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Abstract

In this article we study Hölder regularity C
γ for solutions of a transport equation based in the dissipative quasi-geostrophic

equation. Adapting an idea of A. Kiselev and F. Nazarov presented in [11], we will use the molecular characterization of local

Hardy spaces h
σ in order to obtain information on Hölder regularity of such solutions. This will be done by following the

evolution of molecules in a backward equation. We will also study global existence, Besov regularity for weak solutions and a

maximum principle and we will apply these results to the critical dissipative quasi-geostrophic equation.
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1 Introduction

The dissipative quasi-geostrophic equation has been studied by many authors, not only because of its own mathematical
importance, but also as a 2D model in geophysical fluid dynamics and because of its close relationship with other
equations arising in fluid dynamics. See [6], [14] and the references given there for more details. This equation has
the following form:

(QG)α





∂tθ(x, t) = ∇ · (u θ)(x, t) − Λ2αθ(x, t)

θ(x, 0) = θ0(x)

for 0 < α ≤ 1 and t ∈ [0, T ]. Here θ is a real-valued function and the velocity u is defined by means of Riesz transforms
in the following way:

u = (−R2θ,R1θ).

Recall that Riesz Transforms Rj are given by R̂jθ(ξ) = −
iξj
|ξ| θ̂(ξ) for j = 1, 2 and that Λ2α = (−∆)α is the Laplacian’s

fractional power defined by the formula

Λ̂2αθ(ξ) = |ξ|2αθ̂(ξ)

where θ̂ denotes the Fourier transform of θ.

It is classical to consider three cases in the analysis of the dissipative quasi-geostrophic equation following the
values of the diffusion parameter α. The case 1/2 < α is called sub-critical since the diffusion factor is stronger than
the nonlinearity. In this case, weak solutions were constructed by S. Resnick in [16] and P. Constantin & J. Wu showed
in [5] that smooth initial data gives a smooth global solution.

The critical case is given when α = 1/2. Here, P. Constantin, D. Córdoba & J. Wu studied in [7] global existence
in Sobolev spaces, while global well-posedness in Besov spaces has been treated by H. Abidi & T. Hmidi in [1]. Also
in this case, and more recently, A. Kiselev, F. Nazarov & A. Volberg showed in [12] that any regular periodic data
generates a unique C∞ solution.

Finally, the case when 0 < α < 1/2 is called super-critical partially because it is harder to work with than the two
other cases, but mostly because the diffusion term is weaker than the nonlinear term. In this last case, weak solutions
for initial data in Lp or in Ḣ−1/2 were studied by F. Marchand in [15].

In this article, following L. Caffarelli & A. Vasseur in [2], we will study a special version of the dissipative quasi-
geostrophic equation (QG)α. The idea is to replace the Riesz Transform-based velocity u by a new velocity v to obtain
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the following n-dimensional fractional diffusion transport equation for 0 < α ≤ 1:

(T )α





∂tθ(x, t) = ∇ · (v θ)(x, t) − Λ2αθ(x, t)

θ(x, 0) = θ0(x)

div(v) = 0.

(1)

In (1), the functions θ and v are such that θ : Rn × [0, T ] −→ R and v : Rn × [0, T ] −→ Rn. Remark that the
velocity v is now a given data for the problem and we will always assume that v is divergence free and belongs to
L∞([0, T ]; bmo(Rn)).

We fix once and for all the parameter α = 1/2 in order to study the critical case. The main theorem presented in
this article studies the regularity of the solutions of the fractional diffusion transport equation (T )1/2:

Theorem 1 (Hölder regularity) Let θ0 be a function such that θ0 ∈ L∞(Rn) and T0 > 0 a small positive time. If
θ(x, t) is a solution for the equation (T )1/2, then for all time T0 < t < T , we have that θ(·, t) belongs to the Hölder
space Cγ(Rn) with 0 < γ < 1.

This result says that after a time T0 there is a small smoothing effect so the dissipation given by the fractional
Laplacian is stronger than the drift term in equation (T )1/2. Thus, since the velocity v in equation (T )1/2 belongs
to L∞([0, T ]; bmo(Rn)), it would be quite simple to adapt this result to the (QG)1/2 equation. See section 7 for details.

Let us say a few words about the proof of this theorem. A classical result of harmonic analysis states that Hölder
spaces Cγ(Rn) can be paired with local Hardy spaces hσ(Rn). Therefore, if we prove that the duality bracket

〈θ(·, t), ψ0〉 =

∫

Rn

θ(x, t)ψ0(x)dx (2)

is bounded for every ψ0 ∈ hσ(Rn) we obtain that θ(·, t) ∈ Cγ(Rn). One of the main features of Hardy spaces is that
they admit a characterization by molecules (see definition 1.1 below), which are rather simple functions, and this
allows us to study the quantity (2) only for such molecules.

This dual approach was originally given in the torus Tn by A. Kiselev & F. Nazarov in [11] with a very special
family of test functions. Thus, the main novelty of this paper besides the generalization to Rn is the use of molecular
Hardy spaces.

Broadly speaking and following [17] p. 130, a molecule is a function ψ so that

(i)

∫

Rn

ψ(x)dx = 0

(ii) |ψ(x)| ≤ r−n/σ min{1; rβn/|x− x0|
βn},

with βσ > 1 and x0 ∈ Rn, where the parameter r ∈]0,+∞[ stands for the size of the molecule ψ.

Since we are going to work with local Hardy spaces, we will introduce a size treshold in order to distinguish small
molecules from big ones in the following way:

Definition 1.1 (r-molecules) Set n
n+1 < σ < 1, define γ = n( 1σ−1) and fix a real number ω such that 0 < γ < ω < 1.

An integrable function ψ is an r-molecule if we have

• Small molecules (0 < r < 1):

∫

Rn

|ψ(x)||x − x0|
ωdx ≤ rω−γ , for x0 ∈ Rn (concentration condition) (3)

‖ψ‖L∞ ≤
1

rn+γ
(height condition) (4)

∫

Rn

ψ(x)dx = 0 (moment condition) (5)

• Big molecules (1 ≤ r < +∞):

In this case we only require conditions (3) and (4) for the r-molecule ψ while the moment condition (5) is dropped.
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It is interesting to compare this definition of molecules to the one used in [11]. In our molecules the parameter γ reflects
explicitly the relationship between Hardy and Hölder spaces (see Theorem 4 below). However, the most important
fact relies in the parameter ω which gives us the additional flexibility that will be crucial in the following calculations.

Remark 1.1

1) Note that the point x0 ∈ Rn can be considered as the “center” of the molecule.

2) Conditions (3) and (4) are an easy consequence of condition (ii) and they both imply the estimate ‖ψ‖L1 ≤ C r−γ ,
thus every r-molecule belongs to Lp(Rn) for 1 < p < +∞. We stress here that the previous L1 estimate is just a
corollary of (3) and (4). This inequality is not a part of the molecule’s definition.

The main interest for using molecules relies in the possibility of transfering the regularity problem to the evolution of
such molecules:

Proposition 1.1 (Transfer property) Let ψ(x, s) be a solution of the backward problem





∂sψ(x, s) = −∇ · [v(x, t − s)ψ(x, s)]− Λψ(x, s)

ψ(x, 0) = ψ0(x) ∈ L1 ∩ L∞(Rn)

div(v) = 0 and v ∈ L∞([0, T ]; bmo(Rn))

(6)

If θ(x, t) is a solution of (1) with θ0 ∈ L∞(Rn) then we have the identity
∫

Rn

θ(x, t)ψ(x, 0)dx =

∫

Rn

θ(x, 0)ψ(x, t)dx.

Proof. We first consider the expression

∂s

∫

Rn

θ(x, t− s)ψ(x, s)dx =

∫

Rn

−∂sθ(x, t− s)ψ(x, s) + ∂sψ(x, s)θ(x, t − s)dx.

Using equations (1) and (6) we obtain

∂s

∫

Rn

θ(x, t− s)ψ(x, s)dx =

∫

Rn

−∇ · [(v(x, t − s)θ(x, t− s)]ψ(x, s) + Λθ(x, t− s)ψ(x, s)

− ∇ · [(v(x, t− s)ψ(x, s))] θ(x, t− s)− Λψ(x, s)θ(x, t − s)dx.

Now, using the fact that v is divergence free we have that expression above is equal to zero, so the quantity
∫

Rn

θ(x, t− s)ψ(x, s)dx

remains constant in time. We only have to set s = 0 and s = t to conclude. �

This proposition says, that in order to control 〈θ(·, t), ψ0〉, it is enough (and much simpler) to study the bracket
〈θ0, ψ(·, t)〉. Let us explain in which sense this transfer property is useful: in the bracket 〈θ0, ψ(·, t)〉 we have much
more informations than in the bracket (2) since the initial data ψ0 is a molecule which satisfies conditions (3)-(5).

Proof of the Theorem 1. Once we have the transfer property proven above, the proof of the Theorem 1 is quite
direct and it reduces to a L1 estimate for molecules. Indeed, assume that for all molecular initial data ψ0 we have a
L1 control for ψ(·, t) a solution of (6), then the Theorem 1 follows easily: applying Proposition 1.1 with the fact that
θ0 ∈ L∞(Rn) we have

|〈θ(·, t), ψ0〉| =

∣∣∣∣
∫

Rn

θ(x, t)ψ0(x)dx

∣∣∣∣ =
∣∣∣∣
∫

Rn

θ(x, 0)ψ(x, t)dx

∣∣∣∣ ≤ ‖θ0‖L∞‖ψ(·, t)‖L1 < +∞. (7)

From this, we obtain that θ(·, t) belongs to the Hölder space Cγ(Rn).

Now we need to study the control of the L1 norm of ψ(·, t) and we divide our proof in two steps following the
molecule’s size. For the initial big molecules, i.e. if r ≥ 1, the needed control is straightforward: apply the maximum
principle (9) below and the remark 1.1-2) to obtain

‖θ0‖L∞‖ψ(·, t)‖L1 ≤ ‖θ0‖L∞‖ψ0‖L1 ≤ C
1

rγ
‖θ0‖L∞ ,
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but, since r ≥ 1, we have that |〈θ(·, t), ψ0〉| < +∞ for all big molecules.

In order to finish the proof of the theorem, it only remains to treat the L1 control for small molecules. This is the
most complex part of the proof and we will present it in section 3 where we will prove the next theorem:

Theorem 2 For all small initial molecular data ψ0, there exists an small time T0 > 0 such that:

‖ψ(·, t)‖L1 ≤ CT−γ
0 for all T0 < t < T (0 < γ < ω < 1).

Taking for granted this theorem, we obtain a good control over the quantity ‖ψ(·, t)‖L1 for all 0 < r < 1. Finally,
getting back to (7) we obtain that |〈θ(·, t), ψ0〉| is always bounded for T0 < t < T and for any molecule ψ0: we have
proven by a duality argument the Theorem 1. �

Let us recall now that for (smooth) solutions of (QG)1/2 and (T )1/2 above we can use the remarkable property of
maximum principle mentioned before. This was proven in [8] and in [15] and it gives us the following inequalities.

‖θ(·, t)‖Lp + p

∫ t

0

∫

Rn

|θ(x, s)|p−2θ(x, s)Λθ(x, s)dxds ≤ ‖θ0‖Lp (2 ≤ p < +∞) (8)

or more generally ‖θ(·, t)‖Lp ≤ ‖θ0‖Lp (1 ≤ p ≤ +∞) (9)

These estimates are extremely useful and they are the starting point of several works. Indeed, the study of inequality
(8) helps us incidentally to solve a question pointed out by F. Marchand in [15] concerning weak solution’s global
regularity:

Theorem 3 (Weak solution’s regularity) Let 2 ≤ p < +∞. If θ0 ∈ Lp(Rn) is an initial data for (QG)1/2 or

(T )1/2 equations, then the associated weak solution θ(x, t) belongs to L∞([0, T ];Lp(Rn)) ∩ Lp([0, T ]; Ḃ
1/p,p
p (Rn)).

Theorem 1, Theorem 3 and the L1 control for small molecules are the core of the paper, however, for the sake of
completness, we will prove some other interesting results concerning the equation (1).

The plan of the article is the following: in the section 2 we recall some facts concerning the molecular characteri-
zation of local Hardy spaces and some other facts about Hölder and bmo spaces. In section 3 we study the L1-norm
control for molecules and in section 4 we study existence and uniqueness of solutions with initial data in Lp with
2 ≤ p < +∞ and we prove the Theorem 3. Section 5 is devoted to a positivity principle that will be useful in
our proofs and section 6 studies existence of solution with θ0 ∈ L∞. Finally, section 7 applies these results to the
2D-quasi-geostrophic equation (QG)1/2.

2 Molecular Hardy spaces, Hölder spaces and bmo

Hardy spaces have several equivalent characterizations (see [4], [9] and [17] for a detailed treatment). In this paper
we are interested mainly in the molecular approach that defines local Hardy spaces hσ with 0 < σ < 1:

Definition 2.1 (Local Hardy spaces hσ) Let 0 < σ < 1. The local Hardy space hσ(Rn) is the set of distributions
f that admits the following molecular decomposition:

f =
∑

j∈N

λjψj (10)

where (λj)j∈N is a sequence of complex numbers such that
∑

j∈N
|λj |

σ < +∞ and (ψj)j∈N is a family of r-molecules

in the sense of the Definition 1.1 above. The hσ-norm1 is then fixed by the formula

‖f‖hσ = inf






∑

j∈N

|λj |
σ




1/σ

: f =
∑

j∈N

λjψj





where the infimum runs over all possible decompositions (10).

