y − x|2

(1 + |y|2 + |x|2)(2−p)/2
, if 1 < p < 2; (24)∣∣∣|y|p−2y − |x|p−2x

∣∣∣
(p− 1)

∣∣|y|(p−2)/2y − |x|(p−2)/2x
∣∣ ≤

(
|y|(p−2)/2 + |x|(p−2)/2

)
, if p ≥ 2; (25)

∣∣∣|y|(p−2)/2y − |x|(p−2)/2x
∣∣∣2 ≤ p2

4

〈
|y|p−2y − |x|p−2x, y − x

〉
, if p ≥ 2; (26)

22−p|y − x|p ≤ 1

2

(
|y|p−2 + |x|p−2

)
|y − x|2

≤
〈
|y|p−2y − |x|p−2x, y − x

〉
, if p ≥ 2. (27)

Recall that, given µ > 0, it holds

∀t, s ∈ R : (|t|+ |s|)µ ≤ Dµ(|t|µ + |s|µ), (28)

where Dµ = 1 if 0 < µ < 1 and Dµ = 2µ−1 if µ ≥ 1. In particular, D2 = 2. Then, by (25),

(26)(28) and Cauchy-Schwartz inequality in Rl, it follows that∣∣∣|y|p−2y − |x|p−2x
∣∣∣ ≤ 1

2
p2(p− 1)2

(
|y|p−2 + |x|p−2

)
|y − x|, if p ≥ 2. (29)

Lemma 3 The functional bu belongs to
(
D1,p(RN )

)′
.

Proof Let h ∈ D1,p(RN ). By (K), (7) and Hölder’s inequality,

|⟨bu, h⟩| =
∫
RN

K(x)|u|phdx ≤
∥∥K|u|p

∥∥
Lp• (RN )

∥h∥Lp∗ (RN )

≤ 1

S1/p

∥∥K|u|p
∥∥
Lp• (RN )

∥h∥D1,p . (30)

By (22) and Hölder’s inequality,∥∥K|u|p
∥∥p•

Lp• (RN )
=

∫
RN

(
|K(x)|p

•
|u|pp

•)
dx

≤
(∫

RN
|K(x)|τp

•
dx

)1/τ (∫
RN

|u|pτ
′p•

dx

)1/τ ′

= ∥K∥p
•

Lp(RN )
∥u∥pp

•

Lp∗ (RN )
,

which, replaced in (30), gives

|⟨bu, h⟩| ≤
1

S1/p
∥K∥Lp(RN ) ∥u∥

p

Lp∗ (RN )
∥h∥D1,p .

We conclude by the arbitrariness of h. □

Lemma 4 The funciontal J is of class C1 and its Fréchet differential J ′ : D1,p(RN ) −→
(D1,p(RN ))′ is given, for ϕ0, h ∈ D1,p(RN ), by〈

J ′(ϕ0), h
〉
=

∫
RN

|∇ϕ0|p−2∇ϕ0∇h(x)dx. (31)

Moreover,
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i) J ′ is (p− 1)-Hölder continuous for 1 < p ≤ 2, so that J is of class C1,p−1;
ii) J ′ is locally Lipschitz continuous for p > 2.

Proof 1. Let ϕ0 ∈ D1,p(RN ). The directional derivative of J at the point ϕ0 in a direc-
tion h ∈ D1,p(RN ) is easily computed, it’s linear in h and, by Hölder’s inequality,
verifies

|∂hJ(ϕ0)| =
∣∣∣∣ ddλJ(ϕ0 + λh)

∣∣∣∣
λ=0

=

∣∣∣∣∫
RN

|∇ϕ0|p−2∇ϕ0∇h dx

∣∣∣∣ ≤ ∥ϕ0∥p−1
D1,p ∥h∥D1,p ,

which shows that J is Gateaux differentiable at ϕ0 and J ′
G(ϕ0) acts as in the right

side of (31).
2. To show that J is of class C1 (and therefore Fréchet differentiable with formula

(31) holding), we need to prove (see e.g. [5]) that J ′
G : D1,p(RN ) −→ (D1,p(RN ))′

is continuous.
Let ϕ0, ϕ, h ∈ D1,p(RN ).

a) Let’s assume that 1 < p ≤ 2. Then, by (23) and Cauchy-Schwartz and Hölder
inequalities,

| ⟨J ′
G(ϕ)− J ′

G(ϕ0), h⟩ | =
∣∣∣∣∫

RN

|∇ϕ|p−2∇ϕ∇hdx−
∫
RN

|∇ϕ0|p−2∇ϕ0∇hdx

∣∣∣∣
≤
∫
RN

∣∣|∇ϕ|p−2∇ϕ− |∇ϕ0|p−2∇ϕ0

∣∣ |∇h|dx

≤ 22−p

∫
RN

|∇ϕ−∇ϕ0|p−1|∇h|dx ≤ 22−p ∥ϕ− ϕ0∥p−1
D1,p ∥h∥D1,p ,

which, by the arbitrariness of h, shows that

∥J ′
G(ϕ)− J ′

G(ϕ0)∥ ≤ 22−p ∥ϕ− ϕ0∥p−1
D1,p . (32)

b) Let’s assume that p > 2. Then, by (29), (28) and Hölder’s inequality with α =
p− 1 > 1 and α′ = (p− 1)/(p− 2), it follows that

| ⟨J ′
G(ϕ)− J ′

G(ϕ0), h⟩ | =
∣∣∣∣∫

RN

[
|∇ϕ|p−2∇ϕ− |∇ϕ0|p−2∇ϕ0

]
∇h dx

∣∣∣∣
≤ 1

2
p2(p− 1)2

∫
RN

[
|∇ϕ|p−2 + |∇ϕ0|p−2

]
|∇ϕ−∇ϕ0| |∇h|dx

≤ 1

2
p2(p− 1)2 ∥h∥D1,p

(∫
RN

[
|∇ϕ|p−2 + |∇ϕ0|p−2

]p/(p−1) |∇ϕ−∇ϕ0|p/(p−1)dx

) p−1
p

≤ 1

2
p2(p− 1)2 ∥h∥D1,p ∥ϕ− ϕ0∥D1,p

(∫
RN

[
|∇ϕ|p−2 + |∇ϕ0|p−2

]p/(p−2)
dx

)(p−2)/p

≤ 1

2
p2(p− 1)2D

(p−2)/p
p/(p−2)

