Contents

1 Random variables 1
1.1 First definitions . 1
1.2 Characterization of laws in \mathbb{R}^{d}. 2
1.3 Independence . 2

2 Gaussian variables 3
2.1 Real-valued Gaussian random variables . 3
2.2 Gaussian random vectors . 4

3 Conditional expectation 7
3.1 Definition . 7
3.2 Properties . 9
3.3 Conditional laws . 9
3.4 The Gaussian case . 10

4 Stochastic convergences 11
4.1 Convergence in law . 12
4.2 Convergence in probability . 12
4.3 Almost sure convergence . 13
4.4 Convergence in L^{p}. 13
4.5 The weak law of large numbers . 13

1 Random variables

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and (E, \mathcal{E}) a measurable space.

1.1 First definitions

Definition 1 (Random variable).
A measurable application $X:(\Omega, \mathcal{F}) \longmapsto(E, \mathcal{E})$ is called a random variable. Its law \mathbb{P}_{X} is defined by

$$
\begin{array}{rlc}
\mathbb{P}_{X}: \mathcal{E} & \longmapsto & {[0,1]} \\
A & \longmapsto \mathbb{P}\left(X^{-1}(A)\right)
\end{array}
$$

Theorem 2 (Transport theorem).
Let $X:(\Omega, \mathcal{F}, \mathbb{P}) \longmapsto(E, \mathcal{E})$ be a random variable, and $\varphi:(E, \mathcal{E}) \longmapsto(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a measurable function. If $\varphi(X)$ is \mathbb{P} integrable:

$$
\mathbb{E}[\varphi(X)]=\int_{\Omega} \varphi(X(\omega)) \mathbb{P}(d \omega)=\int_{E} \varphi(x) \mathbb{P}_{X}(d x)
$$

The two main examples of random variables are the discrete and absolute continuous cases.

Definition 3.

i) A random variable X is called discrete if there exists a finite or countable set \mathcal{S} such that $\mathbb{P}(X \in \mathcal{S})=1$. Assume that $\mathcal{S}=\left\{x_{i}, i \in I\right\}$ with $x_{i} \neq x_{j}$ for $i \neq j$. Then, the law of X is given by:

$$
\mathbb{P}_{X}=\sum_{i \in I} p_{i} \delta_{x_{i}}
$$

where $\delta_{x_{i}}$ denotes Dirac measure at x_{i} and $p_{i}=\mathbb{P}\left(X=x_{i}\right)$.
ii) A random variable X taking values in \mathbb{R}^{d} is said to be absolutely continuous with respect to the Lebesgue measure if there exists a measurable function $f: \mathbb{R}^{d} \longrightarrow[0,+\infty]$ such that:

$$
\forall A \in \mathcal{B}\left(\mathbb{R}^{d}\right), \quad \mathbb{P}_{X}(A)=\mathbb{P}(X \in A)=\int_{A} f(x) d x
$$

f is called the probability density function of X.

1.2 Characterization of laws in \mathbb{R}^{d}

Definition 4 (Characteristic function).
Let $X:(\Omega, \mathcal{F}, \mathbb{P}) \longmapsto\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ be a random variable. The characteristic function of X is defined by:

$$
\Phi_{X}(t)=\mathbb{E}\left[e^{i\langle t, X\rangle}\right]=\int_{\mathbb{R}^{d}} e^{i\langle t, x\rangle} \mathbb{P}_{X}(d x), \quad \forall t \in \mathbb{R}^{d}
$$

Definition 5 (Cumulative distribution function).