Local Hardy spaces have many remarquable properties and we will only stress here, before passing to duality results
concerning hσ spaces, the fact that Schwartz class S(Rn) is dense in hσ(Rn). For further details see [10], [17], [9] and [6].

Now, let us take a closer look at the dual space of local Hardy spaces. In [9] D. Goldberg proved the next important
theorem:

1it is not actually a norm since 0 < σ < 1. More details can be found in [9] and [17].
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Theorem 4 (Hardy-Hölder duality) Let n
n+1 < σ < 1 and fix γ = n( 1σ − 1). Then the dual of local Hardy space

hσ(Rn) is the Hölder space Cγ(Rn) fixed by the norm

‖f‖Cγ = ‖f‖L∞ + sup
x 6=y

|f(x)− f(y)|

|x− y|γ
.

This result allows us to study the Hölder regularity of functions in terms of Hardy spaces and it will be applied to
solutions of the n-dimensional fractional diffusion transport equation (1).

Remark 2.1 Since 0 < σ < 1, we have
∑

j∈N
|λj | ≤

(∑
j∈N

|λj |
σ
)1/σ

thus for testing Hölder continuity of a function

f it is enough to study the quantities 〈f, ψj〉 where ψj is an r-molecule.

We finish this section by recalling some useful facts about the bmo space used to characterize velocity v. This space
is defined as locally integrable functions f such that

sup
|B|≤1

1

|B|

∫

B

|f(x)− fB|dx < M and sup
|B|>1

1

|B|

∫

B

|f(x)|dx < M for a constant M ;

where we noted B(R) a ball of radius R > 0 and fB = 1
|B|

∫

B(R)

f(x)dx. The norm ‖ · ‖bmo is then fixed as the smallest

constant M satisfying these two conditions. We will use the next properties for a function belonging to bmo:

Proposition 2.1 Let f ∈ bmo, then

1) for all 1 < p < +∞, f is locally in Lp and 1
|B|

∫

B

|f(x)− fB|
pdx ≤ C‖f‖pbmo

2) for all k ∈ N, we have |f2kB − fB| ≤ Ck‖f‖bmo where 2kB(R) = B(2kR).

Proposition 2.2 Let f be a function in bmo(Rn). For k ∈ N, define fk by

fk(x) =





−k if f(x) ≤ −k

f(x) if −k ≤ f(x) ≤ k

k if k ≤ f(x).

(11)

Then (fk)k∈N converges weakly to f in bmo(Rn).

For a proof of these results and more details on Hardy, Hölder and bmo spaces see [4], [9], [13], [10] and [17].

3 L
1 control for small molecules: proof of the Theorem 2

As said in the introduction, we need to construct a suitable control in time for the L1-norm of the solutions ψ(·, t) of
the backward problem (6) where the inital data ψ0 is a small r-molecule. This will be achieved by iteration in two
different steps. The first step explains the molecules’ deformation after a very small time s0 > 0, which is related to
the size r by the bounds 0 < s0 ≤ ǫr with ǫ a small constant. In order to obtain a control of the L1 norm for larger
times we need to perform a second step which takes as a starting point the results of the first step and gives us the
deformation for another small time s1, which is also related to the original size r. Once this is achieved it is enough
to iterate the second step as many times as necessary to get rid of the dependence of the times s0, s1, ... from the
molecule’s size. Proceeding this way we obtain the L1 control needed for all time T0 < t < T .

3.1 Small time molecule’s evolution: First step

The following theorem shows how the molecular properties are deformed with the evolution for a small time s0.

Theorem 5 Set σ, γ and ω three real numbers such that n
n+1 < σ < 1, γ = n( 1σ − 1) and 0 < γ < ω < 1. Let ψ(x, s0)

be a solution of the problem




∂s0ψ(x, s0) = −∇ · (v ψ)(x, s0)− Λψ(x, s0)

ψ(x, 0) = ψ0(x)

div(v) = 0 and v ∈ L∞([0, T ]; bmo(Rn)) with sup
s0∈[0,T ]

‖v(·, s0)‖bmo ≤ µ

(12)
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If ψ0 is a small r-molecule in the sense of the Definition 1.1 for the local Hardy space hσ(Rn), then there exists a
positive constant K = K(µ) big enough and a positive constant ǫ such that for all 0 < s0 ≤ ǫr small we have the
following estimates

∫

Rn

|ψ(x, s0)||x − x(s0)|
ωdx ≤ (r +Ks0)

ω−γ (13)

‖ψ(·, s0)‖L∞ ≤
1

(
r +Ks0

)n+γ (14)

This remains true as long as (r +Ks0) < 1. The new molecule’s center x(s0) used in formula (13) is fixed by





x′(s0) = vBr = 1
|Br|

∫

Br

v(y, s0)dy where Br = B(x(s0), r)

x(0) = x0.

(15)

Remark 3.1

1) The definition of the point x(s0) given by (15) reflects the molecule’s center transport using velocity v.

2) Estimates (13)-(14) explain the molecules’ deformation following the evolution of the system. Note in particular
that if s0 −→ 0 in (13) and (14) we recover the initial molecular conditions (3) and (4).

Corollary 3.1 With inequalities (13)-(14) of the previous theorem we obtain

‖ψ(·, s0)‖L1 ≤
vn

(r +Ks0)γ
(16)

where vn denotes the volume of the n-dimensional unit ball.

Proof. We write

∫

Rn

|ψ(x, s0)|dx =

∫

{|x−x(s0)|<D}
|ψ(x, s0)|dx +

∫

{|x−x(s0)|≥D}
|ψ(x, s0)|dx

≤ vnD
n‖ψ(·, s0)‖L∞ +D−ω

∫

R

|ψ(x, s0)||x− x(s0)|
ωdx

Now using (14) and (13) one has:

∫

Rn

|ψ(x, s0)|dx ≤ vn
Dn

(r +Ks0)n+γ
+D−ω(r +Ks0)

ω−γ

To continue, it is enough to choose correctly the real parameter D to obtain

∫

Rn

|ψ(x, s0)|dx ≤ vn
(r +Ks0)

(ω−γ) n
n+ω

(r +Ks0)
ω

n+ω (n+γ)
=

vn
(r +Ks0)γ

.

�

Remark 3.2 This result shows that the L1 control will be a consequence of the concentration and the height con-
ditions. This corollary also explains the fact that it is enough to treat the case 0 < (r + Ks0) < 1. Indeed, if
(r +Ks0) = 1, thanks to the bound (16), the L1 control will be trivial then for time s0 and beyond: we only need to
apply the maximum principle.

The proof of Theorem 5 follows the next scheme: we first prove with the Proposition 3.1 the small concentration
condition (13); then we will see how this inequality implies the height condition (14) which is proved in Proposition
3.2.

Proposition 3.1 (Small time Concentration condition) Under the hypothesis of the Theorem 5, if ψ0 is a small
r-molecule, then the solution ψ(x, s) of (12) satisfies

∫

Rn

|ψ(x, s0)||x − x(s0)|
ωdx ≤ (r +Ks0)

ω−γ

for x(s0) ∈ Rn fixed by the formula (15) and with 0 ≤ s0 ≤ ǫr.
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Proof. Let us write Ω(x − x(s0)) = |x − x(s0)|
ω and ψ(x) = ψ+(x) − ψ−(x) where the functions ψ±(x) ≥ 0 have

disjoint support. We will note ψ±(x, s0) solutions of (12) with ψ±(x, 0) = ψ±(x).

At this point, we assume the following positivity principle which is proven in section 5:

Theorem 6 Let n < p ≤ +∞, if initial data ψ0 ∈ Lp(Rn) is such that 0 ≤ ψ0(x) ≤ M , then the associated solution
ψ(x, s0) of (12) satisfies 0 ≤ ψ(x, s0) ≤M for all s0 ∈ [0, T ].

Thus, by linearity and using the above theorem we have that |ψ(x, s0)| = |ψ+(x, s0)−ψ−(x, s0)| ≤ ψ+(x, s0)+ψ−(x, s0)
and we can write

∫

Rn

|ψ(x, s0)|Ω(x− x(s0))dx ≤

∫

Rn

ψ+(x, s0)Ω(x− x(s0))dx +

∫

Rn

ψ−(x, s0)Ω(x− x(s0))dx

so we only have to treat one of the integrals on the right side above. We have:

I =

∣∣∣∣∂s0
∫

Rn

Ω(x− x(s0))ψ+(x, s0)dx

∣∣∣∣

=

∣∣∣∣
∫

Rn

∂s0Ω(x− x(s0))ψ+(x, s0) + Ω(x − x(s0)) [−∇ · (v ψ+(x, s0))− Λψ+(x, s0)] dx

∣∣∣∣

=

∣∣∣∣
∫

Rn

−∇Ω(x− x(s0)) · x
′(s0)ψ+(x, s0) + Ω(x− x(s0)) [−∇ · (v ψ+(x, s0))− Λψ+(x, s0)] dx

∣∣∣∣

Using the fact that v is divergence free, we obtain

I =

∣∣∣∣
∫

Rn

∇Ω(x− x(s0)) · (v − x′(s0))ψ+(x, s0)− Ω(x− x(s0))Λψ+(x, s0)dx

∣∣∣∣ .

Finally, using the definition of x′(s0) given in (15) and replacing Ω(x− x(s0)) by |x− x(s0)|
ω we obtain

I ≤ c

∫

Rn

|x− x(s0)|
ω−1|v − vBr ||ψ+(x, s0)|dx

︸ ︷︷ ︸
I1

+c

∫

Rn

|x− x(s0)|
ω−1|ψ+(x, s0)|dx

︸ ︷︷ ︸
I2

. (17)

We will study separately each of the integrals I1 and I2 in the next lemmas:

Lemma 3.1 For integral I1 above we have the estimate I1 ≤ Cµ rω−1−γ .

Proof. We begin by considering the space Rn as the union of a ball with dyadic coronas centered on x(s0), more
precisely we set Rn = Br ∪

⋃
k≥1 Ek where

Br = {x ∈ Rn : |x− x(s0)| ≤ r}. (18)

Ek = {x ∈ Rn : r2k−1 < |x− x(s0)| ≤ r2k} for k ≥ 1,

(i) Estimations over the ball Br. Applying the Hölder inequality on integral I1 we obtain

∫

Br

|x− x(s0)|
ω−1|v − vBr ||ψ+(x, s0)|dx ≤ ‖|x− x(s0)|

ω−1‖Lp(Br)︸ ︷︷ ︸
(1)

(19)

× ‖v − vBr‖Lz(Br)︸ ︷︷ ︸
(2)

‖ψ+(·, s0)‖Lq(Br)︸ ︷︷ ︸
(3)

where 1
p + 1

z + 1
q = 1 and p, z, q > 1. We treat each of the previous terms separately:

• First observe that for 1 < p < n/(1− ω) we have for the term (1) above:

‖|x− x(s0)|
ω−1‖Lp(Br) ≤ Crn/p+ω−1.

• By hypothesis we have v(·, s0) ∈ bmo, thus

‖v − vBr‖Lz(Br) ≤ C|Br|
1/z‖v(·, s0)‖bmo.

since sup
s0∈[0,T ]

‖v(·, s0)‖bmo ≤ µ we write for the term (2)

‖v − vBr‖Lz(Br) ≤ Cµ rn/z .
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• Finally for (3) by the maximum principle (9) for Lq norms we have ‖ψ+(·, s0)‖Lq(Br) ≤ ‖ψ+(·, 0)‖Lq ; hence
using the fact that ψ0 is an r-molecule and remark 1.1-2) we obtain

‖ψ+(·, s0)‖Lq(Br) ≤ C

[
r−γ

]1/q [
1

rn+γ

]1−1/q

.

We gather all these inequalities together in order to obtain the following estimation for (19):
∫

Br

|x− x(s0)|
ω−1|v − vBr ||ψ+(x, s0)|dx ≤ Cµ rω−1−γ . (20)

(ii) Estimations for the dyadic corona Ek. Let us note Ik the integral

Ik =

∫

Ek

|x− x(s0)|
ω−1|v − vBr ||ψ+(x, s0)|dx.

Since over Ek we have2 |x− x(s0)|
ω−1 ≤ C2k(ω−1)rω−1 we write

Ik ≤ C2k(ω−1)rω−1

(∫

Ek

|v − vB
r2k

||ψ+(x, s0)|dx+

∫

Ek

|vBr − vB
r2k

||ψ+(x, s0)|dx

)

where we noted Br2k = B(x(s0), r2
k), then

I ≤ C2k(ω−1)rω−1

(∫

B
r2k

|v − vB
r2k

||ψ+(x, s0)|dx +

∫

B
r2k

|vBr − vB
r2k

||ψ+(x, s0)|dx

)
.

