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1 Random variables

Let (92, F,P) be a probability space, and (F,E) a measurable space.

1.1 First definitions

Definition 1 (Random variable).

A measurable application X : (Q, F) — (E, &) is called a random variable. Its law Px is defined by

Px:& +——

[0, 1]

A — PXHA))

Theorem 2 (Transport theorem).

Let X : (, F,P) — (E, &) be a random variable, and ¢ : (E, &) — (R, B(R)) a measurable function. If o(X) is P

integrable:

Ble(x)] = |

Q

(X (w))P(dw) = /

E

p()Px (dz)

The two main examples of random variables are the discrete and absolute continuous cases.



Definition 3.

i) A random variable X is called discrete if there exists a finite or countable set S such that P(X € §) = 1. Assume
that S = {x;, i € I} with x; # x; for i # j. Then, the law of X is given by:

iel
where §,, denotes Dirac measure at x; and p; = P(X = x;).

ii) A random variable X taking values in R? is said to be absolutely continuous with respect to the Lebesgue measure
if there exists a measurable function f : R? — [0, +00] such that:

VAe B(RY), Px(A)=P(XcA)= /Af(x)dx.

f is called the probability density function of X.

1.2 Characterization of laws in R?

Definition 4 (Characteristic function).
Let X : (Q,F,P) — (R% B(R%)) be a random variable. The characteristic function of X is defined by:

@X(t)zﬁ[ei@m}: / StOPy(dr),  VteRY
]Rd

Definition 5 (Cumulative distribution function).
Let X : (Q,F,P) — (R4 B(R?)) be a random variable. The cumulative distribution function of X = (X1,...,X4) is
defined by:

d
Fx(tl,...,td) :P(Xl St17~-~,Xd§td) =Px (H]OO,E;]), Vit = (tl,...,td) ERd.

i=1

These functions characterize the law of X in the following sense.

Theorem 6. Let X and Y be two R*-valued random variables. The following assertions are equivalent:
i) X and Y have the same law,

i) Oy = Dy .

iii) Fx = Fy,

1
Be careful that the equality in law X (law) Y does not mean that X and Y are a.s. equal. Indeed, if X follows a uniform law
on [0,1], then Y = 1 — X also follows a uniform law on [0, 1] so their characteristic functions and cumulative distribution
functions are equal, but of course, X is not equal to Y a.s.

1.3 Independence

Definition 7. Let n € N*. The R%-valued random variables X1, ..., X, defined on (Q, F,P) are independent if

VAL, An € BRY),  P(Xy€Ay,... X, € Ay) = [[P(X; € 4)).
i=1
This may be written shortly:
P(Xl,“.,Xn) = IPXl ®R...Q PXH-




The independence between random variables may be directly seen on the characteristic functions.

Theorem 8. Let X1,...,X,, ben random variables defined on (Q, F,P). We assume that X; is R% -yalued. Then the
random variables X1, ..., X, are mutually independent if and only if

Oixyxi)(tisootn) = [[@x, (), V(ti,... tn) €RM x xR

Proof. By definition, there is the equivalence :

Xi,..., X, are mutually independent <= P, . x,) =Px, ®...0Px

Since Fourier’s transform is injective, this is also equivalent to :
Xi,..., X, are mutually independent <= F (P(x,,  x,))=F (Px, ®...0Px,),

hence the result follows from:

Ox,..x) =F Pxy.x,) =F (Px, ®...0Px,) = [[F®x,) =[] ®x.-
]

Example 9. Assume for instance that X and Y are two independent R-valued random variables with respective probability
density functions fx and fy. Then, for any A € R:

E [em(XJrY)] = E[¢*X]E [eMY] = / M F ()t /emfy(t)dt

R R

_ /R it ( /R Fx(t—s) fy(s)ds) dt

which proves that the random variable X + Y is also an absolutely continuous random variable and that its probability
density function is given by:

fX+Y(t)=Afx(t—S)fy(s)ds.

2 (Gaussian variables

2.1 Real-valued Gaussian random variables

Definition 10 (Gaussian random variables). A random variable X : (0, F,P) — (R, B(R)) is Gaussian with mean
m and variance 0% > 0 if its probability law admits the density function:

@) = <5 ex0 (—(932‘0@) |

We shall write X ~ N'(m,o?).

Remark 11. A random variable G which follows the law A(0,1) is called a standard Gaussian random variable, and, for
any m € R and o > 0,
m+ oG ~ N(m,o?).