[
∥ϕ∥pD1,p + ∥ϕ0∥pD1,p

](p−2)/p ∥ϕ− ϕ0∥D1,p ∥h∥D1,p ,
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which, by the arbitrariness of h, shows that

∥J ′
G(ϕ)− J ′

G(ϕ0)∥ ≤ 1

2
p2(p− 1)2D

(p−2)/p
p/(p−2)·

·
[
∥ϕ∥pD1,p + ∥ϕ0∥pD1,p

](p−2)/p ∥ϕ− ϕ0∥D1,p . (33)

Since ϕ and ϕ0 were chosen arbitrarily, point i) follows from (32) and point ii) follows
from (33). □

Lemma 5 J ′ is strictly monotone and coercive.

Proof The coercivity of J ′ is easy to prove. So let’s just deal with the strict monotony. Let
v1, v2 ∈ D1,p(RN ) such that v1 ̸= v2.

1. Assume that p ≥ 2. By (27), we have that

⟨J ′(v1)− J ′(v2), v1 − v2⟩ =
∫
RN

(|∇v1|p−2∇v1 − |∇v2|p−2∇v2) · (∇v1 −∇v2)dx

≥ 22−p

∫
RN

|∇v1 −∇v2|pdx = 22−p ∥v1 − v2∥pD1,p > 0.

2. Assume that 1 < p < 2. By (24), (28) and Hölder’s inverse inequality with α = p/2
and α′ = p/(p− 2), it follows that

|∇v1 −∇v2|p ≤ 2p/2[|∇v1|2 + |∇v2|2]p/2

and

⟨J ′(v1)− J ′(v2), v1 − v2⟩ =
∫
RN

(|∇v1|p−2∇v1 − |∇v2|p−2∇v2) · (∇v1 −∇v2)dx

≥ (p− 1)

∫
RN

(
1 + |∇v1|2 + |∇v2|2

)(p−2)/2 |∇v1 −∇v2|2dx

≥ (p− 1)

(∫
RN

(|∇v1|2 + |∇v2|2)p/2dx
)(p−2)/p(∫

RN

|∇v1 −∇v2|pdx
)2/p

≥ 2−(p−2)/2(p− 1)

(∫
RN

|∇v1 −∇v2|pdx
)(p−2)/p(∫

RN

|∇v1 −∇v2|pdx
)2/p

= 2−(p−2)/2(p− 1) ∥v1 − v2∥pD1,p > 0.

□

10



3 Preliminary results

Thanks to the uniqueness established in Section 2, system (SP) is reduced to a non-
local Schrödinger equation,

−∆pu+ V (x)|u|p−2u+K(x)ϕu(x)|u|p−2u = a(x)|u|q−2u, x ∈ RN , (S)

where, [26], the function ϕu has the form

ϕu(x) =

∫
RN

K(y)|u(y)|p

|x− y|d
dy, (34)

where d = (N − p)/(p− 1).

Remark 4 Let’s consider u ∈ Wp
V (RN ) and (un)n∈N ⊆ Wp

V (RN ) such that un −→ u, as

n −→ +∞, in Wp
V (RN ) and a.e. in RN . With help of Brezis-Lieb’s lemma (see e.g. [1, 9]),

it’s not difficult to prove that

|un|p −→ |u|p, as n −→ +∞, in Lp∗/p(RN ).

Remark 5 To ease the computations, for n ∈ N, we shall write

bn = bun and ϕn = ϕun .

Lemma 6 The mappings Wp
V (RN ) ∋ u 7−→ bu ∈ (D1,p(RN ))′ and Wp

V (RN ) ∋ u 7−→ ϕu ∈
D1,p(RN ) are continuous.

Proof Let u ∈ Wp
V (RN ) and (un)n∈N ⊆ Wp

V (RN ) be such that un −→ u, as n −→ +∞, in

Wp
V (RN ).

1. By (20)-(22) and Hölder’s inequality, we get, for h ∈ D1,p(RN ),

| ⟨bn − bu, h⟩ | =
∣∣∣∣∫

RN

K(x)(|un|p − |u|p)h dx
∣∣∣∣

≤ ∥K(|un|p − |u|p)∥Lp• (RN ) ∥h∥Lp∗ (RN )

≤ 1

S1/p
∥K∥Lτp• (RN ) ∥(|un|p − |u|p)∥Lτ′p• (RN ) ∥h∥D1,p

=
1

S1/p
∥K∥Lp(RN ) ∥(|un|p − |u|p)∥Lp∗/p(RN ) ∥h∥D1,p ,

so that, by the arbitrariness of h and Remark 4 - perhaps up to a subsequence,

∥bn − bu∥ ≤ 1

S1/p
∥K∥Lp(RN ) ∥(|un|p − |u|p)∥Lp∗/p(RN ) −→ 0, (35)

as n −→ +∞.
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2. By (19) and (18), we have, for h ∈ D1,p(RN ) and n ∈ N, that∫
RN

|∇ϕu|p−2∇ϕu∇hdx = ⟨bu, h⟩ ,∫
RN

|∇ϕn|p−2∇ϕn∇hdx = ⟨bn, h⟩ ,

so that, choosing h = ϕn − ϕu,∫
RN

(
|∇ϕn|p−2∇ϕn − |∇ϕu|p−2∇ϕu

)
· (∇ϕn −∇ϕu) dx

= ⟨bn − bu, ϕn − ϕu⟩ . (36)

Let’s assume that p ≥ 2 as the case of 1 < p < 2 is dealt with in a similar way. By
(27) and (36), we have that

∥ϕn − ϕu∥pD1,p =

∫
RN

|∇ϕn −∇ϕu|pdx

≤ 2p−2

∫
RN

(
|∇ϕn|p−2∇ϕn − |∇ϕu|p−2∇ϕu

)
· (∇ϕn −∇ϕu) dx

≤ 2p−2| ⟨bn − bu, ϕn − ϕu⟩ | ≤ 2p−2∥bn − bu∥ · ∥ϕn − ϕu∥D1,p ,

so that, by (35), as n −→ +∞,

∥ϕn − ϕu∥D1,p ≤ 2(p−2)/(p−1)∥bn − bu∥1/(p−1) −→ 0.