Now, since v(·, s0) ∈ bmo, using Proposition 2.1 we have |vBr − vB
r2k

| ≤ Ck‖v(·, s0)‖bmo ≤ Ckµ and we write

Ik ≤ C2k(ω−1)rω−1

(∫

B
r2k

|v − vB
r2k

||ψ+(x, s0)|dx+ Ckµ‖ψ+(·, s0)‖L1

)

≤ C2k(ω−1)rω−1
(
‖ψ+(·, s0)‖La0‖v − vB

r2k
‖
L

a0
a0−1

+ Ckµ r−γ
)

where we used the Hölder inequality with 1 < a0 <
n

n+(ω−1) and maximum principle for the last term above.

Using again the properties of bmo spaces we have

Ik ≤ C2k(ω−1)rω−1
(
‖ψ+(·, 0)‖

1/a0
L1 ‖ψ+(·, 0)‖

1−1/a0
L∞ |Br2k |

1−1/a0‖v(·, s)‖bmo + Ckµr−γ
)
.

Let us now apply estimates given by hypothesis over ‖ψ+(·, 0)‖L1 , ‖ψ+(·, 0)‖L∞ and ‖v(·, s0)‖bmo to obtain

Ik ≤ C2k(n−n/a0+ω−1)rω−1−γµ+ C2k(ω−1)kµ rω−1−γ .

Since 1 < a0 <
n

n+(ω−1) , we have n− n/a0 + (ω − 1) < 0, so that, summing over each dyadic corona Ek, we have

∑

k≥1

Ik ≤ Cµ rω−1−γ . (21)

Finally, gathering together estimations (20) and (21) we obtain the desired conclusion. �

Lemma 3.2 For integral I2 in inequality (17) we have I2 ≤ Crω−1−γ .

Proof. As for Lemma 3.1, we consider Rn as the union of a ball with dyadic coronas centered on x(s0) (cf. (18)).

(i) Estimations over the ball Br. We apply now the Hölder inequality in the integral I2 above with 1 < a1 < n/(1−ω)
and 1

a1
+ 1

b1
= 1 in order to obtain

∫

Br

|x− x(s0)|
ω−1|ψ+(x, s0)|dx ≤ ‖|x− x(s0)|

ω−1‖La1(Br)‖ψ+(·, s0)‖Lb1(Br)

≤ Crn/a1+ω−1‖ψ+(·, 0)‖
1/b1
L1 ‖ψ+(·, 0)‖

1−1/b1
L∞ .

Using hypothesis over ‖ψ+(·, 0)‖L1 and ‖ψ+(·, 0)‖L∞ we obtain
∫

Br

|x− x(s0)|
ω−1|ψ+(x, s0)|dx ≤ Crω−1−γ . (22)

2recall that 0 < γ < ω < 1.
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(ii) Estimations for the dyadic corona Ek. Here we have

∫

Ek

|x− x(s0)|
ω−1|ψ+(x, s0)|dx ≤ C2k(ω−1)rω−1

∫

Ek

|ψ+(x, s0)|dx ≤ C2k(ω−1)rω−1‖ψ+(·, s0)‖L1

≤ C2k(ω−1)rω−1‖ψ+(·, 0)‖L1 ≤ C2k(ω−1)rω−1−γ

It is at this step that the flexibility of molecules is essential. Indeed, in the Definition 1.1 we have fixed 0 < γ <
ω < 1 so we have ω − 1 < 0 and thus, summing over k ≥ 1, we obtain

∑

k≥1

∫

Ek

|x− x(s0)|
ω−1|ψ+(x, s0)|dx ≤ Crω−1−γ . (23)

In order to finish the proof of the Lemma 3.2 we glue together estimates (22) and (23). �

Now we continue the proof of the Proposition 3.1. Using the Lemmas 3.1 and 3.2 and getting back to estimate
(17) we have ∣∣∣∣∂s0

∫

Rn

Ω(x− x(s0))ψ+(x, s0)dx

∣∣∣∣ ≤ C(µ+ 1) rω−1−γ

This last estimation is compatible with the estimate (13) for 0 ≤ s0 ≤ ǫr small enough: just fix K such that

C (µ+ 1) ≤ K(ω − γ). (24)

Indeed, since the time s0 is very small, we can linearize the right-hand side of (13) in order to obtain

φ = (r +Ks0)
ω−γ ≈ rω−γ

(
1 + [K(ω − γ)]

s0
r

)
. (25)

Finally, taking the derivative with respect to s0 in the above expression we have φ′ ≈ rω−1−γK(ω − γ) and with
condition (24), the Proposition 3.1 follows. �

Now we will give a sligthly different proof of the maximum principle of A. Córdoba & D. Córdoba. Indeed, the
following proof only relies on the concentration condition proved in the lines above.

Proposition 3.2 (Small time Height condition) Under the hypothesis of the Theorem 5, if ψ(x, s0) satisfies con-
centration condition (13), then we have the next height condition

‖ψ(·, s0)‖L∞ ≤
1

(r +Ks0)
n+γ .

Proof. Assume that molecules we are working with are smooth enough. Following an idea of [8] (section 4 p.522-523),
we will note x the point of Rn such that ψ(x, s0) = ‖ψ(·, s0)‖L∞ . Thus we can write

d

ds0
‖ψ(·, s0)‖L∞ ≤ −

∫

Rn

ψ(x, s0)− ψ(y, s0)

|x− y|n+1
dy ≤ 0. (26)

Let us consider the corona centered in x defined by

C(R1, R2) = {y ∈ Rn : R1 ≤ |x− y| ≤ R2}

where R2 = ρR1 with ρ > 2 and where R1 will be fixed later. Then:
∫

Rn

ψ(x, s0)− ψ(y, s0)

|x− y|n+1
dy ≥

∫

C(R1,R2)

ψ(x, s0)− ψ(y, s0)

|x− y|n+1
dy.

Define the sets B1 and B2 by B1 = {y ∈ C(R1, R2) : ψ(x, s0) − ψ(y, s0) ≥ 1
2ψ(x, s0)} and B2 = {y ∈ C(R1, R2) :

ψ(x, s0)− ψ(y, s0) <
1
2ψ(x, s0)} such that C(R1, R2) = B1 ∪B2. We obtain the inequalities

∫

C(R1,R2)

ψ(x, s0)− ψ(y, s0)

|x− y|n+1
dy ≥

∫

B1

ψ(x, s0)− ψ(y, s0)

|x− y|n+1
dy ≥

ψ(x, s0)

2Rn+1
2

|B1| =
ψ(x, s0)

2Rn+1
2

(|C(R1, R2)| − |B2|) .

Since R2 = ρR1 one has
∫

C(R1,R2)

ψ(x, s0)− ψ(y, s0)

|x− y|n+1
dy ≥

ψ(x, s0)

2ρn+1Rn+1
1

(
vn(ρ

n − 1)Rn1 − |B2|

)
(27)

where vn denotes the volume of the n-dimensional unit ball. Now, we will estimate the quantity |B2| in terms of
ψ(x, s0) and R1 with the next lemma.
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Lemma 3.3 For the set B2 we have the following estimations

1) if |x− x(s0)| > 2R2 then (r +Ks0)
ω−γC1ψ(x, s0)

−1R−ω
1 ≥ |B2|.

2) if |x− x(s0)| < R1/2 then (r +Ks0)
ω−γC1ψ(x, s0)

−1R−ω
1 ≥ |B2|.

3) if R1/2 ≤ |x− x(s0)| ≤ 2R2 then (r +Ks0)
ω
2 − γ

2 (C2R
n−ω
1 ψ(x, s0)

−1)1/2 ≥ |B2|.

Recall that for the molecule’s center x0 ∈ Rn we noted its transport by x(s0) which is defined by formula (15).

Proof. For all these estimates, our starting point is the concentration condition (13):

(r +Ks0)
ω−γ ≥

∫

Rn

|ψ(y, s0)||y − x(s0)|
ωdy ≥

∫

B2

|ψ(y, s0)||y − x(s0)|
ωdy ≥

ψ(x, s0)

2

∫

B2

|y − x(s0)|
ωdy. (28)

We just need to estimate the last integral following the cases given by the lemma. The first two cases are very similar.
Indeed, if |x− x(s0)| > 2R2 then we have

min
y∈B2⊂C(R1,R2)

|y − x(s0)|
ω ≥ Rω2 = ρωRω1

while for the second case, if |x− x(s0)| < R1/2, one has

min
y∈B2⊂C(R1,R2)

|y − x(s0)|
ω ≥

Rω1
2ω

.

Applying these results to (28) we obtain (r + Ks0)
ω−γ ≥ ψ(x,s0)

2 ρωRω1 |B2| and (r + Ks0)
ω−γ ≥ ψ(x,s0)

2
Rω

1

2ω |B2|, and
since ρ > 2 we have the desired estimate

(r +Ks0)
ω−γC1

ψ(x, s0)Rω1
≥

2(r +Ks0)
ω−γ

ρωψ(x, s0)Rω1
≥ |B2|

with C1 = 21+ω. For the last case, since R1/2 ≤ |x− x(s0)| ≤ 2R2 we can write using the Cauchy-Schwarz inequality

∫

B2

|y − x(s0)|
ωdy ≥ |B2|

2

(∫

B2

|y − x(s0)|
−ωdy

)−1

(29)

Now, observe that in this case we have B2 ⊂ B(x(s0), 5R2) and then

∫

B2

|y − x(s0)|
−ωdy ≤

∫

B(x(s0),5R2)

|y − x(s0)|
−ωdy ≤ vn(5ρR1)

n−ω.

Getting back to (29) we obtain ∫

B2

|y − x(s0)|
ωdy ≥ |B2|

2v−1
n (5ρR1)

−n+ω

We use this estimate in (28) to obtain

(r +Ks0)
ω
2
− γ

2
C2R

n/2−ω/2
1

ψ(x, s0)1/2
≥ |B2|,

where C2 = (2× 5n−ωvnρn−ω)1/2. The lemma is proven. �

With this lemma at our disposal we can write

(i) if |x− x(s0)| > 2R2 or |x− x(s0)| < R1/2 then

∫

C(R1,R2)

ψ(x, s0)− ψ(y, s0)

|x− y|n+1
dy ≥

ψ(x, s0)

2ρn+1Rn+1
1

(
vn(ρ

n − 1)Rn1 −
C1(r +Ks0)

ω−γ

ψ(x, s0)
R−ω

1

)

(ii) if R1/2 ≤ |x− x(s0)| ≤ 2R2

∫

C(R1,R2)

ψ(x, s0)− ψ(y, s0)

|x− y|n+1
dy ≥

ψ(x, s0)

2ρn+1Rn+1
1

(
vn(ρ

n − 1)Rn1 −
C2(r +Ks0)

ω
2 − γ

2R
n/2−ω/2
1

ψ(x, s0)1/2

)
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Now, if we set R1 = (r +Ks0)
(ω−γ)
n+ω ψ(x, s0)

−1
n+ω and if ρ is big enough, we obtain for cases (i) and (ii) the following

estimate for (27): ∫

C(R1,R2)

ψ(x, s0)− ψ(y, s0)

|x− y|n+1
dy ≥ C(r +Ks0)

− (ω−γ)
n+ω ψ(x, s0)

1+ 1
n+ω

where C = C(n, ρ) = vn(ρ
n−1)−

√
2vn(5ρ)

n−ω
2

2ρn+1 < 1 is a small positive constant. Hence, and for all possible cases

considered before, we have the next estimate for (26):

d

ds0
‖ψ(·, s0)‖L∞ ≤ −C(r +Ks0)

− (ω−γ)
n+ω ‖ψ(·, s0)‖

1+ 1
n+ω

L∞ .

In order to solve this problem it is enough to remark that if ‖ψ(·, s0)‖L∞ ≤ (r+Ks0)
−(n+γ) then ‖ψ(·, s0)‖L∞ satisfies

the previous estimate. Indeed, recalling that (r +Ks0) < 1, we have

d

ds0
‖ψ(·, s0)‖L∞ ≤ −K(n+ γ)(r +Ks0)

−(n+γ)−1

≤ −C(r +Ks0)
− (ω−γ)

n+ω (r +Ks0)
−(n+γ)(1+ 1

n+ω )

≤ −C(r +Ks0)
− (ω−γ)

n+ω ‖ψ(·, s0)‖
1+ 1

n+ω

L∞ .

Furthermore, this solution is unique. �

3.2 Molecule’s evolution: Second step

In the previous section we have obtained deformed molecules after a very small time s0. The next theorem shows us
how to obtain similar profiles in the inputs and the outputs in order to perform an iteration in time.