Therefore, in most situations, it is enough to make the computations with a standard Gaussian random variable, and the
general case follows from this relation.

Proposition 12 (Characteristic function). If X ~ N (m,a?), its characteristic function is given by:

242
E [e”X] = exp <imt — J;) .




Proof. Assume first that G ~ N(0,1). We want to compute :

E [eC] = / et e zdx = —/ e 2z cos(tx)dx +1 /6_7 sin(tx)dx
[ ] R V2T V2T Jr (te) V2T Jr (t)

Observe first the imaginary part of this expression is null, as the integral of an odd function on an interval symmetric with
respect to 0. Next, we set:

B(t) = / =5 cos(tx)dx
R

Since 2
e

22
)6_71‘ sin(tw)‘ <|zle™ T

which is integrable, we may apply Leibniz integral rule (differentiation under the integral sign) to obtain:

(1) = —/ e Tz sin(tx)dz,
R

and integrating by part this last expression:

Therefore, there exists a constant k& € R such that:

E [e”G] = ez

and taking ¢ = 0, we deduce that k = /27. Finally, if X ~ N(m,c?), the general expression follows easily from:

E[¢X] = E {eit(m+aG):| = ¢t [¢it96] = pimt—2

Remark 13. In particular, thanks to the Taylor series of the exponential function, it is easily seen that the moments of a
standard Gaussian random variable G are given by:

E[G*T!] =0
n)!
£[6] =

Proposition 14 (Sum of independent Gaussian r.v.’s). Let X1 ~ N (m1,0%) and Xo ~ N (ma,03) be two independent
Gaussian random variables. Then, X1 + Xo is a Gaussian random variable with law N (m1 + mao, a% + 0%).

Proof. Since X; and X5 are independent, we may write, for every ¢t € R:

E |:6it(X1+X2):| - [eitXl] E [eith]

. t20? . t203
=exp | itmy — 5 exp | 1tmo — 5

t*(of + o%))

= exp (it(ml +ma) — 5

2.2 Gaussian random vectors

Definition 15 (Gaussian random vectors). A random vector X = (Xi,...,X,) taking values in R™ is said to be
Gaussian if, for any X € R™, the random variable

n
<ANX >= Z)‘iXi 1s a Gaussian random variable.
i=1




Remark 16.
a) Tt is clear that if X is a Gaussian vector, then each of its components X; is a Gaussian random variable.

b) However, the converse is not true ! Take for instance:

(%)

where G is a standard Gaussian r.v. and ¢ is an independent Rademacher variable, i.e.

Both components of X are Gaussian random variables, but
Xl +X2 = G—‘rEGZ (1+E>G
is not a Gaussian random variable since P((1 + )G = 0) = 1.

¢) Of course, if X1,...,X,, are independent Gaussian random variables, from Proposition 14, X = (X1,...,X,,) is a Gaus-
sian random vector.

Definition 17. The covariance matriz of a R™-valued random vector X is the matriz :
K =E[X - E[X])(X - E[X])"],
where * denotes transposition. In particular, the components (K; j)i<i j<n are given by :

K;j = cov(X;, X;) = E[(X; — E[X:])(X; — E[X;])].

This matriz is symmetric and positive.

Proof. The fact that K is symmetric is obvious from the definition. To show that K is positive, observe that for any vector
u e R
w' Ku=Eu*(X ~ E[X])(X ~ E[X])"u] = E [(u" (X — E[X]))*] > 0.

Proposition 18. Let K be the covariance matrix of a Gaussian random vector. Then, for every u € R",

E [exp (i(u, X))] = exp (z(u,E[X]) - ;u*Ku>

Proof. By definition, the random variable Z = (u, X) = v*X is Gaussian, with expectation E[Z] = (u, E[X]) = «*E[X] and
variance Var(Z) = u* Ku, hence the result is a direct consequence of Proposition 12.

In particular, to characterize a Gaussian random vector, we only need its expectation and covariance matrix. The converse
is also true thanks to the following result.

Theorem 19. Let m € R™ and I' be a symmetric and positive matriz of order n. Then, their exists a Gaussian
random vector with expectation m and covariance matrix I.

Proof. Observe first that there exists a matrix A such that
I'=AA".