□

The energy functional for (S) is given in (13)-(15), i.e., I : Wp
V (RN ) −→ R, given

by I(u) = O(u) + Ψ(u)− Λ(u), where

O(u) =
1

p
∥u∥pV,p , Λ(u) =

1

q

∫
RN

a(x)|u|qdx,

and

Ψ(u) =
1

2p

∫
RN

K(x)|u(x)|p
∫
RN

K(y)|u(y)|p

|x− y|d
dy dx.

By using the scheme for the proof of Lemma 4, in particular taking advantage of
the inequalities stated in Remark 3, it’s proved that the functionals O and Λ are of
class C1 and, therefore, Fréchet differentiable. For u, h ∈ Wp

V (RN ), we have that

⟨O′(u), h⟩ =
∫
RN

[
|∇u|p−2∇u∇h+ V (x)|u|p−2uh

]
dx, (37)

⟨Λ′(u), h⟩ =
∫
RN

a(x)|u|q−2uh dx. (38)

12



Proposition 7 The functional Ψ is of class C1 and, therefore, Fréchet differentiable.
Consequently, the functional I is of class C1 and, for every u, h ∈ Wp

V (RN ),〈
Ψ′(u), h

〉
=

∫
RN

K(x)ϕu(x) |u|p−2uh dx, (39)〈
I′(u), h

〉
=

〈
O′(u), h

〉
+

〈
Ψ′(u), h

〉
−

〈
Λ′(u), h

〉
.

Proof 1. Let’s consider a point u ∈ Wp
V (RN ) and a direction h ∈ Wp

V (RN ). We have,
using Fubini’s theorem (see e.g. [8, Th.4.5]), that

∂hΨ(u) =
d

dλ
Ψ(u+ λh)

∣∣∣∣
λ=0

=
1

2

∫
RN

K(x)

(∫
RN

K(y) |u(y)|p−2

|x− y|d
u(y)h(y)dy

)
|u(x)|p dx

+
1

2

∫
RN

K(x)

(∫
RN

K(y)

|x− y|d
|u(y)|p dy

)
|u(x)|p−2

u(x)h(x) dx

=

∫
RN

K(x)ϕu(x) |u(x)|p−2u(x)h(x)dx,

which is clearly linear in h.
2. By (8) and Hölder’s inequality with (20), we have that

|∂hΨ(u)| =
∣∣∣∣∫

RN

K(x)ϕu(x)|u|p−2uh dx

∣∣∣∣
≤
∥∥Kϕu|u|p−1

∥∥
Lp• (RN )

∥h∥Lp∗ (RN )

≤ C∗
∥∥Kϕu|u|p−1

∥∥
Lp• (RN )

∥h∥V,p . (40)

Observe that, by (10), p− 1 = (Np− 3N + 2p)/(N − p) and that the numbers

r =
Np−N + p

N
, r∗ =

Np−N + p

N − p
and r• =

Np−N + p

Np− 3N + 2p
,

verify 1/r + 1/r∗ + 1/r• = 1 as well as

p•r = p, p•r∗ = p∗ and r•(p− 1)p• =
Np

N − p
= p∗.

Then, using Hölder’s inequality as given in [8, pp.93], we get

∥∥Kϕu|u|p−1
∥∥p•

Lp• (RN )
=

∫
RN

(∣∣K(x)ϕu(x)|u|p−1
∣∣)p•

dx

≤
(∫

RN

|K(x)p
•rdx

)p•/(p•r)(∫
RN

|ϕu(x)|p
•r∗dx

)p•/(p•r∗)

·
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·
(∫

RN

|u|r
•(p−1)p•

dx

) p•(p−1)
(p−1)p•r•

=

(∫
RN

|K(x)|pdx
)p•/p(∫

RN

|ϕu(x)|p
∗
dx

)p•/p∗ (∫
RN

|u|p
∗
dx

)p•(p−1)/p∗

= ∥K∥p
•

Lp(RN ) ∥ϕu∥p
•

Lp∗ (RN )
∥u∥p

•(p−1)

Lp∗ (RN )
. (41)

By (40) and (41),

|∂hΨ(u)| ≤ C∗ ∥K∥Lp(RN ) ∥ϕu∥Lp∗ (RN ) ∥u∥
p−1

Lp∗ (RN )
∥h∥V,p ,

which, by the arbitrariness of h, shows that Ψ is Gateaux differentiable and Ψ′
G(u)

acts as in the right side of (39).
3. To show that Ψ is of class C1 (and therefore Fréchet differentiable with formula

(39) holding), we need to prove that Ψ′
G : D1,p(RN ) −→ (D1,p(RN ))′ is continuous.

Let u ∈ Wp
V (RN ) and (un)n∈N ⊆ Wp

V (RN ) such that

un −→ u, as n −→ +∞, in Wp
V (R

N ).

Let’s assume that p > 2; the case of 1 < p ≤ 2 is treated in a similar way. Given
h ∈ Wp

V (RN ), we have, by Hölder’s inequality with α = N(p− 1)/(N − p) > 1 and
α′ = N(p− 1)/(Np− 2N + p), that

| ⟨Ψ′
G(u)−Ψ′

G(un), h⟩ | ≤
∫
RN

K(x)
∣∣ϕu(x)|u|p−2u− ϕn(x)|un|p−2un

∣∣ |h|dx
≤ ∥K∥Lp(RN )

(∫
RN

∣∣ϕu(x)|u|p−2u− ϕn(x)|un|p−2un

∣∣p/(p−1) |h|p/(p−1)dx

)(p−1)/p

≤ ∥K∥Lp(RN ) ∥h∥Lp∗ (RN )

(∫
RN

∣∣ϕu |u|p−2u− ϕn |un|p−2un

∣∣ pN
Np−2N+p dx

)Np−2N+p
pN

≤ ∥K∥Lp(RN ) ∥h∥Lp∗ (RN )