Theorem 7 Set γ and ω two real numbers such that 0 < γ < ω < 1. Let 0 < s1 ≤ T and let ψ(x, s1) be a solution of
the problem





∂s1ψ(x, s1) = −∇ · (v ψ)(x, s1)− Λψ(x, s1)

ψ(x, 0) = ψ(x, s0) with s0 > 0

div(v) = 0 and v ∈ L∞([0, T ]; bmo(Rn)) with sup
s1∈[s0,T ]

‖v(·, s1)‖bmo ≤ µ

(30)

If ψ(x, s0) satisfies the three following conditions

∫

Rn

|ψ(x, s0)||x− x(s0)|
ωdx ≤ (r +Ks0)

ω−γ

‖ψ(·, s0)‖L∞ ≤
1

(r +Ks0)
n+γ

‖ψ(·, s0)‖L1 ≤
vn

(r +Ks0)γ
(31)

where K = K(µ) is given by (24) and s0 is such that 0 < (r +Ks0) < 1. Then for all 0 < s1 ≤ ǫr small, we have the
following estimates

∫

Rn

|ψ(x, s1)||x− x(s1)|
ωdx ≤ (r +K(s0 + s1))

ω−γ (32)

‖ψ(·, s1)‖L∞ ≤
1

(r +K(s0 + s1))
n+γ (33)

‖ψ(·, s1)‖L1 ≤
vn(

r +K(s0 + s1)
)γ (34)

Remark 3.3

1) The L1 bound in (31) is given as hypothesis in order to simplify the exposition.

2) As for the Theorem 5, we only need to study the case when 0 < (r+K(s0+s1)) < 1. Indeed, if (r+K(s0+s1)) = 1
and since s1 is small, we obtain immediately that ‖ψ(·, s1)‖L1 < +∞.

11



3) The new molecule’s center x(s1) used in formula (32) is fixed by





x′(s1) = vBf1
= 1

|Bf1
|

∫

Bf1

v(y, s1)dy

x(0) = x(s0).

(35)

And here we noted Bf1 = B(x(s1), f1) with f a real valued function given by

f1 =
(
r +Ks0

)
. (36)

To prove this theorem we will follow the same scheme as before: first we prove the concentration condition (32) in the
Proposition 3.3. With this estimate at hand we will control the L∞ decay in Proposition 3.4 and then we will obtain
the suitable L1 control in Proposition 3.5.

Proposition 3.3 (Concentration condition) Under the hypothesis of the Theorem 7, if ψ(·, s0) is an initial data
then the solution ψ(x, s1) of (30) satisfies

∫

Rn

|ψ(x, s1)||x− x(s1)|
ωdx ≤ (r +K(s0 + s1))

ω−γ

for x(s1) ∈ Rn fixed by formula (35), with 0 ≤ s1 ≤ ǫr.

Proof. The calculations are very similar of those of the Proposition 3.1: the only diference stems from the initial data
and the definition of the center x(s1). So, let us write Ω(x− x(s1)) = |x− x(s1)|

ω and ψ(x) = ψ+(x) − ψ−(x) where
the functions ψ±(x) ≥ 0 have disjoint support. Thus, by linearity and using the positivity theorem we have

|ψ(x, s1)| = |ψ+(x, s1)− ψ−(x, s1)| ≤ ψ+(x, s1) + ψ−(x, s1)

and we can write
∫

Rn

|ψ(x, s1)|Ω(x− x(s1))dx ≤

∫

Rn

ψ+(x, s1)Ω(x− x(s1))dx +

∫

Rn

ψ−(x, s1)Ω(x− x(s1))dx

so we only have to treat one of the integrals on the right-hand side above. We have:

I =

∣∣∣∣∂s1
∫

Rn

Ω(x− x(s1))ψ+(x, s1)dx

∣∣∣∣

=

∣∣∣∣
∫

Rn

∂s1Ω(x− x(s1))ψ+(x, s1) + Ω(x − x(s1)) [−∇ · (v ψ+(x, s1))− Λψ+(x, s1)] dx

∣∣∣∣

=

∣∣∣∣
∫

Rn

−∇Ω(x− x(s1)) · x
′(s1)ψ+(x, s1) + Ω(x− x(s1)) [−∇ · (v ψ+(x, s1))− Λψ+(x, s1)] dx

∣∣∣∣

Using the fact that v is divergence free, we obtain

I =

∣∣∣∣
∫

Rn

∇Ω(x− x(s1)) · (v − x′(s1))ψ+(x, s1)− Ω(x− x(s1))Λψ+(x, s1)dx

∣∣∣∣ .

Finally, using the definition of x′(s1) given in (35) and replacing Ω(x− x(s1)) by |x− x(s1)|
ω we obtain

I ≤ c

∫

Rn

|x− x(s1)|
ω−1|v − vBf1

||ψ+(x, s1)|dx

︸ ︷︷ ︸
I1

+c

∫

Rn

|x− x(s1)|
ω−1|ψ+(x, s1)|dx

︸ ︷︷ ︸
I2

. (37)

Again, we will study separately each of the integrals I1 and I2 in the next lemmas:

Lemma 3.4 For integral I1 we have the estimate I1 ≤ Cµ
(
r +Ks0

)ω−γ−1
.

Proof. We begin by considering the space Rn as the union of a ball with dyadic coronas centered on x(s1), more
precisely we set Rn = Bf1 ∪

⋃
k≥1 Ek where

Bf1 = {x ∈ Rn : |x− x(s1)| ≤ f1}, (38)

Ek = {x ∈ Rn : f12
k−1 < |x− x(s1)| ≤ f12

k} for k ≥ 1.
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(i) Estimations over the ball Bf1 . Applying Hölder inequality on integral I1 we obtain

I1,Bf1
=

∫

Bf1

|x− x(s1)|
ω−1|v − vBf1

||ψ+(x, s1)|dx ≤ ‖|x− x(s1)|
ω−1‖Lp(Bf1

)︸ ︷︷ ︸
(1)

× ‖v − vBf1
‖Lz(Bf1

)︸ ︷︷ ︸
(2)

‖ψ+(·, s1)‖Lq(Bf1
)︸ ︷︷ ︸

(3)

where 1
p + 1

z + 1
q = 1 and p, z, q > 1.

• Observe that for 1 < p < n/(1− ω) we have

‖|x− x(s1)|
ω−1‖Lp(Bf1

) ≤ Cf
n/p+ω−1
1 .

• We have v(·, s1) ∈ bmo, thus ‖v − vBf1
‖Lz(Bf1

) ≤ C|Bf1 |
1/z‖v(·, s1)‖bmo, since sup

s1∈[s0,T ]

‖v(·, s1)‖bmo ≤ µ we

write

‖v − vBf1
‖Lz(Bf1

) ≤ Cf
n/z
1 µ.

• Finally, by the maximum principle for Lq norms we have:

‖ψ+(·, s1)‖Lq(Bf1
) ≤ ‖ψ(·, s0)‖

1/q
L1 ‖ψ(·, s0)‖

1−1/q
L∞ .

We gather all these inequalities in order to obtain the following estimation for I1,Bf1
:

I1,Bf1
=

∫

Bf1

|x− x(s1)|
ω−1|v − vBf1

||ψ+(x, s1)|dx ≤ Cµf
n(1−1/q)+ω−1
1 ‖ψ(·, s0)‖

1/q
L1 ‖ψ(·, s0)‖

1−1/q
L∞ .

(ii) Estimations for the dyadic corona Ek. Let us note I1,Ek
the integral

I1,Ek
=

∫

Ek

|x− x(s1)|
ω−1|v − vBf1

||ψ+(x, s1)|dx.

Since over Ek we have |x− x(s1)|
ω−1 ≤ C2k(ω−1)fω−1

1 we write

I1,Ek
≤ C2k(ω−1)fω−1

(∫

Ek

|v − vB(f12k)||ψ+(x, s1)|dx+

∫

Ek

|vBf1
− vB(f12k)||ψ+(x, s1)|dx

)

≤ C2k(ω−1)fω−1
1

(∫

B(f12k)

|v − vB(f12k)||ψ+(x, s1)|dx +

∫

B(f12k)

|vBf1
− vB(f12k)||ψ+(x, s1)|dx

)
,

where B(f12
k) = B(x(s1), f12

k). Now, since v(·, s1) ∈ bmo, using Proposition 2.1 we have |vBf1
− vB(f12k)| ≤

Ck‖v(·, s1)‖bmo ≤ Ckµ and we can write

I1,Ek
≤ C2k(ω−1)fω−1

1

(∫

B(f12k)

|v − vB(f12k)||ψ+(x, s1)|dx + Ckµ‖ψ+(·, s1)‖L1

)

≤ C2k(ω−1)fω−1
1

(
‖ψ+(·, s1)‖La0‖v − vB(f12k)‖

L
a0

a0−1
+ Ckµ ‖ψ+(·, s0)‖L1

)

where we used Hölder inequality with 1 < a0 <
n

n+(ω−1) and maximum principle for the last term above. Using

again the properties of bmo spaces we have

I1,Ek
≤ C2k(ω−1)fω−1

1

(
‖ψ+(·, s0)‖

1/a0
L1 ‖ψ+(·, s0)‖

1−1/a0
L∞ |B(f12

k)|1−1/a0‖v(·, s1)‖bmo + Ckµ‖ψ(·, s0)‖L1

)
.

Since ‖v(·, s1)‖bmo ≤ µ and since 1 < a0 <
n

n+(ω−1) , we have n(1 − 1/a0) + (ω − 1) < 0, so that, summing over

each dyadic corona Ek, we obtain

∑

k≥1

I1,Ek
≤ Cµ

(
f
n(1−1/a0)+ω−1
1 ‖ψ(·, s0)‖

1/a0
L1 ‖ψ(·, s0)‖

1−1/a0
L∞ + fω−1

1 ‖ψ(·, s0)‖L1

)
.
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We finally obtain the following inequalities:

I1 = I1,Bf1
+
∑

k≥1

I1,Ek
(39)

≤ Cµf
n(1−1/q)+ω−1
1 ‖ψ(·, s0)‖

1/q
L1 ‖ψ(·, s0)‖

1−1/q
L∞︸ ︷︷ ︸

(a)

+Cµ


fn(1−1/a0)+ω−1

1 ‖ψ(·, s0)‖
1/a0
L1 ‖ψ(·, s0)‖

1−1/a0
L∞︸ ︷︷ ︸

(b)

+ fω−1
1 ‖ψ(·, s0)‖L1︸ ︷︷ ︸

(c)




Now we will prove that each of the terms (a), (b) and (c) above is bounded by the quantity
(
r+Ks0

)ω−γ−1
. Indeed:

• for the first term (a) by the hypothesis on the initial data ψ(·, s0) and the definition of f1 given in (36) we have:

f
n(1−1/q)+ω−1
1 ‖ψ(·, s0)‖

1/q
L1 ‖ψ(·, s0)‖

1−1/q
L∞ ≤

(
r +Ks0

)n(1−1/q)+ω−1

×
[
(r +Ks0)

−γ]1/q [(r +Ks0)
−(n+γ)

]1−1/q

≤
(
r +Ks0

)ω−γ−1
.

• For the second term (b) we have, by the same arguments:

f
n(1−1/a0)+ω−1
1 ‖ψ(·, s0)‖

1/a0
L1 ‖ψ(·, s0)‖

1−1/a0
L∞ ≤

(
r +Ks0

)n(1−1/a0)+ω−1

×
[
(r +Ks0)

−γ]1/a0 [(r +Ks0)
−(n+γ)

]1−1/a0

≤
(
r +Ks0

)ω−γ−1
.

• Finally, for the last term (c) we write

fω−1
1 ‖ψ(·, s0)‖L1 ≤ fω−1

1 (r +Ks0)
−γ = (r +Ks0)

ω−γ−1

Gathering these estimates on (a), (b) and (c), and getting back to (39) we finally obtain I1 ≤ Cµ
(
r +Ks0

)ω−γ−1
. �

Lemma 3.5 For integral I2 in inequality (37) we have I2 ≤ C
(
r +Ks0

)ω−γ−1
.

Proof. As for the Lemma 3.4, we consider Rn as the union of a ball with dyadic coronas centered on x(s1) (cf. (38)).

(i) Estimations over the ball Bf1 . Applying Hölder inequality with 1 < a1 < n/(1 − ω) and maximum principle we
have

I2,Bf1
=

∫

Bf1

|x− x(s1)|
ω−1|ψ+(x, s1)|dx ≤ ‖|x− x(s1)|

ω−1‖La1(Bf1
)‖ψ+(·, s1)‖Lb1 (Bf1

)

≤ Cf
n/a1+ω−1
1 ‖ψ+(·, s0)‖

1−1/a1
L1 ‖ψ+(·, s0)‖

1/a1
L∞ .

Thus, we can write:

I2,Bf1
≤ Cf

n/a1+ω−1
1 ‖ψ+(·, s0)‖

1−1/a1
L1 ‖ψ+(·, s0)‖

1/a1
L∞ . (40)

(ii) Estimations for the dyadic corona Ek. Here we have

I2,Ek
=

∫

Ek

|x− x(s1)|
ω−1|ψ+(x, s1)|dx ≤ C2k(ω−1)fω−1

1

∫

Ek

|ψ+(x, s1)|dx ≤ C2k(ω−1)fω−1
1 ‖ψ+(·, s1)‖L1

≤ C2k(ω−1)fω−1
1 ‖ψ(·, s0)‖L1

Since 0 < γ < ω < 1 we have ω − 1 < 0 and thus, summing over k ≥ 1, we obtain

∑

k≥1

I2,Ek
=
∑

k≥1

∫

Ek

|x− x(s1)|
ω−1|ψ+(x, s1)|dx ≤ Cfω−1

1 ‖ψ(·, s0)‖L1 .