Indeed, since I is a symmetric and real matrix, it may be diagonalized in an orthonormal basis, i.e. there exists an orthogonal
matrix P such that D = P*T'P is a diagonal matrix. Since I is positive, the terms A1, ..., A, on the diagonal of D are all
positive, so we may consider the diagonal matrix A whose terms on the diagonal are v/A1,...,vA,, and A is finally given



by A = PA.
Now, let GG1,...,G, be n independent standard Gaussian random variables, and define

G1
X =m+ AG with G = :

Gn

Since the random variables (G;)1<;<r are independent, X is a Gaussian random vector. Its expectation is given by
E[X]=m+ AE[G] =m
and its covariance matrix by:
K =E[(X —E[X])(X —E[X))"] = E[(AG)(AG)*] = AE|GG*]A* = Al A* =T.
[ |

Theorem 20. Let X = (X1,...,X,)* be a Gaussian random vector. Then, the random variables Xy,...,X, are
independent if and only if the covariance matriz is diagonal.

Proof. It is clear that if X;,...,X,, are independent, then cov(X;, X;) = 0 when ¢ # j, hence K is diagonal. Assume now
that K is diagonal. In particular, for any u € R™,

uwKu= ZU?KM = Zu?Var(Xj),
j=1 j=1

so the characteristic function of X reads:

E {ei<“’x>} = exp (i(u,E[X]) - u*Ku)
~ 1
= exp zZqu[Xj] ~3 Zu?Var(Xj)
j=1

n 1
= H exXp (ZU]E[X]] — 2u3Var(X])>

which implies, from Theorem 8 that the random variables X;, ..., X, are independent.
|

Remark 21. In particular, if (X,Y") is a Gaussian vector, then X and Y are independent if and only if their covariance
matrix is null :
K =E[Y —E[Y])(X —E[X))*] =0.

We must insist that this is no longer the case if X and Y are only Gaussian random variables. Indeed, if we take back the
example X = G and Y = G with G a standard Gaussian r.v. and € an independent Rademacher variable, then

E[(X — E[X])(Y — E[Y])] = E[XY] = E[¢G?] = E[¢]E[G?] =0

but X and Y are obviously not independent since |X| = |Y].

Theorem 22 (Density of a Gaussian vector).
Let X be a R™-valued Gaussian vector with covariance matriz K.

1. X admits a density if and only if K is invertible
2. If K is invertible, the density of X is given by:

1 1 * —1 n
fz) = NI exp (—Q(x -m)"K 'z — m)) , z € R",

with m = E[X].




Proof.

a) Observe first that if F' is a subspace of R™ with dimension strictly smaller than n and Z is a random vector which admits
a density f, then P(Z € F') = 0. Indeed, if H is a hyperplane which contains F', say H = {(z1,...,2,) € R"; z, = 0},
then

P(ZeF)<P(ZeH)= f(@1, . 20)le,—0ydoy .. . doy, = 0.
Rn

b) Next, we know that X may be written
X =m+ AG

where m = E[X], G is a Gaussian vector with independent components whose laws are N'(0,1) and AA* = K. If A is
not invertible, then the range of A is strictly included in R”, and X cannot admit a density. This proves Point 1) since
det(K) = det?(A), i.e. A is invertible if and only if K is.

¢) Assume now that K is invertible. The density of G is given by
P(G e dy) = 1 exp (—1y*y) dy, y € R™,
(2m)n/2 2
and the expression for the density of X follows from the change of variable :
y=A"Y(x—m).

Theorem 23 (Central Limit Theorem).
Let (X,,,n > 1) be a sequence of random vectors in R?, independent and identically distributed. We assume that all
these variables are in L*(SY), and we denote by m their expectation and by T the covariance matriz of X1. Then:

Xi+...+ X, —nm (law)

= L2 N0, ).

Proof. We first translate the problem and set Z; = X; — m in order to work with centered r.v.’s. Then

In= v R

so the characteristic function of 7T, reads:
E {dxu,m} ~1IE [ewﬁ,zn} _ (E {ei%zn})".
j=1

Now, since Z; admits a finite moment of order 2, we may use Taylor’s theorem and write

4 1
W(t,Z1) | 1 _ gx 2
B[] = 1=t Tt+o (i)

so that, as n — +o0

3 Conditional expectation

3.1 Definition

Let (€2, .A,P) be a probability space, and B be a sub-o-algebra of A. In the following, we shall assume that the o-algebras
we are dealing with are complete, that is to say that they contain all the negligible sets (i.e. the sets A such that P(A) = 0).