(∫
RN

∣∣ϕu|u|p−2u− ϕn|un|p−2un

∣∣ N
N−p dx

)N−p
N

, (42)

where we have used the equality p = (Np − 2N + p)/(N − p) which comes from
(10). By using (28) and Hölder and triangle inequalities, we get∫

RN

∣∣ϕu(x)|u|p−2u− ϕn(x)|un|p−2un

∣∣ N
N−p dx

≤
∫
RN

(
|ϕu − ϕn| · |u|p−1 + ϕn ·

∣∣|u|p−2u− |un|p−2un

∣∣) N
N−p dx

≤ 2p/(N−p)

[∫
RN

|ϕu − ϕn|
N

N−p |u|
N(p−1)
N−p dx
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+

∫
RN

ϕ
N

N−p
n ·

∣∣|u|p−2u− |un|p−2un

∣∣ N
N−p dx

]
≤ 2p/(N−p)

[
∥ϕu − ϕn∥p

∗/p

Lp∗ (RN )
∥u∥p

∗(p−1)/p

Lp∗ (RN )

+ ∥ϕn∥p
∗/p

Lp∗ (RN )

(∫
RN

∣∣|u|p−2u− |un|p−2un

∣∣p∗/(p−1)
dx

)(p−1)/p
]
−→ 0, (43)

as n −→ +∞. Points (42) and (43) show that ∥Ψ′
G(u)−Ψ′

G(un)∥ −→ 0, as n −→
+∞, so that Ψ′

G is continuous.
□

4 Ground states for the non-local Schrödinger
equation

As we mentioned in Section 1, we shall find a sign-changing ground state solution for
(S) on the sign-changing Nehari manifold

M =
{
u ∈ Wp

V (R
N ) / u− ̸= 0, u+ ̸= 0,

〈
I ′(u), u+

〉
=
〈
I ′(u), u−〉 = 0

}
i.e., we shall find u0 ∈ M such that

I(u0) = m = inf
u∈M

I(u).

To start with, we need to show that M ≠ ∅; see Lemma 12 below. This shall be a
consequence of the non-emptyness (Lemma 10) of

A =

{
u ∈ Wp

V (R
N ) / u± ̸= 0,

∫
RN

a(x)
∣∣u±∣∣q dx > 0

}
.

We need to walk some steps. Observe that, by (K) and (34), given u ∈ Wp
V (RN ),

it holds, for a.e. x ∈ RN and every t > 0,

ϕu(x) ≥ 0 and ϕtu(x) = tpϕu(x).

Additional properties related to ϕu are provided in the following result; see [12, Lemma
2.1] and [25, Lemma 2.3] for the case of p = 2.

Lemma 8 Let u ∈ Wp
V (RN ) and (un)n∈N ⊆ Wp

V (RN ) be such that un −→ u, as n −→ +∞,

in Wp
V (RN ) and a.e. in RN . Then, for every φ ∈ Wp

V (RN ),

lim
n−→+∞

∫
RN

K(x)ϕn(x)|un|p dx =

∫
RN

K(x)ϕu(x)|u|p dx, (44)

lim
n−→+∞

∫
RN

K(x)ϕn(x)|u±n |p dx =

∫
RN

K(x)ϕu(x)|u±|p dx,
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lim
n−→+∞

∫
RN

K(x)ϕn(x)unφdx =

∫
RN

K(x)ϕu(x)uφdx.

Proof Let’s just give a scheme on point (44). We have that∫
RN

K(x)
[
ϕn(x) |un|p − ϕu(x) |u|p

]
dx = A1 +A2,

A1 =

∫
RN

K(x)ϕn(x) · [|un|p − |u|p]dx,

A2 =

∫
RN

K(x)|u|p · [ϕn(x)− ϕu(x)]dx.

Let’s recall the values given in (20)-(22). We have, by Remark 4, that

|A1| ≤
∫
RN

K(x)ϕn(x) ·
∣∣|un|p − |u|p

∣∣ dx
≤ ∥ϕn∥Lp∗ (RN )

(∫
RN

Kp•
(x)

∣∣|un|p − |u|p
∣∣p•

dx

)1/p•

≤ 1

S1/p
∥ϕn∥D1,p ∥K∥Lp(RN )

(∫
RN

∣∣|un|p − |u|p
∣∣τ ′p•

dx

) 1
τ′p•

=
1

S1/p
∥ϕn∥D1,p ∥K∥Lp(RN )

∥∥|un|p − |u|p
∥∥
Lp∗/p(RN )

−→ 0,

as n −→ +∞. On the other hand, by (20)-(22), Lemma 6 and Hölder’s inequality, we have,
as n −→ +∞,

|A2| ≤
∥∥K|u|p

∥∥
Lp• (RN )

∥ϕn − ϕu∥Lp∗ (RN )

≤ 1

S1/p
∥K∥Lp(RN ) ∥u∥

p

Lp∗ (RN )
∥ϕn − ϕu∥D1,p −→ 0.

□

The proof of the following result is adapted from [42, Lemma 2.1] and [13, Lemma
2.3].

Lemma 9 Let u ∈ Wp
V (RN ) and (un)n∈N ⊆ Wp

V (RN ) be such that un −→ u, as n −→ +∞,

in Wp
V (RN ) and a.e. in RN . Then, for every φ ∈ Wp

V (RN ), Then,

lim
n−→+∞

∫
RN

a(x) |un|q dx =

∫
RN

a(x)|u|qdx, (45)

lim
n−→+∞

∫
RN

a(x) |un|q−2 unφdx =

∫
RN

a(x)|u|q−2uφdx. (46)

Proof Let’s show (45) as (46) is obtained in a similar way. By using a Brezis-Lieb’s lemma

(see e.g. [1, 9]), we get that |un|q −→ |u|q, as n −→ +∞, in Lp∗/q(RN ). Therefore, using
Hölder’s inequality with the values

s =
pN

Np+ pq −Nq
and s′ =

p∗

q
=

Np

(N − p)q
,
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coming from (a), we get, as n −→ +∞, that∫
RN

a(x)
(
|un|q − |u|q

)
dx ≤

∫
RN

|a(x)|
∣∣|un|q − |u|q

∣∣ dx
≤ ∥a∥Ls(RN )

∥∥|un|q − |u|q
∥∥
Lp∗/q(RN )

−→ 0.