Let $X:(\Omega, \mathcal{F}, \mathbb{P}) \longmapsto\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ be a random variable. The cumulative distribution function of $X=\left(X_{1}, \ldots, X_{d}\right)$ is defined by:

$$
\left.\left.F_{X}\left(t_{1}, \ldots, t_{d}\right)=\mathbb{P}\left(X_{1} \leq t_{1}, \ldots, X_{d} \leq t_{d}\right)=\mathbb{P}_{X}\left(\prod_{i=1}^{d}\right]-\infty, t_{i}\right]\right), \quad \forall t=\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}
$$

These functions characterize the law of X in the following sense.
Theorem 6. Let X and Y be two \mathbb{R}^{d}-valued random variables. The following assertions are equivalent:
i) X and Y have the same law,
ii) $\Phi_{X}=\Phi_{Y}$.
iii) $F_{X}=F_{Y}$,

Be careful that the equality in law $X \stackrel{(\text { law })}{=} Y$ does not mean that X and Y are a.s. equal. Indeed, if X follows a uniform law on $[0,1]$, then $Y=1-X$ also follows a uniform law on $[0,1]$ so their characteristic functions and cumulative distribution functions are equal, but of course, X is not equal to Y a.s.

1.3 Independence

Definition 7. Let $n \in \mathbb{N}^{*}$. The \mathbb{R}^{d}-valued random variables X_{1}, \ldots, X_{n} defined on $(\Omega, \mathcal{F}, \mathbb{P})$ are independent if

$$
\forall A_{1}, \ldots, A_{n} \in \mathcal{B}\left(\mathbb{R}^{d}\right), \quad \mathbb{P}\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \in A_{i}\right)
$$

This may be written shortly:

$$
\mathbb{P}_{\left(X_{1}, \ldots, X_{n}\right)}=\mathbb{P}_{X_{1}} \otimes \ldots \otimes \mathbb{P}_{X_{n}}
$$

The independence between random variables may be directly seen on the characteristic functions.
Theorem 8. Let X_{1}, \ldots, X_{n} be n random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$. We assume that X_{i} is $\mathbb{R}^{d_{i}}$-valued. Then the random variables X_{1}, \ldots, X_{n} are mutually independent if and only if

$$
\Phi_{\left(X_{1}, \ldots, X_{n}\right)}\left(t_{1}, \ldots, t_{n}\right)=\prod_{i=1}^{n} \Phi_{X_{i}}\left(t_{i}\right), \quad \forall\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{n}}
$$

Proof. By definition, there is the equivalence :

$$
X_{1}, \ldots, X_{n} \text { are mutually independent } \Longleftrightarrow \mathbb{P}_{\left(X_{1}, \ldots, X_{n}\right)}=\mathbb{P}_{X_{1}} \otimes \ldots \otimes \mathbb{P}_{X_{n}}
$$

Since Fourier's transform is injective, this is also equivalent to :

$$
X_{1}, \ldots, X_{n} \text { are mutually independent } \Longleftrightarrow \mathcal{F}\left(\mathbb{P}_{\left(X_{1}, \ldots, X_{n}\right)}\right)=\mathcal{F}\left(\mathbb{P}_{X_{1}} \otimes \ldots \otimes \mathbb{P}_{X_{n}}\right),
$$

hence the result follows from:

$$
\Phi_{\left(X_{1}, \ldots, X_{n}\right)}=\mathcal{F}\left(\mathbb{P}_{\left(X_{1}, \ldots, X_{n}\right)}\right)=\mathcal{F}\left(\mathbb{P}_{X_{1}} \otimes \ldots \otimes \mathbb{P}_{X_{n}}\right)=\prod_{i=1}^{n} \mathcal{F}\left(\mathbb{P}_{X_{i}}\right)=\prod_{i=1}^{n} \Phi_{X_{i}}
$$

Example 9. Assume for instance that X and Y are two independent \mathbb{R}-valued random variables with respective probability density functions f_{X} and f_{Y}. Then, for any $\lambda \in \mathbb{R}$:

$$
\begin{aligned}
\mathbb{E}\left[e^{i \lambda(X+Y)}\right]=\mathbb{E}\left[e^{i \lambda X}\right] \mathbb{E}\left[e^{i \lambda Y}\right] & =\int_{\mathbb{R}} e^{i \lambda t} f_{X}(t) d t \int_{\mathbb{R}} e^{i \lambda t} f_{Y}(t) d t \\
& =\int_{\mathbb{R}} e^{i \lambda t}\left(\int_{\mathbb{R}} f_{X}(t-s) f_{Y}(s) d s\right) d t
\end{aligned}
$$

which proves that the random variable $X+Y$ is also an absolutely continuous random variable and that its probability density function is given by:

$$
f_{X+Y}(t)=\int_{\mathbb{R}} f_{X}(t-s) f_{Y}(s) d s
$$

2 Gaussian variables

2.1 Real-valued Gaussian random variables

Definition 10 (Gaussian random variables). A random variable $X:(\Omega, \mathcal{F}, \mathbb{P}) \longmapsto(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is Gaussian with mean m and variance $\sigma^{2}>0$ if its probability law admits the density function:

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-m)^{2}}{2 \sigma^{2}}\right) .
$$

We shall write $X \sim \mathcal{N}\left(m, \sigma^{2}\right)$.

Remark 11. A random variable G which follows the law $\mathcal{N}(0,1)$ is called a standard Gaussian random variable, and, for any $m \in \mathbb{R}$ and $\sigma>0$,

$$
m+\sigma G \sim \mathcal{N}\left(m, \sigma^{2}\right)
$$

Therefore, in most situations, it is enough to make the computations with a standard Gaussian random variable, and the general case follows from this relation.

Proposition 12 (Characteristic function). If $X \sim \mathcal{N}\left(m, \sigma^{2}\right)$, its characteristic function is given by:

$$
\mathbb{E}\left[e^{i t X}\right]=\exp \left(i m t-\frac{\sigma^{2} t^{2}}{2}\right)
$$

Proof. Assume first that $G \sim \mathcal{N}(0,1)$. We want to compute :

$$
\mathbb{E}\left[e^{i t G}\right]=\int_{\mathbb{R}} e^{i t x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} \cos (t x) d x+i \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} \sin (t x) d x
$$

Observe first the imaginary part of this expression is null, as the integral of an odd function on an interval symmetric with respect to 0 . Next, we set:

$$
\Phi(t)=\int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} \cos (t x) d x
$$

Since

$$
\left|e^{-\frac{x^{2}}{2}} x \sin (t x)\right| \leq|x| e^{-\frac{x^{2}}{2}}
$$

which is integrable, we may apply Leibniz integral rule (differentiation under the integral sign) to obtain:

$$
\Phi^{\prime}(t)=-\int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} x \sin (t x) d x
$$

and integrating by part this last expression:

$$
\Phi^{\prime}(t)=-t \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} \cos (t x) d x=-t \Phi(t)
$$

Therefore, there exists a constant $k \in \mathbb{R}$ such that:

$$
\mathbb{E}\left[e^{i t G}\right]=\frac{k}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}}
$$

and taking $t=0$, we deduce that $k=\sqrt{2 \pi}$. Finally, if $X \sim \mathcal{N}\left(m, \sigma^{2}\right)$, the general expression follows easily from:

$$
\mathbb{E}\left[e^{i t X}\right]=\mathbb{E}\left[e^{i t(m+\sigma G)}\right]=e^{i t m} \mathbb{E}\left[e^{i t \sigma G}\right]=e^{i m t-\frac{\sigma^{2} t^{2}}{2}}
$$

Remark 13. In particular, thanks to the Taylor series of the exponential function, it is easily seen that the moments of a standard Gaussian random variable G are given by:

$$
\left\{\begin{array}{l}
\mathbb{E}\left[G^{2 n+1}\right]=0 \\
\mathbb{E}\left[G^{2 n}\right]=\frac{(2 n)!}{2^{n} n!}
\end{array}\right.
$$

Proposition 14 (Sum of independent Gaussian r.v.'s). Let $X_{1} \sim \mathcal{N}\left(m_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(m_{2}, \sigma_{2}^{2}\right)$ be two independent Gaussian random variables. Then, $X_{1}+X_{2}$ is a Gaussian random variable with law $\mathcal{N}\left(m_{1}+m_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.