We first recall the following result on Hilbert space. Let H be a Hilbert space and F' be a closed subspace of H. For every
x € H, there exists a unique y € F', called the orthogonal projection of x on F', which satisfies one of the two following
equivalent assertions:



i) Vz e F, <x—vy,z>=0,
i) VaeF, -yl < ezl

When applied to the Hilbert space L?(£2,.A,P) and the closed subspace L?(€2, B,P), the precedent result gives the following
characterization of conditional expectation.

Proposition 24. For every random variable X € L*(Q, A, P), there exists an a.s. unique random variable Y such
that
Y € L?(Q,B,P)
(1)
E[XZ] =E[YZ], VZ € L*(Q,B,P).

We denote this random variable by Y = E[X|B].

Example 25. Take B = {0, 2}. The random variables which are B-measurable are a.s. constant, hence, E[X|B] = a. If Z
is B-measurable, then Z = z, and Equation (1) yields

E[ZE[X|B]] = E[za] = za = E[zX] = 2E[X], Vz eR

hence a = E[X]. So the conditional expectation of a random variable X with respect to the trivial o-algebra is simply its
classical expectation.

Remark 26. If X is a positive and bounded random variable, then E[X|B] > 0 a.s. Indeed, set Y = E[X|B] and assume
that P(Y < 0) > 0. In particular, for n large enough, the set A = {Y < —%} has a strictly positive probability. Since 14 is
a bounded B-measurable random variable, it holds

0 <E[X14] = E[V14] < —B(4) <0,

which contradicts the assumption that P(Y < 0) > 0.

We now extend the previous construction to any random variable X € L(Q, A, P).

Theorem 27. Let X € L*(Q, A, P). There exists an a.s. unique and integrable random variable E[X|B] such that:

E[X|B] € LY(Q, B,P)

E[ZX] =E[ZE[X|B]], for every B-measurable and bounded r.v. Z.

Proof.
a) The basic idea of the proof is to work by truncation. We define, for any real a € R:
at = sup(a,0) and a~ = sup(0, —a)

Observe first that, by splitting X as X = X+ — X, we may reduce our study to positive random variables. So assume
now that X is R*-valued, and define X,, = X A n. Since each X,, belongs to L? (as a bounded r.v.), we can choose a
version of the conditional expectation Y,, = E[X,,|B]. Furthermore, as the sequence (X, n € N) is positive and increasing,
from Remark 26 so is the sequence (Y;,,n € N), and we set:

Y (w) := limsup Y, (w).

n—-+oo

Since Y, is B-measurable for every n, Y is also B-measurable. Take a positive B-measurable r.v. Z. By the monotone
convergence theorem, passing to the limit in the equality E[ZX,] = E[ZY,] we deduce that E[ZX] = E[ZY]. Taking
Z =1, we finally conclude that Y is indeed integrable.

b) To prove the uniqueness, assume that ¥ and Y are two versions of E[X|B] such that P(Y > Y) > 0. In particular, for n
large enough, the set A={Y —-Y > %} has a strictly positive probability. Since 14 is a bounded B-measurable random
variable, it holds

0=E [(Y - ?)1A] > %]P’(A) >0

which is a contradiction.



3.2 Properties

We list below the main properties of conditional expectation.

Theorem 28. Let X and Y be two integrable random variables defined on a probability space (Q, A, P) and B be a
sub-c-algebra of A. Then:

2

(Linearity) E[aX + bY |B] = aE[X|B] 4+ bE[Y | B]

it) (Positivity) if X > 0 a.s., then E[X|B] > 0 a.s.

1it) If X is B-measurable: E[X|B] = X a.s.

v) (Tower property) If C is a sub-c-algebra of B, then E[E[X|B]|C] = E[X|C].

)
)
)
w) More generally, if Y is B-measurable and such that XY is integrable, then: E[XY|B] = YE[X|B].
)
)

vi) Fatou’s lemma, the monotone convergence theorem, the dominated convergence theorem and Jensen inequality

hold with conditional expectation.

In practice, it is generally difficult to compute a conditional expectation given a o-algebra B. One situation in which this
task is easier is when the o-algebra B is generated by a r.v. T : (2, A) — (E, ). The o-algebra generated by T is denoted
by o(T") and defined by:

o(T)={Ac A ICcEA=T0O)}.

A real-valued random variables X : (Q,.4) — (R, B(R)) is said to be o (T')-measurable if for every B € B(R), X ~*(B) € o(T).
Such an application is characterized by:

X is o(T)-measurable — There exists a measurable function f : (E,&) — (R, B(R)) such that X = f(T).