□

Lemma 10 We have that A ≠ ∅ and M ⊆ A.

Proof 1. Considering condition (a), let’s take some u ∈ C∞
0 (RN ) ⊆ Wp

V (RN ) such
that supp(u) ⊆ ω = {x ∈ RN / a(x) > 0} and for some x1, x2 ∈ ω, x1 ̸= x2,
u(x1) · u(x2) < 0. Then, it immediately follows that u ∈ A so that A ≠ ∅.

2. Let u ∈ M. By (16), (13) and (37)-(39),

0 <
∥∥u±∥∥p

V,p
+

∫
RN

K(x)ϕu(x)
∣∣u±∣∣p dx = qΛ(u±), (47)

so that u ∈ A and, therefore, M ⊆ A.
□

To prove Lemma 12 below, we shall need the following version of Poincaré-
Miranda’s theorem, [32].

Proposition 11 Let Ω = [a1, b1]× ...× [am, bm] and f1, ..., fm ∈ C(Rm,Rm) such that, for
each k = 1, ...,m and every z1, ..., zk−1, zk+1, ..., zm ∈ R,

fk(z1, ..., zk−1, ak, zk+1, ..., zm) · fk(z1, ..., zk−1, bk, zk+1, ..., zm) < 0.

Then, there exists (z∗1 , z
∗
2 , ..., z

∗
m) ∈ Ω such that

fk(z
∗
1 , z

∗
2 , ..., z

∗
m) = 0, for each k = 1, ...,m.

Given a function u ∈ Wp
V (RN ) such that u− ̸= 0 and u+ ̸= 0, let’s consider the

mapping ηu : R2 −→ R, given by

ηu(s, t) = I(su+ + tu−). (48)

The following result implies that M ≠ ∅.

Lemma 12 Let u ∈ A. Then,

i) (s, t) ∈]0,+∞[×]0,+∞[ is a critical point of η if and only if su+ + tu− ∈ M;
ii) the map ηu has a unique critical point (su, tu) in ]0,+∞[×]0,+∞[;
iii) (su, tu) is the only point of maximum of η in [0,+∞[×[0,+∞[;
iv) if ⟨I ′(u), u±⟩ ≤ 0, then su, tu ∈]0, 1].
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Proof 1. For (s, t) ∈]0,+∞[×]0,+∞[, a direct computation gives

∇ηu(s, t) =
(〈
I ′(su+ + tu−), u+

〉
,
〈
I ′(su+ + tu−), u−〉)

=

(
1

s

〈
I ′(su+ + tu−), su+

〉
,
1

t

〈
I ′(su+ + tu−), tu−〉) ,

which clearly implies point i).
2. By Hölder’s inequality,

qΛ(u±) =

∫
RN

a(x)
∣∣u±∣∣q dx ≤ ∥a∥Ls(RN )

∥∥u±∥∥q
Lp∗ (RN )

. (49)

On the other hand, for x ∈ RN , u+(x) · u−(x) = 0, we can see that

ϕ(su++tu−)(x) =

∫
RN

K(y) |su+ + tu−|p

|x− y|d
dy

=

∫
RN

K(y) |su+|p

|x− y|d
dy +

∫
RN

K(y) |tu−|p

|x− y|d
dy = spϕu+(x) + tpϕu−(x). (50)

3. By (50), (49), (8) and (10), we have that〈
I ′(su+ + tu−), su+

〉
=
〈
O′(su+ + tu−), su+

〉
−
〈
Λ′(su+ + tu−), su+

〉
+

∫
RN

K(x)ϕ(su++tu−)(x)|su+ + tu−|p−2(su+ + tu−)(su+) dx

= sp
∥∥u+

∥∥p
V,p

− qsqΛ(u+) + 2p s2p Ψ(u+)

+ sptp
∫
RN

K(x)ϕu−(x)|u+|pdx (51)

≥ sp
∥∥u+

∥∥p
V,p

− sq ∥a∥Ls(RN )

∥∥u+
∥∥q
Lp∗ (RN )

≥ sp
∥∥u+

∥∥p
V,p

− sqCq
∗ ∥a∥Ls(RN )

∥∥u+
∥∥q
V,p

,

for every t > 0 and every s > 0 small enough. In the same way it’s proved that, for
every s > 0 and every t > 0 small enough,〈

I ′(su+ + tu−), tu−〉 > 0.

Then, we choose 0 < α1 << 1 such that, for every s, t > 0,〈
I ′(α1u

+ + tu−), α1u
+
〉
> 0 and

〈
I ′(su+ + α1u

−), α1u
−〉 > 0. (52)

4. By (51) and (10), we have that, for every t > 0 and every s > 0 large enough,
⟨I ′(su+ + tu−), su+⟩ < 0. In the same way it’s proved that, for every s > 0 and
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every t > 0 large enough, ⟨I ′(su+ + tu−), tu−⟩ < 0. Then, we pick α2 > 1 such
that, for all s, t ∈ [α1, α2],〈

I ′(α2u
+ + tu−), α2u

+
〉
< 0 and

〈
I ′(su+ + α2u

−), α2u
−〉 < 0. (53)

By (52), (53) and Proposition 11, there exist su, tu > 0 such that〈
I ′(suu

+ + tuu
−), suu

+
〉
=
〈
I ′(suu

+ + tuu
−), tuu

−〉 = 0.