Proof. Since X_{1} and X_{2} are independent, we may write, for every $t \in \mathbb{R}$:

$$
\begin{aligned}
\mathbb{E}\left[e^{i t\left(X_{1}+X_{2}\right)}\right] & =\mathbb{E}\left[e^{i t X_{1}}\right] \mathbb{E}\left[e^{i t X_{2}}\right] \\
& =\exp \left(i t m_{1}-\frac{t^{2} \sigma_{1}^{2}}{2}\right) \exp \left(i t m_{2}-\frac{t^{2} \sigma_{2}^{2}}{2}\right) \\
& =\exp \left(i t\left(m_{1}+m_{2}\right)-\frac{t^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}{2}\right)
\end{aligned}
$$

2.2 Gaussian random vectors

Definition 15 (Gaussian random vectors). A random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ taking values in \mathbb{R}^{n} is said to be Gaussian if, for any $\lambda \in \mathbb{R}^{n}$, the random variable

$$
<\lambda, X>=\sum_{i=1}^{n} \lambda_{i} X_{i} \quad \text { is a Gaussian random variable. }
$$

Remark 16.

a) It is clear that if X is a Gaussian vector, then each of its components X_{i} is a Gaussian random variable.
b) However, the converse is not true! Take for instance:

$$
X=\binom{G}{\varepsilon G}
$$

where G is a standard Gaussian r.v. and ε is an independent Rademacher variable, i.e.

$$
\mathbb{P}(\varepsilon=1)=\mathbb{P}(\varepsilon=-1)=\frac{1}{2}
$$

Both components of X are Gaussian random variables, but

$$
X_{1}+X_{2}=G+\varepsilon G=(1+\varepsilon) G
$$

is not a Gaussian random variable since $\mathbb{P}((1+\varepsilon) G=0)=\frac{1}{2}$.
c) Of course, if X_{1}, \ldots, X_{n} are independent Gaussian random variables, from Proposition $14, X=\left(X_{1}, \ldots, X_{n}\right)$ is a Gaussian random vector.

Definition 17. The covariance matrix of $a \mathbb{R}^{n}$-valued random vector X is the matrix :

$$
K=\mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{*}\right]
$$

where $*$ denotes transposition. In particular, the components $\left(K_{i, j}\right)_{1 \leq i, j \leq n}$ are given by :

$$
K_{i, j}=\operatorname{cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\left(X_{j}-\mathbb{E}\left[X_{j}\right]\right)\right]
$$

This matrix is symmetric and positive.

Proof. The fact that K is symmetric is obvious from the definition. To show that K is positive, observe that for any vector $u \in \mathbb{R}^{n}$,

$$
u^{*} K u=\mathbb{E}\left[u^{*}(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{*} u\right]=\mathbb{E}\left[\left(u^{*}(X-\mathbb{E}[X])\right)^{2}\right] \geq 0
$$

Proposition 18. Let K be the covariance matrix of a Gaussian random vector. Then, for every $u \in \mathbb{R}^{n}$,

$$
\mathbb{E}[\exp (i\langle u, X\rangle)]=\exp \left(i\langle u, \mathbb{E}[X]\rangle-\frac{1}{2} u^{*} K u\right)
$$

Proof. By definition, the random variable $Z=\langle u, X\rangle=u^{*} X$ is Gaussian, with expectation $\mathbb{E}[Z]=\langle u, \mathbb{E}[X]\rangle=u^{*} \mathbb{E}[X]$ and variance $\operatorname{Var}(Z)=u^{*} K u$, hence the result is a direct consequence of Proposition 12 .

In particular, to characterize a Gaussian random vector, we only need its expectation and covariance matrix. The converse is also true thanks to the following result.

Theorem 19. Let $m \in \mathbb{R}^{n}$ and Γ be a symmetric and positive matrix of order n. Then, their exists a Gaussian random vector with expectation m and covariance matrix Γ.