Example 29. Let (X,Y) be a centered Gaussian random vector, with Y not degenerated. Then :

o - (25)»

To prove this result, we shall look for a € R such that the two Gaussian random variables X — aY and Y are independent.
By Theorem 20, these two random variables are independent if and only if:

cov(X —aYY)=0

that is,
E[(X —aY)Y] = E[XY] — aE[Y?] = E[XY] — aVar(Y) = 0.

Since Y is not degenerated, Var(Y") > 0 so a is unique and given by
. E[XY]
~ Var(Y)

But, by independence,
EX —aY|Y]=E[X —aY]=0

and by linearity,
E[X —aY|Y] =E[X|Y] — «E[Y|Y] = E[X|Y] — aY =0,

which proves the announced result.

3.3 Conditional laws

Definition 30. Let (E,&) and (F,F) be two measurable spaces. A kernel N : Ex F — RY is a transition probability
from E to F if :

i) for every x € E, the application A € F — N(x, A) is a probability on (F,F).

i1) for every A € F, the application x € E — N(z, A) is measurable from (E,E) on (RT, B(R™)).

In other words, a transition probability is a measurable family of probabilities (N(z,.), z € E) on (F, F) indexed by the set E.



Definition 31. Let X and Y be two r.v.’s taking values respectively in (E,E) and (F,F). The conditional law of Y
gwen X is a transition probability N from E to F such that, for every measurable and positive function ¢:

E[p(V)|X] = /Qso@)zv(x,dy).

Remark 32.

a) As for conditional expectation, the conditional law of ¥ given X is only determined up to a set of null Px-measure.
b) Heuristically, N(x,dy) denotes the law of Y given that X = z.

¢) Of course, if X and Y are independent, then N(xz,dy) = Py (dy).

Proposition 33. Let (X,Y) be a pair of R-valued random variables, whose joint density is given by f(x,y). Then
the law of the r.v. Y conditionally to X is given by:

z,
N(JZ‘, dy) = f(i(xz)/) 1{a(x)>0}dy

where

a(z) = / Fx.y)dy

is the density of the r.v. X.

Proof. Let h and g be two measurable and bounded functions. By definition:

BX)9(V)] = [ [ @)oo v)dudy.

By taking h(z) = 1{4(s)=0} and applying Fubini’s theorem, we obtain

Pla(X) =0) = //}R2 Ha()=0y f(z,y)dzdy = /Rl{a(x):o} (/Rf(x,y)dy) dx = /]R a()=oya(z)dz = 0.
Therefore, going back to the general expression and applying Fubini’s theorem again :

B{(X)g(Y)] = BACO90 ) o150
= [ et ([ a2 oty d

= [ 1yt [ oo dn) as
=E {h(X) (/Rg(y)N(X dy))]

hence, by definition of the conditional expectation:

Elg(Y)|X] = / 9(y)N (X, dy).

It remains to justify that IV is indeed a transition probability, but this is immediate since :

(Px—a.s.)
/H{N(Jf,dy)zl{a(z»o} =L

3.4 The Gaussian case

We now turn our attention back to Gaussian vectors. Let X (resp. Y) be a R (resp. RY)-valued Gaussian random vector
and assume that X admits a density. In this section, we want to compute the law of Y conditionally to X. We use the
following notation:

K11 denotes the covariance matrix of X, of order n,
K55 denotes the covariance matrix of Y, of order d,
K3 =E[(X —E[X])(Y —E[Y])*] is a matrix of order n x d and Ko = K7,.

10



Proposition 34. Let N be the conditional law of Y given X. Then, N(x,.) is the Gaussian law N (Az +m,T') where
A=KnK', m=E[Y] - AE[X] and T = Koy — Koy K K3;.

Proof.
Consider the Gaussian vector Z =Y — AX. We claim that Z is independent from X. Indeed, the covariance matrix of Z
and X is given by:
E[(Z - E[Z])(X —E[X])"] = E[(Y — AX — E[Y] + AE[X])(X — E[X])"]
= E[(Y - E[Y])(X - E[X])*] + AE[(X — E[X])(X - E[X])"]
=Ko —AK;1 =0

by definition of A. Now, we may write :
E[f(X)g(Y)] = E[f(X)g(AX + Z)] = E[E[f(X)g(AX + Z)|X]] = E[f(X)E[g(AX + Z)|X]],
but, since Z is independent from X,
E[g(AX + 2)|X] = G(X)

where G is given by
G(z) = Elg(Az + 2)] = / o(y) N (z, dy)