5. Let’s prove now that (su, tu) is the only critical point of η.
a) Let’s assume that u ∈ M. Then,

∥∥u±∥∥p
V,p

+ 2pΨ(u±) +

∫
RN

K(x)ϕu∓(x)|u±|pdx = qΛ(u±). (54)

Let’s show that (su, tu) = (1, 1) is actually the only critical point of η. Let (s0, t0) ∈
]0,+∞[×]0,+∞[ such that s0u

+ + t0u
− ∈ M. Without loss let’s assume that

0 < s0 ≤ t0. (55)

By (51) and (16), we have that

sp0
∥∥u+

∥∥p
V,p

+ 2p s2p0 Ψ(u+) + sp0t
p
0

∫
RN

K(x)ϕu−(x)|u+|pdx = qsq0Λ(u
+). (56)

Analogously, we get

tp0
∥∥u−∥∥p

V,p
+ 2p t2p0 Ψ(u−) + sp0t

p
0

∫
RN

K(x)ϕu+(x)|u−|pdx = qtq0Λ(u
−). (57)

By (55) and (57), we get

∥u−∥pV,p
tp0

+ 2pΨ(u−) +

∫
RN

K(x)ϕu+(x)|u−|pdx ≥ qtq−2p
0 Λ(u−)

which, together with (54), produces(
1

tp0
− 1

)∥∥u−∥∥p
V,p

≥ q (tq−2p
0 − 1)Λ(u−).

Thanks to (47) and (10), the last estimate implies that

0 < s0 ≤ t0 ≤ 1. (58)
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By (55) and (56), we get

∥u+∥pV,p
sp0

+ 2pΨ(u+) +

∫
RN

K(x)ϕu−(x)|u+|pdx ≤ qsq−2p
0 Λ(u+)

which, together with (54), produces(
1

sp0
− 1

)∥∥u+
∥∥p
V,p

≤ q (sq−2p
0 − 1)Λ(u+).

In the last estimate, 0 < s0 < 1 produces a contradiction, so that s0 ≥ 1 and, by
(58), we conclude that s0 = t0 = 1.

b) Let’s assume that u /∈ M. Let (s1, t1) , (s2, t2) ∈]0,+∞[×]0,+∞[ such that

u1 = s1u
+ + t1u

− ∈ M and u2 = s2u
+ + t2u

− ∈ M.

Since

u2 =

(
s2
s1

)
s1u

+ +

(
t2
t1

)
t1u

− =

(
s2
s1

)
u+
1 +

(
t2
t1

)
u−
1 ∈ M,

point a) applied to u1 implies that s2/s1 = t2/t1 = 1, so that (1, 1) is the only
critical point of η.

6. Let’s deal with point iii). By (48), we have, for s, t ∈ R,

ηu(s, t) =
|s|p

p

∥∥u+
∥∥
V,p

+
|t|p

p

∥∥u−∥∥
V,p

+ |s|2pΨ(ϕu+) + |t|2pΨ(ϕu−)

+ |st|p
∫
RN

K(x)ϕu−(x)|u+|pdx+ |st|p
∫
RN

K(x)ϕu+(x)|u−|pdx

− |s|qΛ(u+)− |t|qΛ(u−),

which, by (10), shows that ηu(s, t) −→ −∞, as |(s, t)| −→ +∞. Therefore, to get
iii), we just have to analize the behaviour of ηu on the boundary of [0,+∞[×[0,+∞[.
Working as in previous points, we get, for t > 0, that ∂sηu(·, t) is strictly increasing
when the argument is small enough. In the same way, for s > 0, ∂tηu(s, ·) is strictly
increasing when the argument is small enough. With this we get iii).

7. Point iv) is obtained working as in point 5.a).
□

Lemma 13 There exists u0 ∈ M such that

I(u0) = m = inf
u∈M

I(u). (59)
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Proof 1. Let’s show that I is bounded from below on M. Let u ∈ M. By (47), (49)
and (8), we have that

0 <
∥∥u±∥∥p

V,p
≤
∥∥u±∥∥p

V,p
+

∫
RN

K(x)ϕu(x)
∣∣u±∣∣p dx = qΛ(u±) (60)

≤ ∥a∥Ls(RN )

∥∥u±∥∥q
Lp∗ (RN )

≤ Cq
∗ ∥a∥Ls(RN )

∥∥u±∥∥q
V,p

,

so that ∥∥u±∥∥p
V,p

≥

(
1

Cq
∗ ∥a∥Ls(RN )

)p/(q−p)

= α > 0. (61)

By (61), (47), (17), (13), (37)-(39), we have that

I(u) = I(u)− 1

2p
⟨I ′(u), u⟩

=
1

2p
∥u∥pV,p +

(
q

2p
− 1

)
Λ(u) ≥ 1

2p
∥u∥pV,p ≥ α

p
. (62)

The arbitrariness of u shows that m ≥ α > 0.
2. Let (un)n∈N ⊆ M be such that I(un) −→ m, as n −→ +∞. Point (62) implies that

(un)n∈N is bounded in Wp
V (RN ). Then, by [8], we pick u0 ∈ Wp

V (RN ) such that,
up to subsequence,

u±
n ⇀ u±

0 , as n −→ +∞, in Wp
V (R

N ), (63)

u±
n −→ u±

0 , as n −→ +∞, a.e. in RN . (64)

Then, for each n ∈ N, un ∈ M. Moreover, by (63), (64), (60) and (61), we get

qΛ(u±
0 ) =

∫
RN

a(x)
∣∣u±

0

∣∣q dx ≥ α > 0 (65)

which implies that u−
0 ̸= 0 and u+

0 ̸= 0. By Lemmas 8 and 9 and the weak lower
semicontinuity of a norm, we have

∥∥u±
0

∥∥p
V,p

+

∫
RN

K(x)ϕu0(x)
(
u±
0

)p
dx

≤ lim inf
n−→∞

[∥∥u±
n

∥∥p
V,p

+

∫
RN

K(x)ϕun(x)
∣∣u±

n

∣∣p dx

]
=

∫
RN

a(x)
∣∣u±

0

∣∣q dx,

whence
〈
I(u0), u

±
0

〉
≤ 0 as well as ⟨I(u0), u0⟩ ≤ 0. Then, by point iv) in Lemma

12, there exist s0, t0 ∈ (0, 1] such that s0u
+
0 + t0u

−
0 ∈ M. Now, by (65)) and the

weak lower semicontinuity of a norm, we get

m ≤ I
(
s0u

+
0 + t0u

−
0

)
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= I
(
s0u

+
0 + t0u

−
0

)
− 1

2p

〈
I ′ (s0u+

0 + t0u
−
0

)
, s0u

+
0 + t0u

−
0

〉
=

sp0
2p

∥∥u+
0

∥∥p
V,p

+
tp0
2p

∥∥u−
0

∥∥p
V,p

+

(
1

2p
− 1

q

)
sq0

∫
RN

a(x)
∣∣u+

0

∣∣q dx
+ tq0

(
1

2p
− 1

q

)∫
RN

a(x)
∣∣u−

0

∣∣q dx
≤ 1

2p
∥u0∥pV,p +

(
1

2p
− 1

q

)∫
RN

a(x) |u0|q dx

≤ lim inf
n−→+∞

[
I (un)−

1

2p
⟨I ′ (un) , un⟩

]
= m.