Proof. Observe first that there exists a matrix A such that

$$
\Gamma=A A^{*}
$$

Indeed, since Γ is a symmetric and real matrix, it may be diagonalized in an orthonormal basis, i.e. there exists an orthogonal matrix P such that $D=P^{*} \Gamma P$ is a diagonal matrix. Since Γ is positive, the terms $\lambda_{1}, \ldots, \lambda_{n}$ on the diagonal of D are all positive, so we may consider the diagonal matrix Δ whose terms on the diagonal are $\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}$, and A is finally given
by $A=P \Delta$.
Now, let G_{1}, \ldots, G_{n} be n independent standard Gaussian random variables, and define

$$
X=m+A G \quad \text { with } \quad G=\left(\begin{array}{c}
G_{1} \\
\vdots \\
G_{n}
\end{array}\right)
$$

Since the random variables $\left(G_{i}\right)_{1 \leq i \leq n}$ are independent, X is a Gaussian random vector. Its expectation is given by

$$
\mathbb{E}[X]=m+A \mathbb{E}[G]=m
$$

and its covariance matrix by:

$$
K=\mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{*}\right]=\mathbb{E}\left[(A G)(A G)^{*}\right]=A \mathbb{E}\left[G G^{*}\right] A^{*}=A I_{n} A^{*}=\Gamma
$$

Theorem 20. Let $X=\left(X_{1}, \ldots, X_{n}\right)^{*}$ be a Gaussian random vector. Then, the random variables X_{1}, \ldots, X_{n} are independent if and only if the covariance matrix is diagonal.

Proof. It is clear that if X_{1}, \ldots, X_{n} are independent, then $\operatorname{cov}\left(X_{i}, X_{j}\right)=0$ when $i \neq j$, hence K is diagonal. Assume now that K is diagonal. In particular, for any $u \in \mathbb{R}^{n}$,

$$
u^{*} K u=\sum_{j=1}^{n} u_{j}^{2} K_{j, j}=\sum_{j=1}^{n} u_{j}^{2} \operatorname{Var}\left(X_{j}\right)
$$

so the characteristic function of X reads:

$$
\begin{aligned}
\mathbb{E}\left[e^{i\langle u, X\rangle}\right] & =\exp \left(i\langle u, \mathbb{E}[X]\rangle-\frac{1}{2} u^{*} K u\right) \\
& =\exp \left(i \sum_{j=1}^{n} u_{j} \mathbb{E}\left[X_{j}\right]-\frac{1}{2} \sum_{j=1}^{n} u_{j}^{2} \operatorname{Var}\left(X_{j}\right)\right) \\
& =\prod_{j=1}^{n} \exp \left(i u_{j} \mathbb{E}\left[X_{j}\right]-\frac{1}{2} u_{j}^{2} \operatorname{Var}\left(X_{j}\right)\right) \\
& =\prod_{j=1}^{n} \mathbb{E}\left[e^{i u_{j} X_{j}}\right]
\end{aligned}
$$

which implies, from Theorem 8 that the random variables X_{1}, \ldots, X_{n} are independent.

Remark 21. In particular, if (X, Y) is a Gaussian vector, then X and Y are independent if and only if their covariance matrix is null :

$$
K=\mathbb{E}\left[(Y-\mathbb{E}[Y])(X-\mathbb{E}[X])^{*}\right]=0
$$

We must insist that this is no longer the case if X and Y are only Gaussian random variables. Indeed, if we take back the example $X=G$ and $Y=\varepsilon G$ with G a standard Gaussian r.v. and ε an independent Rademacher variable, then

$$
\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]=\mathbb{E}\left[\varepsilon G^{2}\right]=\mathbb{E}[\varepsilon] \mathbb{E}\left[G^{2}\right]=0
$$

but X and Y are obviously not independent since $|X|=|Y|$.
Theorem 22 (Density of a Gaussian vector).
Let X be a \mathbb{R}^{n}-valued Gaussian vector with covariance matrix K.

1. X admits a density if and only if K is invertible
2. If K is invertible, the density of X is given by:

$$
f(x)=\frac{1}{(2 \pi)^{n / 2} \sqrt{\operatorname{det}(K)}} \exp \left(-\frac{1}{2}(x-m)^{*} K^{-1}(x-m)\right), \quad x \in \mathbb{R}^{n}
$$

with $m=\mathbb{E}[X]$.