We finally get ∑

k≥1

I2,Ek
≤ Cfω−1

1 ‖ψ(·, s0)‖L1 . (41)
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To finish the proof of the Lemma 3.5 we glue together (40) and (41) and we obtain

I2 = I2,Bf1
+
∑

k≥1

I2,Ek
≤ C


fn/a1+ω−1

1 ‖ψ+(·, s0)‖
1−1/a1
L1 ‖ψ+(·, s0)‖

1/a1
L∞︸ ︷︷ ︸

(d)

+ fω−1
1 ‖ψ(·, s0)‖L1︸ ︷︷ ︸

(e)




Now, we prove that the quantities (d) and (e) can be bounded by
(
r +Ks0

)ω−γ−1
.

• For the term (d) we write

f
n/a1+ω−1
1 ‖ψ(·, s0)‖

1−1/a1
L1 ‖ψ(·, s0)‖

1/a1
L∞ ≤ (r +Ks0)

n/a1+ω−1

×
[
(r +Ks0)

−γ]1−1/a1
[
(r +Ks0)

−(n+γ)
]1/a1

≤
(
r +Ks0

)ω−γ−1

• To treat the term (e) it is enough to apply the same arguments used to prove the part (c) above.

Finally, we obtain I2 = I2,Bf1
+
∑

k≥1

I2,Ek
≤ C

(
r +Ks0

)ω−γ−1
and the Lemma 3.5 is proven. �

Now we continue the proof of the Proposition 3.3. Using Lemmas 3.4 and 3.5 and getting back to the estimate
(37) we have ∣∣∣∣∂s1

∫

Rn

Ω(x − x(s1))ψ+(x, s1)dx

∣∣∣∣ ≤ C (µ+ 1)
(
r +Ks0

)ω−γ−1
(42)

This estimation is compatible with the estimate (32) for 0 ≤ s1 ≤ ǫr small enough. Indeed, we can write

φ = (r +K(s0 + s1))
ω−γ

and we linearize this expression with respect to s1:

φ ≈ (r +Ks0)
ω−γ

(
1 +K(ω − γ)

s1
(r +Ks0)

)
.

Taking the derivative of φ with respect to s1 we have φ′ ≈ K(ω − γ)
(
r +Ks0

)ω−γ−1
and with the condition (24) on

K(ω − γ) we obtain that (42) is bounded by φ′ and the Proposition 3.3 follows. �

Now we write down the maximum principle for a small time s1 but with a initial condition ψ(·, s0), with s0 > 0.

Proposition 3.4 (Height condition) Under the hypothesis of the Theorem 7, if ψ(x, s1) satisfies concentration
condition (32), then we have the next height condition

‖ψ(·, s1)‖L∞ ≤
1

(r +K(s0 + s1))
n+γ .

Proof. The proof follows essentially the same lines of the Proposition 3.2. Indeed, since we have that concentration

condition (32) is bounded by
(
r +K(s0 + s1)

)ω−γ
, we can use this estimate in the Lemma 3.3 and in the left hand

side of inequality (28). We obtain in the same manner and with the same constants:

d

ds1
‖ψ(·, s1)‖L∞ ≤ −C

(
r +K(s0 + s1)

)− (ω−γ)
n+ω ‖ψ(·, s1)‖

1+ 1
n+ω

L∞ .

We remark now to conclude that if ‖ψ(·, s1)‖L∞ ≤ (r +K(s0 + s1))
−(n+γ) then the previous inequality is satisfied.�

The crucial part of the proof of the Theorem 7 is given by the next proposition which gives us a control on the
L1-norm for a time s0 + s1.

Proposition 3.5 (Second L1-norm estimate) Under the hypothesis of the Theorem (7) we have

‖ψ(·, s1)‖L1 ≤
vn(

r +K(s0 + s1)
)γ

Proof. Once we have at our disposal the concentration condition (32) and the height condition (33), the proof of the
L1 bound follows the same lines of the Corollary 3.1. �
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3.3 The iteration

In sections 3.1 and 3.2 we studied respectively the evolution of small molecules from time 0 to a small time s0 and
from this time s0 to a larger time s0 + s1 and we obtained a good L1 control for such molecules. It is now possible
to reapply the Theorem 7 in order to obtain a larger time control of the L1 norm. The calculus of the N -th iteration
will be exactly the same, although it will be necessary to make some modifications.

Theorem 8 Assume that ψ(x, sN ) is a solution of the system




∂sNψ(x, sN ) = −∇ · (v ψ)(x, sN )− Λψ(x, sN )

ψ(x, 0) = ψ(x, sN−1) with sN−1 > 0

div(v) = 0 and v ∈ L∞([0, T ]; bmo(Rn)) with sup
sN∈[sN−1,T ]

‖v(·, sN )‖bmo ≤ µ

If ψ(x, sN−1) satisfies the three following conditions
∫

Rn

|ψ(x, sN−1)||x− x(sN−1)|
ωdx ≤ (r +K(s0 + · · ·+ sN−1))

ω−γ

‖ψ(·, sN−1)‖L∞ ≤
1

(r +K(s0 + · · ·+ sN−1)
n+γ

‖ψ(·, sN−1)‖L1 ≤
vn(

r +K(s0 + · · ·+ sN−1

)γ

Then for all 0 < sN ≤ ǫr small, we have the following estimates
∫

Rn

|ψ(x, sN )||x− x(sN )|ωdx ≤ (r +K(s0 + · · ·+ sN−1 + sN ))ω−γ (43)

‖ψ(·, sN )‖L∞ ≤
1

(r +K(s0 + · · ·+ sN−1 + sN ))
n+γ (44)

‖ψ(·, sN )‖L1 ≤
vn(

r +K(s0 + · · ·+ sN−1 + sN )
)γ (45)

Remark 3.4

1) Again, it is enough to assume that (r +K(s0 + · · ·+ sN)) < 1, otherwise there is nothing to prove.

2) The new molecule’s center x(sN ) used in formula (43) is fixed by




x′(sN ) = vBfN
= 1

|BfN
|

∫

BfN

v(y, sN )dy

x(0) = x(sN−1).

(46)

And here we noted BfN = B(x(sN ), fN ) with fN a real valued function given by

fN =
(
r +K(s0 + · · ·+ sN−1)

)
. (47)

Proof of the Theorem 8. We start with inequality (43). Let us write again Ω(x − x(sN )) = |x − x(sN )|ω and
ψ(x) = ψ+(x)− ψ−(x), then we have |ψ(x, sN )| = |ψ+(x, sN )− ψ−(x, sN )| ≤ ψ+(x, sN ) + ψ−(x, sN ) and we write

∫

Rn

|ψ(x, sN )|Ω(x− x(sN ))dx ≤

∫

Rn

ψ+(x, sN )Ω(x − x(sN ))dx+

∫

Rn

ψ−(x, sN )Ω(x− x(sN ))dx.

We only treat one of the integrals on the right-hand side above:

I =

∣∣∣∣∂sN
∫

Rn

Ω(x− x(sN ))ψ+(x, sN )dx

∣∣∣∣ .

Following the same steps as before and using the fact that v is divergence free, we obtain

I =

∣∣∣∣
∫

Rn

∇Ω(x− x(sN )) · (v − x′(sN ))ψ+(x, sN )− Ω(x− x(sN ))Λψ+(x, sN )dx

∣∣∣∣ .

Using the definition of x′(sN ) given in (46) and replacing Ω(x− x(sN )) by |x− x(sN )|ω we have

I ≤ c

∫

Rn

|x− x(sN )|ω−1|v − vBfN
||ψ+(x, sN )|dx

︸ ︷︷ ︸
I1

+c

∫

Rn

|x− x(sN )|ω−1|ψ+(x, sN )|dx

︸ ︷︷ ︸
I2

. (48)

We will study separately each of the integrals I1 and I2 in the next lemmas:
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Lemma 3.6 For integral I1 we have the estimate I1 ≤ Cµ
(
r +K(s0 + · · ·+ sN−1)

)ω−γ−1
.

Proof. We set Rn = BfN ∪
⋃
k≥1 Ek with

BfN = {x ∈ Rn : |x− x(sN )| ≤ fN}, (49)

Ek = {x ∈ Rn : fN2
k−1 < |x− x(sN )| ≤ fN2k} for k ≥ 1.

(i) Estimations over the ball BfN . Applying Hölder inequality on integral I1 we obtain

I1,BfN
=

∫

BfN

|x− x(sN )|ω−1|v − vBfN
||ψ+(x, sN )|dx ≤ ‖|x− x(sN )|ω−1‖Lp(BfN

)︸ ︷︷ ︸
(1)

× ‖v − vBfN
‖Lz(BfN

)︸ ︷︷ ︸
(2)

‖ψ+(·, sN )‖Lq(BfN
)︸ ︷︷ ︸

(3)

where 1
p + 1

z + 1
q = 1 and p, z, q > 1.

• Observe that for 1 < p < n/(1− ω) we have ‖|x− x(sN )|ω−1‖Lp(BfN
) ≤ Cf

n/p+ω−1
N .

• By hypothesis we have v(·, sN ) ∈ bmo, thus ‖v − vBfN
‖Lz(BfN

) ≤ C|BfN |1/z‖v(·, sN )‖bmo, now since

sup
sN∈[sN−1,T ]

‖v(·, sN )‖bmo ≤ µ we write ‖v − vBfN
‖Lz(BfN

) ≤ Cf
n/z
N µ.

• Using the maximum principle for Lq norms we have ‖ψ+(·, sN )‖Lq(BfN
) ≤ ‖ψ(·, sN−1)‖

1/q
L1 ‖ψ(·, sN−1)‖

1−1/q
L∞ .

We gather all these inequalities in order to obtain the following estimation for I1,BfN
:

I1,BfN
≤ Cµf

n(1−1/q)+ω−1
N ‖ψ(·, sN−1)‖

1/q
L1 ‖ψ(·, sN−1)‖

1−1/q
L∞ .

(ii) Estimations for the dyadic corona Ek. Let us note I1,Ek
the integral

I1,Ek
=

∫

Ek

|x− x(sN )|ω−1|v − vBfN
||ψ+(x, sN )|dx.

Since over Ek we have |x− x(sN )|ω−1 ≤ C2k(ω−1)fω−1
N we write

I1,Ek
≤ C2k(ω−1)fω−1

N

(∫

Ek

|v − vB(fN2k)||ψ+(x, sN )|dx +

∫

Ek

|vBfN
− vB(fN2k)||ψ+(x, sN )|dx

)

≤ C2k(ω−1)fω−1
N

(∫

B(fN2k)

|v − vB(fN2k)||ψ+(x, sN )|dx+

∫

B(fN2k)

|vBfN
− vB(fN2k)||ψ+(x, sN )|dx

)
,

with B(fN2k) = B(x(sN ), fN2k). Now, since v(·, sN ) ∈ bmo, using Proposition 2.1 we have |vBfN
− vB(fN2k)| ≤

Ck‖v(·, sN )‖bmo ≤ Ckµ and we can write

I1,Ek
≤ C2k(ω−1)fω−1

N

(∫

B(fN2k)

|v − vB(fN2k)||ψ+(x, sN )|dx+ Ckµ‖ψ+(·, sN )‖L1

)

≤ C2k(ω−1)fω−1
N

(
‖ψ+(·, sN )‖La0 ‖v − vB(fN2k)‖

L
a0

a0−1
+ Ckµ ‖ψ+(·, sN−1)‖L1

)

where we used Hölder inequality with 1 < a0 <
n

n+(ω−1) and maximum principle for the last term above. Using

again the properties of bmo spaces we have

I1,Ek
≤ C2k(ω−1)fω−1

N

(
‖ψ+(·, sN−1)‖

1/a0
L1 ‖ψ+(·, sN−1)‖

1−1/a0
L∞ |B(fN2k)|1−1/a0‖v(·, sN )‖bmo + Ckµ‖ψ(·, sN−1)‖L1

)
.

Since ‖v(·, sN )‖bmo ≤ µ and since 1 < a0 <
n

n+(ω−1) , we have n(1 − 1/a0) + (ω − 1) < 0, so that, summing over

each dyadic corona Ek, we obtain

∑

k≥1

I1,Ek
≤ Cµ

(
f
n(1−1/a0)+ω−1
N ‖ψ(·, sN−1)‖

1/a0
L1 ‖ψ(·, sN−1)‖

1−1/a0
L∞ + fω−1

N ‖ψ(·, sN−1)‖L1

)
.
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We finally obtain the following inequalities:

I1 = I1,BfN
+
∑

k≥1

I1,Ek
(50)

≤ Cµf
n(1−1/q)+ω−1
N ‖ψ(·, sN−1)‖

1/q
L1 ‖ψ(·, sN−1)‖

1−1/q
L∞︸ ︷︷ ︸

(a)

+Cµ


fn(1−1/a0)+ω−1

N ‖ψ(·, sN−1)‖
1/a0
L1 ‖ψ(·, sN−1)‖

1−1/a0
L∞︸ ︷︷ ︸

(b)

+ fω−1
N ‖ψ(·, sN−1)‖L1︸ ︷︷ ︸

(c)




Each of the terms (a), (b) and (c) above is bounded by the quantity
(
r +K(s0 + · · ·+ sN−1)

)ω−γ−1
:

• for the first term (a) by the hypothesis on the initial data ψ(·, sN−1) and the definition of fN given in (47) we
have:

f
n(1−1/q)+ω−1
N ‖ψ(·, s0)‖

1/q
L1 ‖ψ(·, s0)‖

1−1/q
L∞ ≤

(
r +K(s0 + · · ·+ sN−1)

)[n(1−1/q)+ω−1]− γ
q −(n+γ)(1−1/q)

≤
(
r +K(s0 + · · ·+ sN−1)

)ω−γ−1
.