Therefore, s0 = t0 = 1 so that u0 = u+
0 + u−

0 ∈ M verifies (59).
□

Let’s prove now that the minimizer u0 ∈ M provided by Lemma 13 is a sign-
changing ground state solution of (S), i.e., I ′(u0) = 0.

Remark 6 Recall that in a metric space (X, d), B(w, r) and B(w, r) denote, respectively, the
open and closed ball with center w ∈ X and radius r > 0. Given Z ⊆ X and τ > 0, we write

Zτ = {w ∈ X / d(w,Z) ≤ τ}.
Finally given f : X −→ R and b ∈ R, we put

fb = {w ∈ X / f(w) ≤ b}.

Proof of Theorem 1, point i). Let’s reason by Reductio ad Absurdum. Let’s assume that
I′(u0) ̸= 0.

1. By Proposition 7, I ′ is continuous so that there exists γ, δ > 0 such that

∀u ∈ B(u0, 3δ) : ∥I ′(u)∥ ≥ γ. (66)

Let’s pick a number µ such that

0 < µ < min

{
1

2
,

δ

∥u0∥V,p
√
2

}
(67)

and write R =]1−µ, 1+µ[×]1−µ, 1+µ[. Consider the mapping β : R −→ Wp
V (RN ),

given, for (s, t) ∈ R, by
β(s, t) = su+

0 + tu−
0 ,

so that
ηu0(s, t) = I(β(s, t)).

Then, by Lemma 12 and its proof, we have that

m̄ = max
(s,t)∈∂R

I(β(s, t)) < I(β(1, 1)) = m. (68)
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By point (66), we have that

∀u ∈ I−1([m− 2ε,m+ 2ε]) ∩Q2δ : ∥I ′(u)∥ ≥ 8ε

δ
, (69)

where Q = B(u0, δ) and the value ε is such that 0 < ε < min

{
m− m̄

2
,
γδ

8

}
.

By (69) and the deformation lemma, [39, Lemma 2.3], there exists a mapping
Υ ∈ C([0, 1]×Wp

V (RN ),Wp
V (RN )) such that

u /∈ I−1([m− 2ε,m+ 2ε]) ∩Q2δ ⇒ Υ(1, u) = u; (70)

Υ
(
1, Im+ε ∩Q

)
⊆ Im−ε; (71)

∀u ∈ Wp
V (R

N ) : I(Υ(1, u)) ≤ I(u).

2. Let’s show now that
max

(s,t)∈R
I(Υ(1, β(s, t))) < m. (72)

For (s, t) ∈ R, we have that I(β(s, t)) ≤ m < m + ε, so that β(s, t) ∈ Im+ε. By
(67), (28) and the triangle inequality, it follows that

∥β(s, t)− u0∥2V,p =
∥∥(s− 1)u+

0 + (t− 1)u−
0

∥∥2
V,p

≤ 2
[
(s− 1)2

∥∥u+
0

∥∥2
V,p

+ (t− 1)2
∥∥u−

0

∥∥2
V,p

]
≤ 2µ2 ∥u0∥2V,p < δ2,

so that β(s, t) ∈ Q. Point (72) follows by (71).
3. Let’s show that

Υ(1, β(R)) ∩M ̸= ∅,
which provokes a contradiction with the second equality in (59). For (s, t) ∈ R,
let’s consider

ν(s, t) = Υ(1, β(s, t)),

Φ̌(s, t) = (τ1(s, t), τ2(s, t)) =
(〈
I ′(su+

0 + tu−
0 ), u

+
0

〉
,
〈
I ′(su+

0 + tu−
0 ), u

−
0

〉)
,

Φ̂(s, t) =

(
1

s

〈
I ′(ν(s, t)), ν+(s, t)

〉
,
1

t

〈
I ′(ν(s, t)), ν−(s, t)

〉)
.

By (51), we have that

τ1(s, t) = sp−1
∥∥u+

0

∥∥p
V,p

− qsq−1Λ(u+
0 ) + 2p s2p−1 Ψ(u+

0 )

+ sp−1tp
∫
RN

K(x)ϕu−
0
(x)|u+

0 |pdx,

τ2(s, t) = tp−1
∥∥u−

0

∥∥p
V,p

− qtq−1Λ(u−
0 ) + 2p t2p−1 Ψ(u−

0 )

+ sptp−1

∫
RN

K(x)ϕu+
0
(x)|u−

0 |pdx,
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so that

∂sτ1(s, t) = (p− 1)sp−2
∥∥u+

0

∥∥p
V,p

− q(q − 1)sq−2Λ(u+
0 ) + 2p(2p− 1) s2p−2 Ψ(u+

0 )

+ (p− 1)sp−2tp
∫
RN

K(x)ϕu−
0
(x)|u+

0 |pdx,

∂tτ1(s, t) = psp−1tp−1

∫
RN

K(x)ϕu−
0
(x)|u+

0 |pdx,

∂sτ2(s, t) = psp−1tp−1

∫
RN

K(x)ϕu+
0
(x)|u−

0 |pdx,

∂tτ2(s, t) = (p− 1)tp−2
∥∥u−

0

∥∥p
V,p

− q(q − 1)tq−2Λ(u−
0 ) + 2p(2p− 1) t2p−2 Ψ(u−

0 )

+ (p− 1)sptp−2

∫
RN

K(x)ϕu+
0
(x)|u−

0 |pdx,

as well as

∂sτ1(1, 1) = (p− 1)
∥∥u+

0

∥∥p
V,p

− q(q − 1)Λ(u+
0 ) + 2p(2p− 1)Ψ(u+

0 )