Proof.

a) Observe first that if F is a subspace of \mathbb{R}^{n} with dimension strictly smaller than n and Z is a random vector which admits a density f, then $\mathbb{P}(Z \in F)=0$. Indeed, if H is a hyperplane which contains F, say $H=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ; x_{n}=0\right\}$, then

$$
\mathbb{P}(Z \in F) \leq \mathbb{P}(Z \in H)=\int_{\mathbb{R}^{n}} f\left(x_{1}, \ldots, x_{n}\right) 1_{\left\{x_{n}=0\right\}} d x_{1} \ldots d x_{n}=0
$$

b) Next, we know that X may be written

$$
X=m+A G
$$

where $m=\mathbb{E}[X], G$ is a Gaussian vector with independent components whose laws are $\mathcal{N}(0,1)$ and $A A^{*}=K$. If A is not invertible, then the range of A is strictly included in \mathbb{R}^{n}, and X cannot admit a density. This proves Point 1) since $\operatorname{det}(K)=\operatorname{det}^{2}(A)$, i.e. A is invertible if and only if K is.
c) Assume now that K is invertible. The density of G is given by

$$
\mathbb{P}(G \in d y)=\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{1}{2} y^{*} y\right) d y, \quad y \in \mathbb{R}^{n}
$$

and the expression for the density of X follows from the change of variable :

$$
y=A^{-1}(x-m) .
$$

Theorem 23 (Central Limit Theorem).

Let $\left(X_{n}, n \geq 1\right)$ be a sequence of random vectors in \mathbb{R}^{d}, independent and identically distributed. We assume that all these variables are in $L^{2}(\Omega)$, and we denote by m their expectation and by Γ the covariance matrix of X_{1}. Then:

$$
\frac{X_{1}+\ldots+X_{n}-n m}{\sqrt{n}} \xrightarrow[n \rightarrow+\infty]{(\text { law })} \mathcal{N}(0, \Gamma) .
$$

Proof. We first translate the problem and set $Z_{i}=X_{i}-m$ in order to work with centered r.v.'s. Then

$$
T_{n}=\frac{X_{1}+\ldots+X_{n}-n m}{\sqrt{n}}=\frac{Z_{1}+\ldots+Z_{n}}{\sqrt{n}},
$$

so the characteristic function of T_{n} reads:

$$
\mathbb{E}\left[e^{i\left\langle u, T_{n}\right\rangle}\right]=\prod_{j=1}^{n} \mathbb{E}\left[e^{i\left\langle\frac{u}{\sqrt{n}}, Z_{j}\right\rangle}\right]=\left(\mathbb{E}\left[e^{i\left\langle\frac{u}{\sqrt{n}}, Z_{1}\right\rangle}\right]\right)^{n}
$$

Now, since Z_{1} admits a finite moment of order 2, we may use Taylor's theorem and write

$$
\mathbb{E}\left[e^{i\left\langle t, Z_{1}\right\rangle}\right] \underset{t \rightarrow 0}{=} 1-\frac{1}{2} t^{*} \Gamma t+\mathrm{o}\left(|t|^{2}\right)
$$

so that, as $n \rightarrow+\infty$

$$
\mathbb{E}\left[e^{i\left\langle u, T_{n}\right\rangle}\right]=\left(1-\frac{1}{2}\left(\frac{u}{\sqrt{n}}\right)^{*} \Gamma\left(\frac{u}{\sqrt{n}}\right)+\mathrm{o}\left(\frac{|u|^{2}}{n}\right)\right)^{n} \xrightarrow[n \rightarrow+\infty]{ } \exp \left(-\frac{1}{2} u^{*} \Gamma u\right) .
$$

3 Conditional expectation

3.1 Definition

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and \mathcal{B} be a sub- σ-algebra of \mathcal{A}. In the following, we shall assume that the σ-algebras we are dealing with are complete, that is to say that they contain all the negligible sets (i.e. the sets A such that $\mathbb{P}(A)=0$).