• For the second term (b) we have:

f
n(1−1/a0)+ω−1
N ‖ψ(·, s0)‖

1/a0
L1 ‖ψ(·, s0)‖

1−1/a0
L∞ ≤

(
r +K(s0 + · · ·+ sN−1)

)[n(1−1/a0)+ω−1]− γ
a0

−(n+γ)(1−1/a0)

≤
(
r +K(s0 + · · ·+ sN−1)

)ω−γ−1
.

• Finally, for the last term (c) we write

fω−1
N ‖ψ(·, s0)‖L1 ≤ fω−1

N (r +K(s0 + · · ·+ sN−1))
−γ = (r +K(s0 + · · ·+ sN−1))

ω−γ−1

Gathering these estimates on (a), (b) and (c), and getting back to (50) we finally obtain

I1 ≤ Cµ
(
r +K(s0 + · · ·+ sN−1)

)ω−γ−1
.

The Lemma 3.6 is proven. �

Lemma 3.7 For integral I2 in inequality (48) we have the following estimate

I2 =

∫

Rn

|x− x(sN )|ω−1|ψ+(x, sN )|dx ≤ C
(
r +K(s0 + · · ·+ sN−1)

)ω−γ−1
.

Proof. As for the Lemma 3.6, we consider Rn as the union of a ball with dyadic coronas centered on x(sN ) (cf. (49)).

(i) Estimations over the ball BfN . Applying Hölder inequality with 1 < a1 < n/(1− ω) and maximum principle we
have

I2,BfN
=

∫

BfN

|x− x(sN )|ω−1|ψ+(x, sN )|dx ≤ ‖|x− x(sN )|ω−1‖La1(BfN
)‖ψ+(·, sN )‖Lb1(BfN

)

≤ Cf
n/a1+ω−1
N ‖ψ+(·, sN−1)‖

1−1/a1
L1 ‖ψ+(·, sN−1)‖

1/a1
L∞ .

Thus, we can write:

I2,BfN
≤ Cf

n/a1+ω−1
N ‖ψ+(·, sN−1)‖

1−1/a1
L1 ‖ψ+(·, sN−1)‖

1/a1
L∞ . (51)

(ii) Estimations for the dyadic corona Ek. Here we have

I2,Ek
=

∫

Ek

|x− x(sN )|ω−1|ψ+(x, sN )|dx ≤ C2k(ω−1)fω−1
N

∫

Ek

|ψ+(x, sN )|dx ≤ C2k(ω−1)fω−1
N ‖ψ+(·, sN )‖L1

≤ C2k(ω−1)fω−1
N ‖ψ(·, sN−1)‖L1

Since 0 < γ < ω < 1 we have ω − 1 < 0 and summing over k ≥ 1 we obtain

∑

k≥1

I2,Ek
=
∑

k≥1

∫

Ek

|x− x(sN )|ω−1|ψ+(x, sN )|dx ≤ Cfω−1
N ‖ψ(·, sN−1)‖L1 .

We finally obtain ∑

k≥1

I2,Ek
≤ Cfω−1

N ‖ψ(·, sN−1)‖L1 . (52)
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To finish the proof of the Lemma 3.7 we glue together (51) and (52) and we obtain

I2 = I2,BfN
+
∑

k≥1

I2,Ek
≤ C


fn/a1+ω−1

N ‖ψ+(·, sN−1)‖
1−1/a1
L1 ‖ψ+(·, sN−1)‖

1/a1
L∞︸ ︷︷ ︸

(d)

+ fω−1
N ‖ψ(·, sN−1)‖L1︸ ︷︷ ︸

(e)




• For the term (d) we write

f
n/a1+ω−1
N ‖ψ(·, sN−1)‖

1−1/a1
L1 ‖ψ(·, sN−1)‖

1/a1
L∞ ≤

(
r +K(s0 + · · ·+ sN−1)

)[n/a1+ω−1]−γ(1−1/a1)−n+γ
a1

≤
(
r +K(s0 + · · ·+ sN−1)

)ω−γ−1

• To treat the term (e) it is enough to apply the same arguments used to prove the part (c) above.

Finally, we obtain I2 = I2,BfN
+
∑

k≥1

I2,Ek
≤ C

(
r +K(s0 + · · ·+ sN−1)

)ω−γ−1
and the Lemma 3.7 is proven. �

Now, using Lemmas 3.6 and 3.7 and getting back to the estimate (48) we have

∣∣∣∣∂sN
∫

Rn

Ω(x− x(sN ))ψ+(x, sN )dx

∣∣∣∣ ≤ C (µ+ 1)
(
r +K(s0 + · · ·+ sN−1)

)ω−γ−1
(53)

This estimation is compatible with the estimate (43) for 0 ≤ sN ≤ ǫr small: write φ = (r +K(s0 + · · ·+ sN ))ω−γ

and linearize this expression with respect to sN :

φ ≈ (r +K(s0 + · · ·+ sN−1))
ω−γ

(
1 +K(ω − γ)

sN
(r +K(s0 + · · ·+ sN−1))

)
.

Taking the derivative of φ with respect to sN we have φ′ ≈ K(ω − γ)
(
r + K(s0 + · · · + sN−1)

)ω−γ−1
and with the

condition (24) on K(ω − γ) we obtain that (53) is bounded by φ′ and the concentration condition follows.

Let us study now the height condition. As long as this concentration condition is bounded by (r +K(s0 + · · · +
sN ))ω−γ , we can deduce from it the L∞ estimate

‖ψ(·, sN )‖L∞ ≤
1(

r +K(s0 + · · ·+ sN)
)γ .

Indeed, following the same steps of the Proposition 3.2 and Lemma 3.3, we obtain the inequality:

d

dsN
‖ψ(·, sN )‖L∞ ≤ −C

(
r +K(s0 + · · ·+ sN )

)− (ω−γ)
n+ω ‖ψ(·, sN)‖

1+ 1
n+ω

L∞ .

It suffices to note that if ‖ψ(·, sN )‖L∞ ≤ 1(
r+K(s0+···+sN )

)n+γ , then ‖ψ(·, sN )‖L∞ satifies this inequality.

Finally, proceeding as in the corollary 3.1 with these two inequalities we have a L1 estimate for time s0 + · · ·+ sN :

‖ψ(·, sN )‖L1 ≤
vn(

r +K(s0 + · · ·+ sN )
)γ .

�

End of the proof of the Theorem 2. We have proved that is possible to control the L1 behavior of the
molecules from 0 to a time s0, from time s0 to time s1, and by iteration from time sN−1 to time sN . Observe now
that the smallness of r and of the times s0, ..., sN can be compensated by the number of iterations N in the following
sense: fix a small 0 < r < 1 and iterate as explained before. Since each small time s0, ..., sN is of order ǫr, we have
s0 + · · · + sN ∼ Nǫr. Thus, we will stop the iterations as soon as Nr ≥ T0. Of course, the number of iterations
N = N(r) will depend on the smallness of the molecule’s size r, more specifically it is enough to set N(r) ∼ T0

r . Pro-

ceeding this way we will obtain ‖ψ(·, sN)‖L1 ≤ CT−γ
0 < +∞. Note in particular that, once this estimate is available,

for bigger times it is enough to apply the maximum principle.

Finally, and for all r > 0, we obtain after a time T0 a L1 control for small molecules and we finish the proof of the
Theorem 2. �
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4 Existence and uniqueness for L
p initial data

In this section we will study existence and uniqueness for weak solution of equation (1) with initial data θ0 ∈ Lp(Rn)
where p ≥ 2. Remark that equation (1) differs mainly from the backward equation (6) by the sign of the velocity.
Since the velocity v is a data for the problem, it is equivalent to consider −v instead of v, thus, for simplicity, we fix
velocity’s sign in the next way:





∂tθ(x, t) +∇ · (v θ)(x, t) + Λθ(x, t) = 0

θ(x, 0) = θ0(x) ∈ Lp(Rn)

div(v) = 0 and v ∈ L∞([0, T ]; bmo(Rn)).

(54)

4.1 Viscosity Solutions

The term Viscosity Solutions is taken from [8] and it refers to weak solutions of (54) which are the weak limit, as
ε −→ 0, of a sequence of solutions of problems





∂tθ(x, t) +∇ · (vε θ)(x, t) + Λθ(x, t) = ε∆θ(x, t)

θ(x, 0) = θ0(x)

div(v) = 0 and v ∈ L∞([0, T ];L∞(Rn)).

(55)

where vε is defined by vε = v ∗ ωε with ωε(x) = ε−nω(x/ε) and ω ∈ C∞
0 (Rn) is a function such that

∫

Rn

ω(x)dx = 1.

Remark 4.1 Observe that we fixed here the velocity v such that v ∈ L∞([0, T ];L∞(Rn)). This is not very restrictive
because by Proposition 2.2 we can construct a sequence vk ∈ L∞ that converge weakly to v in bmo.

Problem (55) admits the following equivalent integral representation:

θ(x, t) = eεt∆θ0(x) −

∫ t

0

eε(t−s)∆∇ · (vε θ)(x, s)ds −

∫ t

0

eε(t−s)∆Λθ(x, s)ds (56)

For a proof of this fact see [15] or [13]. We will use then the Banach contraction scheme and for this we will consider
the space L∞([0, T ];Lp(Rn)) with the norm ‖f‖L∞(Lp) = sup

t∈[0,T ]

‖f(·, t)‖Lp .

Theorem 9 (Local existence) Let 2 ≤ p < +∞ and let θ0 and v be two functions such that θ0 ∈ Lp(Rn), div(v) = 0
and v ∈ L∞([0, T ′];L∞(Rn)). If initial data satisfies ‖θ0‖Lp ≤ K and if T ′ is a time small enough such that

C

(
T ′1/2

ε1/2
‖v‖L∞(L∞) +

T ′1/2

ε1/2

)
≤ 1/2,

then (56) has a unique solution θ ∈ L∞([0, T ′];Lp(Rn)) on the closed ball B(0, 2K) ⊂ L∞([0, T ′];Lp(Rn)).

Proof. We note Lε(θ) and N
v
ε (θ) the quantities

Lε(θ)(x, t) =

∫ t

0

eε(t−s)∆Λθ(x, s)ds and Nv
ε (θ)(x, t) =

∫ t

0

eε(t−s)∆∇ · (vε θ)(x, s)ds.

Lemma 4.1 If f ∈ L∞([0, T ′];Lp(Rn)), then

‖Lε(f)‖L∞(Lp) ≤ C
T ′1/2

ε1/2
‖f‖L∞(Lp) (57)

Proof. We write

‖Lε(f)‖L∞(Lp) = sup
0<t<T ′

∥∥∥∥
∫ t

0

eε(t−s)∆Λf(·, s)ds

∥∥∥∥
Lp

= sup
0<t<T ′

∥∥∥∥
∫ t

0

Λf ∗ hε(t−s)(·, s)ds

∥∥∥∥
Lp

where we noted ht the heat kernel on Rn. Then we have the estimates

‖Lε(f)‖L∞(Lp) ≤ sup
0<t<T ′

∫ t

0

‖f(·, s)‖Lp

∥∥Λhε(t−s)
∥∥
L1 ds ≤ ‖f‖L∞(Lp) sup

0<t<T ′

∫ t

0

C(ε(t− s))−1/2ds ≤ C
T ′1/2

ε1/2
‖f‖L∞(Lp). �
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Lemma 4.2 If f ∈ L∞([0, T ′];Lp(Rn)) and if v ∈ L∞([0, T ′];L∞(Rn)), then

‖Nv
ε (f)‖L∞(Lp) ≤ C

√
T ′

ε
‖v‖L∞(L∞)‖f‖L∞(Lp) (58)

Proof. We write:

‖Nv
ε (f)‖L∞(Lp) = sup

0<t<T ′

∥∥∥∥
∫ t

0

eε(t−s)∆∇ · (vεf)(·, s)ds

∥∥∥∥
Lp

= sup
0<t<T ′

∥∥∥∥
∫ t

0

∇ · (vεf) ∗ hε(t−s)(·, s)ds

∥∥∥∥
Lp

≤ sup
0<t<T ′

∫ t

0

‖vεf(·, s)‖Lp

∥∥∇hε(t−s)
∥∥
L1 ds ≤ sup

0<t<T ′

∫ t

0

‖vε(·, s)‖L∞ ‖f(·, s)‖Lp C(ε(t− s))−1/2ds

≤ ‖f‖L∞(Lp) ‖v‖L∞(L∞) sup
0<t<T ′

∫ t

0

C(ε(t− s))−1/2ds ≤ ‖f‖L∞(Lp) ‖v‖L∞(L∞)C

√
T ′

ε
. �

Finally, since eεt∆ is a contraction operator, estimate ‖eεt∆f‖Lp ≤ ‖f‖Lp is valid for all function f ∈ Lp(Rn) with
1 ≤ p ≤ +∞, for all t > 0 and all ε > 0. Thus, we have