+ (p− 1)

∫
RN

K(x)ϕu−
0
(x)|u+

0 |pdx,

∂tτ1(1, 1) = p

∫
RN

K(x)ϕu−
0
(x)|u+

0 |pdx,

∂sτ2(1, 1) = p

∫
RN

K(x)ϕu+
0
(x)|u−

0 |pdx,

∂tτ2(1, 1) = (p− 1)
∥∥u−

0

∥∥p
V,p

− q(q − 1)Λ(u−
0 ) + 2p(2p− 1)Ψ(u−

0 )

+ (p− 1)

∫
RN

K(x)ϕu+
0
(x)|u−

0 |pdx,

By (65), it follows that the determinant of the Hessian matrix of Φ̌ is positive at
(1, 1), i.e.,

det

(
∂sτ1(1, 1) ∂tτ1(1, 1)
∂sτ2(1, 1) ∂tτ2(1, 1)

)
> 0.

Now we call the properties of the topological degree to our help; see e.g. [5, Ch.3&4].
Since Φ̌ ∈ C1(R,R2) and, for it, (1, 1) is the unique isolated zero point, it follows
that deg(Φ̌, R, 0) = 1. Since m̃ < m − 2ε, it follows, by (68) and (70), that β = ν
on ∂R. Then,

deg(Φ̂, R, 0) = deg(Φ̌, R, 0) = 1,

and, consequently, there exists (s0, t0) ∈ R such that Φ̂(s0, t0) = 0, whence

Υ(1, β(s0, t0)) = ν(s0, t0) ∈ M,

which contradicts (72)).

□
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Proof of Theorem 1, point ii). Let’s reason by Reductio ad Absurdum. Let’s assume that
there exist w1, w2, w3 ∈ Wp

V (RN ) \ {0} such that the interior of their supports are pairwise
disjoint,

u0 = w1 + w2 + w3,

w1 ≤ 0 and w2 ≤ 0. By (17),
〈
I′(u0), wk

〉
= 0, k = 1, 2, 3. Let’s write w = w1 + w2 so

that w+ = w1 and w− = w2. By (60), w ∈ A. Therefore, Lemma 12 implies the existence of
a unique (sw, tw) ∈]0, 1]×]0, 1] such that sww1 + tww2 ∈ M. Adapting the computation to
reach (51), we get

0 =
1

2p

〈
I′(u0), w3

〉
=

1

2p
∥w3∥V,p +Ψ(w3)−

q

2p
Λ(w3)

+
1

2p

∫
RN

K(x)ϕw2(x)|w3|pdx+
1

2p

∫
RN

K(x)ϕw1(x)|w3|pdx

< I(w3) +
1

2p

∫
RN

K · ϕw2(x)|w3|pdx+
1

2p

∫
RN

K · ϕw1(x)|w3|pdx, (73)

as well as

I(sww1 + tww2) = I(sww1) + I(tww2)

+
|sw|p|tw|p

2p

∫
RN

K(x)ϕw1(x)|w2|pdx+
|sw|p|tw|p

2p

∫
RN

K(x)ϕw2(x)|w1|pdx

≤
∥w1∥pV,p

2p
+

∥w2∥pV,p
2p

+

(
q

2p
− 1

)
[Λ(w1) + Λ(w2)]

= I(w1) + I(w2) +
1

2p

∫
RN

K · ϕw2(x)|w1|pdx+
1

2p

∫
RN

K · ϕw3(x)|w1|pdx

+
1

2p

∫
RN

K · ϕw1(x)|w2|pdx+
1

2p

∫
RN

K · ϕw3(x)|w2|pdx. (74)

By (73) and (74), it follows that

m ≤ I(sww1 + tww2)

< I(w1) + I(w2) + I(w3) +
1

2p

∫
RN

K · ϕw2(x)|w1|pdx

+
1

2p

∫
RN

K · ϕw3(x)|w1|pdx+
1

2p

∫
RN

K · ϕw1(x)|w2|pdx

+
1

2p

∫
RN

K · ϕw3(x)|w2|pdx+
1

2p

∫
RN

K · ϕw1(x)|w3|pdx

+
1

2p

∫
RN

K · ϕw2(x)|w3|pdx = I(u0) = m,

a contradiction. □

Proof of Theorem 1, points iii) and iv). Let’s finish the proof of Theorem 1. Let’s recall
that

c = inf
u∈N

I(u),

where N =
{
u ∈ Wp

V (RN ) \ {0} /
〈
I′(u), u

〉
= 0

}
. By (17), it immediately follows that c ≤

m.
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1. Working as in the proof of Lemma 13, it’s found u∗ ∈ N which is a critical point
of I that verifies I(u∗) = c > 0. Now, the function

u1 = |u∗| = u+
∗ − u−

∗ ≥ 0,

belongs to N and also verifies

I(u1) = c > 0,

so that u1 is a non-negative ground state solution of (S).
2. By point ii) of Theorem 1, u0 ∈ M ⊆ A has exactly two nodal domains. Then, it

can be shown that there is a unique (s0, t0) ∈]0,+∞[×]0,+∞[ such that s0u
+
0 ∈ N

and t0u
−
0 ∈ N . We have that

〈
I ′(u+

0 ), u
+
0

〉
≤
〈
I ′(u+

0 ), u
+
0

〉
+

∫
RN

K(x)ϕu−
0
(x)|u+

0 |pdx

=
〈
I ′(u0), u

+
0

〉
= 0,〈

I ′(u−
0 ), u

−
0

〉
≤
〈
I ′(u−

0 ), u
−
0

〉
+

∫
RN

K(x)ϕu+
0
(x)|u−

0 |pdx

=
〈
I ′(u0), u

−
0

〉
= 0,

it follows, by Lemma 12-iv), that 0 < s0, t0 ≤ 1. Then, by Lemma 12 and its proof,
we get

2c ≤ I(s0u+
0 ) + I(t0u−

0 ) ≤ I(s0u+
0 + t0u

−
0 ) ≤ I(u+

0 + u−
0 ) = I(u0) = m.

□
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