Rd
with N(z,.) the law of the random vector Az + Z, i.e. the Gaussian law with expectation E[Az + Z] = Ax +E[Z] = Az +m
and covariance matrix
E[(Az+Z —(Az+m))(Az+Z — (Axz+m))* | = E[(Z—m)(Z—m)*| = E[(Y —E[Y] - AX + AE[X])(Y —E[Y] - AX + AE[X])"].
To simplify the notation, we set Xg = X —E[X] and Yy = Yy — E[Y]. Then:

E[(Yo — AXo)(Yo — AXo)"] = E[(Yo — AXo)(Yy — X7A")]
— E[YoYy] — E[YoX]]A" — AE[XoYy] + AE[XoX]] A"
= Koy — K91 A" — AKq5 + AK11 A"
= Ky — AKj2 (since Koy = AKy,)
= Koy — Kot K K3,

4 Stochastic convergences

We finally conclude this first lesson by a short section on the different modes of convergence we shall use in the sequel, the
general pattern being as follows:

’ Convergence in L7 ‘ (1<p<yq)

ﬂ

’ Convergence in L? ‘

ﬂ

’ Convergence in L* ‘ ’Almost sure convergence

T~

’ Convergence in probability‘

M

’ Convergence in law‘

11



4.1 Convergence in law

Definition 35. A sequence of random vectors (Xy)n>1 converges in law towards a random vector X if for every
continuous and bounded function ¢ € Co(R?) :

lim_Efp(X,)] = Elp(X)]. ®)
We shall denote :
X, (law) X
n—-+00

The convergence in law, as its name indicates, does not depend on the random variable X, but rather on its law Px = p.
In other words, the convergence in law is actually a convergence of measures: if u, denotes the law of the random variable
X, then (2) may be rewritten:

im_ [ f@n(de) = [ f@to).

n—-+oo Rd
In practice, we may restrict our attention to the family of functions
pu(®) = exp (i(u,2)),  uweR?,
thanks to Theorem 6.

Theorem 36. The sequence of random vectors (X, )n>1 converges in law towards X if and only if the sequence of
characteristic functions ®x, converges pointwise towards the characteristic function of X:

Xn law) ¥ = Dy, (u) — Bx(u) for every u € R%.
n—+00 n—-+400

4.2 Convergence in probability

Definition 37. A sequence of random vectors (X, )n>1 converges in probability towards a random vector X if for
every e >0 :
nll)r_il_loo P(| X, — X|| >¢) =0.

We shall denote :
(prob)
—_—

n—-+4oo

X, X.

The limit in probability of a sequence of random vectors is almost surely unique.

Proposition 38. If a sequence of random vectors (X,)n>1 converges in probability towards a random vector X and
towards a random vector'Y, then:

X=Y a.s.

Proof. For every € > 0:
g g
1x =Yl >} {1X = Xl > Sho{IXa - vI > £}
hence,
POIX -Y)>2) <P (IX - Xal > ) +P (1% - Y] > 5).

Letting n tend to 400, we deduce that
Ve > 0, P(X-Y|>¢)=0

and, letting then e tend to 0, the monotone convergence theorem yields
P(X =Y >0)=0,

which means that X and Y are equal a.s.
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4.3 Almost sure convergence

Definition 39. A sequence of random vectors (X, )n>1 converges almost surely towards a random vector X if there
exists a negligible set N such that, for every w ¢ N, the numerical sequence X, (w) converges towards X (w):

lim X,(w) = X(w) for every w ¢ N.

n——+00

We shall denote :

4.4 Convergence in LP

Definition 40. Let p > 1. A sequence of random vectors (X,)n>1 in LP(Q2, F,P) converges in LP towards a random

vector X € LP(Q, F,P) if :
lim E[|X, — X|["] =0
n—+o0o

We shall denote : )
X, 2 . x.

n——+oo

4.5 The weak law of large numbers

Theorem 41. Let (X,,),>1 be a sequence of i.i.d. random variables with finite moment of order 2. Then:

n—-+oo

- 1 - (prob)
X, =-Sx;, 2P gy
n; [Xa]

Proof. By independence and scaling, we have
— 1 ~ Var(X;)
Var (Xn) = ﬁVar (Z XZ-> = W

But, by definition of the variance:

Var (Xn) = E [[Xn —E [Xo] '] = E [[Xn —E[X1)P] 70,

n—-+oo

which means that )
X, —=— E[X{]
n——+oo

and the result follows since convergence in L? implies convergence in probability.
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