‖eεt∆f‖L∞(Lp) ≤ ‖f‖Lp. (59)

To apply the Banach contraction scheme, let us now construct a sequence of functions in the following way

θn+1(x, t) = eεt∆θ0(x)− Lε(θn)(x, t) −Nv
ε (θn)(x, t)

and we take the L∞(Lp)-norm of this expression to obtain

‖θn+1‖L∞(Lp) ≤ ‖eεt∆θ0‖L∞(Lp) + ‖Lε(θn)‖L∞(Lp) + ‖Nv
ε (θn)‖L∞(Lp)

Using estimates (57), (58) and (59) we have

‖θn+1‖L∞(Lp) ≤ ‖θ0‖Lp + C

(
T ′1/2

ε1/2
‖v‖L∞(L∞) +

T ′1/2

ε1/2

)
‖θn‖L∞(Lp)

Thus, if ‖θ0‖Lp ≤ K and with the definition of T ′, we have by iteration that ‖θn+1‖L∞(Lp) ≤ 2K: the sequence

(θn)n∈N constructed from initial data θ0 belongs to the closed ball B(0, 2K). In order to finish this proof, let us show
that θn −→ θ in L∞([0, T ′];Lp(Rn)). For this we write

‖θn+1 − θn‖L∞(Lp) ≤ ‖Lε(θn − θn−1)‖L∞(Lp) + ‖Nv
ε (θn − θn−1)‖L∞(Lp)

and using previous lemmas we have

‖θn+1 − θn‖L∞(Lp) ≤ C

(
T ′1/2

ε1/2
‖v‖L∞(L∞) +

T ′1/2

ε1/2

)
‖θn − θn−1‖L∞(Lp)

so, by iteration we obtain

‖θn+1 − θn‖L∞(Lp) ≤

[
C

(
T ′1/2

ε1/2
‖v‖L∞(L∞) +

T ′1/2

ε1/2

)]n
‖θ1 − θ0‖L∞(Lp)

hence, with the definition of T ′ it comes ‖θn+1 − θn‖L∞(Lp) ≤
(
1
2

)n
‖θ1 − θ0‖L∞(Lp). Finally, if n −→ +∞, the

sequence (θn)n∈N convergences towards θ in L∞([0, T ′];Lp(Rn)). Since it is a Banach space we deduce uniqueness for
the solution θ of problem (56). �

Corollary 4.1 The solution constructed above depends continuously on initial data θ0.

Proof. Let ϕ0 ∈ Lp(Rn) be an initial data and let ϕ be the associated solution. We write

θ(x, t)− ϕ(x, t) = eεt∆(θ0(x) − ϕ0(x)) − Lε(θ − ϕ)(x, t) −Nv
ε (θ − ϕ)(x, t)

Taking L∞(Lp)-norm in formula above and applying the same previous calculations one obtains

‖θ − ϕ‖L∞(Lp) ≤ ‖θ0 − ϕ0‖Lp + C0‖θ − ϕ‖L∞(Lp) (60)

This shows continuous dependence of the solution since C0 =
(
C
(
T ′1/2

ε1/2
‖v‖L∞(L∞) +

T ′1/2

ε1/2

))
≤ 1/2. �

Once we obtain a local result, global existence easily follows by a simple iteration since problems studied here
(equations (1), (54) or (55)) are linear as velocity v does not depend on θ.
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Remark 4.2 Solutions θ(·, ·) constructed above depends on ε and it will be more convenient to note them as θ(ε)(·, ·).
For the time being, we will just note them θ(·, ·).

We study now the regularity of solutions constructed by this method.

Theorem 10 Solutions of the approximated problem (55) are smooth.

Proof. By iteration we will prove that

θ ∈
⋂

0<T0<T1<t<T2<T∗

L∞([0, t];W
k
2 ,p(Rn)) for all k ≥ 0.

Remark that this is true for k = 0. So let us assume that it is also true for k > 0 and we will show that it is still true
for k + 1. Set t such that 0 < T0 < T1 < t < T2 < T ∗ and let us consider the next problem

θ(x, t) = eε(t−T0)∆θ(x, T0)−

∫ t

T0

eε(t−s)∆∇ · (vε θ)(x, s)ds −

∫ t

T0

eε(t−s)∆Λθ(x, s)ds

We have then the following estimate

‖θ‖
L∞(W

k+1
2

,p)
≤ ‖eε(t−T0)∆θ(·, T0)‖

L∞(W
k+1
2

,p)

+

∥∥∥∥
∫ t

T0

eε(t−s)∆∇ · (vε θ)(·, s)ds

∥∥∥∥
L∞(W

k+1
2

,p)

+

∥∥∥∥
∫ t

T0

eε(t−s)∆Λθ(·, s)ds

∥∥∥∥
L∞(W

k+1
2

,p)

Now, we will treat separately each of the previous terms.

(i) For the first one we have

‖eε(t−T0)∆θ(·, T0)‖
W

k+1
2

,p = ‖θ(·, T0) ∗ hε(t−T0)‖Lp + ‖θ(·, T0) ∗ Λ
k+1
2 hε(t−T0)‖Lp

≤ C‖θ(·, T0)‖Lp + ‖θ(·, T0)‖Lp‖Λ
k+1
2 hε(t−T0)‖L1

where ht is the heat kernel, so we can write

‖eε(t−T0)∆θ(·, T0)‖
L∞(W

k+1
2

,p)
≤ C‖θ(·, T0)‖Lp sup

{
[ε(t− T0)]

− k+1
4 ; 1

}

(ii) For the second term, one has

I =

∥∥∥∥
∫ t

T0

eε(t−s)∆∇ · (vε θ)(·, s)ds

∥∥∥∥
W

k+1
2

,p

≤

∫ t

T0

‖∇ · (vε θ) ∗ hε(t−s)‖Lp + ‖∇ · (vε θ) ∗ hε(t−s)‖
Ẇ

k+1
2

,p
ds

≤

∫ t

T0

‖vε θ‖Lp‖∇hε(t−s)‖L1 + ‖Λ
k
2 (vε θ)‖Lp‖Λ1/2

(
∇hε(t−s)

)
‖L1ds

≤ C

∫ t

T0

‖vε θ(·, s)‖Lp [ε(t− s)]
− 1

2 + ‖vε θ(·, s)‖
Ẇ

k
2
,p [ε(t− s)]

− 3
4 ds.

≤ C

∫ t

T0

‖vε θ(·, s)‖
W

k
2
,p max

(
[ε(t− s)]−

1
2 ; [ε(t− s)]−

3
4

)
ds

Note now that we have here the estimations below for N ≥ k/2

‖vεθ(·, s)‖
W

k
2
,p ≤ ‖vε(·, s)‖CN‖θ(·, s)‖

W
k
2
,p ≤ Cε−N‖v(·, s)‖L∞‖θ(·, s)‖

W
k
2
,p

hence, we can write

∥∥∥∥
∫ t

T0

eε(t−s)∆∇ · (vε θ)(·, s)ds

∥∥∥∥
L∞(W

k+1
2

,p)

≤ C‖v‖L∞(L∞)‖θ‖
L∞(W

k
2
,p)

sup
T1<t<T2

∫ t

T0

ε−N max
(
[ε(t− s)]−

1
2 ; [ε(t− s)]−

3
4

)
ds

(iii) Finally, for the last term we have
∥∥∥∥
∫ t

T0

eε(t−s)∆Λθ(·, s)ds

∥∥∥∥
W

k+1
2

,p

≤

∫ t

T0

‖θ(·, s)‖Lp‖Λhε(t−s)‖L1 +
∥∥∥Λ k

2 θ(·, s)
∥∥∥
Lp

‖Λ3/2hε(t−s)‖L1ds

≤ C

∫ t

T0

‖θ(·, s)‖
W

k
2
,p max

(
[ε(t− s)]

− 1
2 ; [ε(t− s)]

− 3
4

)
ds

So finally we have
∥∥∥∥
∫ t

T0

eε(t−s)∆Λθ(·, s)ds

∥∥∥∥
L∞(W

k+1
2

,p)

≤ C‖θ‖
L∞(W

k
2
,p)

sup
T1<t<T2

∫ t

T0

max
(
[ε(t− s)]

− 1
2 ; [ε(t− s)]

− 3
4

)
ds.
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Now, with formulas (i)-(iii) at our disposal, we have that the norm ‖θ‖
L∞(W

k+1
2

,p)
is controlled for all ε > 0: we

have proven spatial regularity. Time regularity follows since we have

∂k

∂tk
θ(x, t) +∇ ·

(
∂k

∂tk
(vε θ)

)
(x, t) + Λ

(
∂k

∂tk
θ

)
(x, t) = ε∆

(
∂k

∂tk
θ

)
(x, t). �

4.2 Maximum principle and Besov regularity

As a motivation for the Theorem 12 below, we rewrite in the following lines the proof of the maximum principle.

Theorem 11 (Maximum Principle) Let 2 ≤ p < +∞ and let θ be a smooth solution of equation (55). Then we
have the following estimation

‖θ(·, t)‖Lp ≤ ‖θ0‖Lp . (61)

Proof. We write

d

dt
‖θ(·, t)‖pLp = p

∫

Rn

|θ|p−2θ

(
ε∆θ −∇ · (vε θ)− Λθ

)
dx = pε

∫

Rn

|θ|p−2θ∆θdx + p

∫

Rn

|θ|p−2θΛθdx

where we used the fact that div(v) = 0. Thus, we have
d

dt
‖θ(·, t)‖pLp − pε

∫

Rn

|θ|p−2θ∆θdx+ p

∫

Rn

|θ|p−2θΛθdx = 0,

and integrating in time we obtain

‖θ(·, t)‖pLp − pε

∫ t

0

∫

Rn

|θ|p−2θ∆θdxds + p

∫ t

0

∫

Rn

|θ|p−2θΛθdxds = ‖θ0‖
p
Lp . (62)

To finish, we have the next lemma

Lemma 4.3 The quantities −pε

∫

Rn

|θ|p−2θ∆θdx and p

∫ t

0

∫

Rn

|θ|p−2θΛθdxds are both positive.

Proof. For the first expression, since eεs∆ is a contraction semi-group we have ‖eεs∆f‖Lp ≤ ‖f‖Lp for all s > 0 and
all f ∈ Lp(Rn). Thus F (s) = ‖eεs∆f‖Lp is decreasing in s; taking the derivative in s and evaluating in s = 0 we obtain
the desired result. For the second expression a proof can be found in [8] (the positivity lemma p.516). However, we
will give another proof of this fact with the Theorem 12 below. �

Getting back to (62), we have that all these quantities are bounded and positive, so Theorem 11 follows easily. �

Remark 4.3 This maximum principle (61) is still valid for 1 ≤ p ≤ +∞. See [15] for a proof.

As said in the introduction, the study of expression (62) above lead us to a result concerning weak solution’s regularity
which is announced in the Theorem 3. More precisely we have

Theorem 12 (Besov Regularity) Let 2 ≤ p < +∞ and let f : Rn −→ R be a function such that

∫

Rn

|f(x)|p−2f(x)Λf(x)dx < +∞ then f ∈ Ḃ1/p,p
p (Rn).

Proof. To begin with, assume that f is a positive function and let us show that we have the following estimates:

‖f‖p
Ḃ

2α/p,p
p

≤ C‖fp/2‖2
Ḃα,2

2

≤ C′
∫

Rn

|f(x)|p−2f(x)Λf(x)dx (63)

In this case, we use the following fact: for 0 < ǫ ≤ 1 and for all a, b > 0 we have |aǫ − bǫ| ≤ |a − b|ǫ.Hence, applying
this fact with ǫ = 2/p, a = f(x)p/2 and b = f(y)p/2, one has |f(x)− f(y)| ≤ |f(x)p/2 − f(y)p/2|2/p which implies

‖f‖p
Ḃ

1/p,p
p

≃

∫

Rn

∫

Rn

|f(x)− f(y)|p

|x− y|n+1
dxdy ≤ C

∫

Rn

∫

Rn

|f(x)p/2 − f(y)p/2|2

|x− y|n+1
dxdy ≃ ‖fp/2‖2

Ḃ
1/2,2
2

and this give us the first part of (63). For the second part we have

‖fp/2‖2
Ḃ

1/2,2
2

= ‖fp/2‖2
Ḣ1/2 =

∫

Rn

|Λ1/2fp/2(x)|2dx =

∫

Rn

fp/2(x)Λfp/2(x)dx, (64)
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by the self-adjointness of operator Λ1/2. We consider now the semi-group (e−τΛ)τ≥0. Since p ≥ 2, using Jensen

inequality3 we obtain the estimate e−τΛf ≤
(
e−τΛfp/2

)2/p
. Thus, integrating this inequality we obtain ‖e−τΛf‖pLp ≤

‖e−τΛfp/2‖2L2. Finally, taking the derivative with respect to τ and evaluating in τ = 0 one obtains

−p

∫

Rn

|f(x)|p−2f(x)Λf(x)dx ≤ −2

∫

Rn

fp/2(x)Λfp/2(x)dx

Hence, getting back to (64) it comes ‖fp/2‖2
Ḃ

1/2,2
2

≤
∫
Rn |f(x)|p−2f(x)Λf(x)dx and estimates (63) are proven. Let us

now prove the general case. For this, we write f(x) = f+(x)− f−(x) where f±(x) are positives functions with disjoint
support. We have:

∫

Rn

|f(x)|p−2f(x)Λf(x)dx =

∫

Rn

f+(x)
p−2f+(x)Λf+(x)dx +

∫

Rn

f−(x)
p−2f−(x)Λf−(x)dx (65)

−

∫

Rn

f+(x)
p−2f+(x)Λf−(x)dx −

∫

Rn

f−(x)
p−2f−(x)Λf+(x)dx < +∞

We only need to treat the two last integrals, and in fact we just need to study one of them since the other can be
treated in a similar way. So, for the third integral we have

∫

Rn

f+(x)
p−2f+(x)Λf−(x)dx =

∫

Rn

f+(x)
p−2f+(x)

∫

Rn

f−(x) − f−(y)

|x− y|n+1
dydx

=

∫

Rn

f+(x)
p−2

∫

Rn

f+(x)f−(x) − f+(x)f−(y)

|x− y|n+1
dydx

However, since f+ and f− have disjoint supports we obtain the following estimate:
∫

Rn

f+(x)
p−2f+(x)Λf−(x)dx = −

∫

Rn

f+(x)
p−2

∫

Rn

f+(x)f−(y)

|x− y|n+1
dydx ≤ 0

This quantity is negative as all the terms inside the integral are positive. With this observation we see that the last
terms of (65) are positive and we have

∫

Rn

f+(x)
p−2f+(x)Λf+(x)dx +

∫

Rn

f−(x)
p−2f−(x)Λf−(x)dx ≤

∫

Rn

|f(x)|p−2f(x)Λf(x)dx < +∞

Then, using the first part of the proof we have f± ∈ Ḃ
1/p,p
p (Rn) and since f = f+ − f− we conclude that f belongs to

the Besov space Ḃ
1/p,p
p (Rn). We have proven the following general estimate

‖f‖p
Ḃ

1/p,p
p

≤ C

∫

Rn

|f(x)|p−2f(x)Λf(x)dx �

Remark 4.4 From this inequality one easily deduces positivity of this last integral. This constitutes another proof
for the positivity lemma of [8] for 2 ≤ p < +∞. Another proof, far more general of the Theorem 12 is given in [3].

To obtain weak solutions of (54) with initial data in Lp, p ≥ 2, we will now pass to the limit by taking ε −→ 0. We
have obtained a family of regular functions (θ(ε))ε>0 ∈ L∞([0, T ];Lp(Rn)) which are solutions of (55) and satisfy the
uniform bound

‖θ(ε)(·, t)‖Lp ≤ ‖θ0‖Lp

Since L∞([0, T ];Lp(Rn)) =
(
L1([0, T ];Lq(Rn))

)′
, with 1

p + 1
q = 1, we can extract from those solutions θ(ε) a sub-

sequence (θk)k∈N which is ∗-weakly convergent to some function θ in the space L∞([0, T ];Lp(Rn)), which implies
convergence in D′(R+ × Rn). However, this weak convergence is not sufficient to assure the convergence of (vε θk) to
v θ. For this we use the remarks that follows. First, using remark 4.1 we can consider a sequence (vk)k∈N with vk as
in formula (11) such that vk −→ v weakly in bmo. Secondly, combining (61) and Theorem 12 we obtain that solutions

θk belongs to the space L∞([0, T ];Lp(Rn)) ∩ L1([0, T ]; Ḃ
1/p,p
p (Rn)) for all k ∈ N.

To finish, fix a function ϕ ∈ C∞
0 ([0, T ] × Rn). Then we have the fact that ϕθk ∈ L1([0, T ]; Ḃ

1/p,p
p (Rn)) and

∂tϕθk ∈ L1([0, T ]; Ḃ−N,p
p (Rn)). This implies the local inclusion, in space as well as in time, ϕθk ∈ Ẇ

1/p,p
t,x ⊂ Ẇ

1/p,2
t,x so

we can apply classical results such as the Rellich’s theorem to obtain convergence of vk θk to v θ.

Thus, we obtain existence and uniqueness of weak solutions for the problem (54) with an initial data in θ0 ∈ Lp(Rn),
2 ≤ p < +∞. Moreover, since such solutions satisfy inequality (61) we have that these solutions θ(x, t) belongs to the

space L∞([0, T ];Lp(Rn)) ∩ Lp([0, T ]; Ḃ
1/p,p
p (Rn)). �

3see [3] for the details concerning the semi-group (e−τΛ)τ≥0.
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5 Positivity principle

We prove in this section the Theorem 6. Recall that by hypothesis we have 0 ≤ ψ0 ≤ M and ψ0 ∈ Lp(Rn) with
n < p ≤ +∞. To begin with, we fix two constants, ρ,R such that R > 2ρ > 0. Then we set A0,R(x) a function equals
to M/2 over |x| ≤ 2R and equals to ψ0(x) over |x| > 2R and we write B0,R(x) = ψ0(x)−A0,R(x), so by construction
we have

ψ0(x) = A0,R(x) +B0,R(x)

with ‖A0,R(·)‖L∞ ≤M and ‖B0,R(·)‖L∞ ≤M/2. Remark that A0,R, B0,R ∈ Lp(Rn). Now fix v ∈ L∞([0, T ]; bmo(Rn))
such that div(v) = 0 and consider the equations

∂tAR(x, t) +∇ · (v AR)(x, t) + ΛAR(x, t) = 0 ∂tBR(x, t) +∇ · (v BR)(x, t) + ΛBR(x, t) = 0
and

AR(x, 0) = A0,R(x). BR(x, 0) = B0,R(x).
(66)

Using the maximum principle and by construction we have the following estimates for t ∈ [0, T ]:

‖AR(·, t)‖Lp ≤ ‖A0,R‖Lp ≤ ‖ψ0‖Lp + CMRn/p (1 < p < +∞) (67)

‖AR(·, t)‖L∞ ≤ ‖A0,R‖L∞ ≤M.

‖BR(·, t)‖L∞ ≤ ‖B0,R‖L∞ ≤M/2.

Lemma 5.1 The function ψ(x, t) = AR(x, t) + BR(x, t), where AR(x, t) and BR(x, t) are solutions of the systems
(66), is the unique solution for the problem





∂tψ(x, t) +∇ · (v ψ)(x, t) + Λψ(x, t) = 0

ψ(x, 0) = A0,R(x) +B0,R(x).

(68)

Proof. Using hypothesis over AR(x, t) and BR(x, t) and the linearity of equation (68) we have that the function
ψR(x, t) = AR(x, t)+BR(x, t) is a solution for this equation. Uniqueness is assured by the maximum principle and by
the continuous dependence from initial data given in the Corollary 4.1, thus we can write ψ(x, t) instead of ψR(x, t).
�

To continue, we will need an auxiliary function φ ∈ C∞
0 (Rn) such that φ(x) = 0 for |x| ≥ 1 and φ(x) = 1 if |x| ≤ 1/2

and we set ϕ(x) = φ(x/R). Now, we will estimate the Lp-norm of ϕ(x)(AR(x, t)−M/2) with p > n.

Remark 5.1 Although some of the following calculations are valid for 1 ≤ p ≤ +∞, we will need at the end the fact
that p > n.

We write:

∂t‖ϕ(·)(AR(·, t)−M/2)‖pLp = p

∫

Rn

∣∣ϕ(x)(AR(x, t)−M/2)
∣∣p−2(

ϕ(x)(AR(x, t)−M/2)
)

× ∂t
(
ϕ(x)(AR(x, t)−M/2)

)
dx (69)

We observe that we have the next identity for the last term above

∂t(ϕ(x)(AR(x, t)−M/2)) = −∇ · (ϕ(x) v(AR(x, t)−M/2))− Λ(ϕ(x)(AR(x, t)−M/2))

+ (AR(x, t)−M/2)v · ∇ϕ(x) + [Λ, ϕ]AR(x, t)−M/2Λϕ(x)

where we noted [Λ, ϕ] the commutator between Λ and ϕ. Thus, using this identity in (69) and the fact that div(v) = 0
we have

∂t‖ϕ(·)(AR(·, t)−M/2)‖pLp = −p

∫

Rn

∣∣ϕ(x)(AR(x, t) −M/2)
∣∣p−2(

ϕ(x)(AR(x, t) −M/2)
)

× Λ(ϕ(x)(AR(x, t) −M/2))dx (70)

+ p

∫

Rn

∣∣ϕ(x)(AR(x, t)−M/2)
∣∣p−2(

ϕ(x)(AR(x, t)−M/2)
)

× ([Λ, ϕ]AR(x, t)−M/2Λϕ(x)) dx
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Remark that integral (70) is positive so one has

∂t‖ϕ(·)(AR(·, t)−M/2)‖pLp ≤ p

∫

Rn

∣∣ϕ(x)(AR(x, t)−M/2)
∣∣p−2(

ϕ(x)(AR(x, t)−M/2)
)

× ([Λ, ϕ]AR(x, t)−M/2Λϕ(x)) dx

Using Hölder inequality and integrating the previous expression we have

‖ϕ(·)(AR(·, t)−M/2)‖pLp ≤ ‖ϕ(·)(AR(·, 0)−M/2)‖pLp +

∫ t

0

‖[Λ, ϕ]AR(·, s)‖Lp + ‖M/2Λϕ‖Lpds (71)

The first term of the right side is null since over the support of ϕ we have identity AR(x, 0) = M/2. For the second
term ‖[Λ, ϕ]AR(·, s)‖Lp we have the estimate below given by Calderón’s commutator (see [10]) and by the maximum
principle

‖[Λ, ϕ]AR(·, s)‖Lp ≤ CR−1‖AR(·, s)‖Lp ≤ CR−1‖A0,R‖Lp .

Now, getting back to the last term of (71) we have by definition of ϕ the estimate ‖M/2Λϕ‖Lp ≤ CMRn/p−1. We
thus have

‖ϕ(·)(AR(·, t)−M/2)‖pLp ≤ CR−1

∫ t

0

(
‖A0,R‖Lp +MRn/p

)
ds.

Observe that we have at our disposal estimate (67), so we can write

‖ϕ(·)(AR(·, t)−M/2)‖pLp ≤ CtR−1
(
‖ψ0‖Lp +MRn/p

)

Using again the definition of ϕ one has

(∫

B(0,ρ)

|AR(·, t)−M/2|pdx

)
≤ CtR−1

(
‖ψ0‖Lp +MRn/p

)
.

Thus, if R −→ +∞ and since p > n, we have α(x, t) =M/2 over B(0, ρ).

Hence, by construction we have ψ(x, t) = AR(x, t) + BR(x, t) where ψ is a solution of (T )α with initial data
ψ0 = A0,R +B0,R, but, since over B(0, ρ) we have A(x, t) =M/2 and ‖B(·, t)‖L∞ ≤M/2, one finally has the desired
estimate 0 ≤ ψ(x, t) ≤M . �

6 Existence of solutions with a L
∞ initial data

The proof given before for the maximum principle allows us to obtain the existence of solutions for fractional diffusion
transport equation (1) when the initial data θ0 belongs to the space L∞(Rn). Indeed, let us fix θR0 = θ01B(0,R) with
R > 0 so we have θR0 ∈ Lp(Rn) for all 1 ≤ p ≤ +∞. Following section 4, there is a unique solution θR for the problem





∂tθ
R +∇ · (vθR) + ΛθR = 0

θR(x, 0) = θR0 (x)

div(v) = 0 and v ∈ L∞([0, T ]; bmo(Rn)).

such that θR ∈ L∞([0, T ];Lp(Rn)). By the maximum principle we have ‖θR(·, t)‖Lp ≤ ‖θR0 ‖Lp ≤ vn‖θ0‖L∞Rn/p.
Taking the limit p −→ +∞ and making R −→ +∞ we finally have ‖θ(·, t)‖L∞ ≤ C‖θ0‖L∞ . This shows that for an
initial data θ0 ∈ L∞(Rn) there exists an associated solution θ ∈ L∞([0, T ];L∞(Rn)).

7 Application to the 2D-quasi-geostrophic equation

We have worked so far with a velocity given by a general function v ∈ L∞([0, T ]; bmo(Rn)), let us now treat super-
critical case of the 2D-quasi-geostrophic equation with u = (−R2θ,R1θ); where Rj are the Riesz transforms. Fix θ0
an initial data belonging to Lp ∩L∞(R2), with p ≥ 2. Following [15] we have the existence of a solution θ(·, t) for the
equation (QG)1/2 with θ(·, t) ∈ Lp ∩ L∞(R2) for t ∈ [0, T ]. Since Riesz transforms are bounded in Lp and since they
are bounded from L∞ into BMO, we have a uniform bound of the velocity u in terms of the bmo norm: we can apply
the Theorem 1 to obtain Hölder regularity for the solution of 2D-quasi-geostrophic equation.
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