We first recall the following result on Hilbert space. Let H be a Hilbert space and F be a closed subspace of H. For every $x \in H$, there exists a unique $y \in F$, called the orthogonal projection of x on F, which satisfies one of the two following equivalent assertions:
i) $\forall z \in F, \quad\langle x-y, z\rangle=0$,
ii) $\forall z \in F, \quad\|x-y\| \leq\|x-z\|$.

When applied to the Hilbert space $L^{2}(\Omega, \mathcal{A}, \mathbb{P})$ and the closed subspace $L^{2}(\Omega, \mathcal{B}, \mathbb{P})$, the precedent result gives the following characterization of conditional expectation.

Proposition 24. For every random variable $X \in L^{2}(\Omega, \mathcal{A}, \mathbb{P})$, there exists an a.s. unique random variable Y such that

$$
\left\{\begin{array}{l}
Y \in L^{2}(\Omega, \mathcal{B}, \mathbb{P}) \tag{1}\\
\mathbb{E}[X Z]=\mathbb{E}[Y Z], \quad \forall Z \in L^{2}(\Omega, \mathcal{B}, \mathbb{P}) .
\end{array}\right.
$$

We denote this random variable by $Y=\mathbb{E}[X \mid \mathcal{B}]$.

Example 25. Take $\mathcal{B}=\{\emptyset, \Omega\}$. The random variables which are \mathcal{B}-measurable are a.s. constant, hence, $\mathbb{E}[X \mid \mathcal{B}]=a$. If Z is \mathcal{B}-measurable, then $Z=z$, and Equation (1) yields

$$
\mathbb{E}[Z \mathbb{E}[X \mid \mathcal{B}]]=\mathbb{E}[z a]=z a=\mathbb{E}[z X]=z \mathbb{E}[X], \quad \forall z \in \mathbb{R}
$$

hence $a=\mathbb{E}[X]$. So the conditional expectation of a random variable X with respect to the trivial σ-algebra is simply its classical expectation.
Remark 26. If X is a positive and bounded random variable, then $\mathbb{E}[X \mid \mathcal{B}] \geq 0$ a.s. Indeed, set $Y=\mathbb{E}[X \mid \mathcal{B}]$ and assume that $\mathbb{P}(Y<0)>0$. In particular, for n large enough, the set $A=\left\{Y<-\frac{1}{n}\right\}$ has a strictly positive probability. Since 1_{A} is a bounded \mathcal{B}-measurable random variable, it holds

$$
0 \leq \mathbb{E}\left[X 1_{A}\right]=\mathbb{E}\left[Y 1_{A}\right] \leq-\frac{1}{n} \mathbb{P}(A)<0,
$$

which contradicts the assumption that $\mathbb{P}(Y<0)>0$.
We now extend the previous construction to any random variable $X \in L^{1}(\Omega, \mathcal{A}, \mathbb{P})$.
Theorem 27. Let $X \in L^{1}(\Omega, \mathcal{A}, \mathbb{P})$. There exists an a.s. unique and integrable random variable $\mathbb{E}[X \mid \mathcal{B}]$ such that:

$$
\left\{\begin{array}{l}
\mathbb{E}[X \mid \mathcal{B}] \in L^{1}(\Omega, \mathcal{B}, \mathbb{P}) \\
\mathbb{E}[Z X]=\mathbb{E}[Z \mathbb{E}[X \mid \mathcal{B}]], \quad \text { for every } \mathcal{B} \text {-measurable and bounded r.v. } Z .
\end{array}\right.
$$

Proof.

a) The basic idea of the proof is to work by truncation. We define, for any real $a \in \mathbb{R}$:

$$
a^{+}=\sup (a, 0) \quad \text { and } \quad a^{-}=\sup (0,-a)
$$

Observe first that, by splitting X as $X=X^{+}-X^{-}$, we may reduce our study to positive random variables. So assume now that X is \mathbb{R}^{+}-valued, and define $X_{n}=X \wedge n$. Since each X_{n} belongs to L^{2} (as a bounded r.v.), we can choose a version of the conditional expectation $Y_{n}=\mathbb{E}\left[X_{n} \mid \mathcal{B}\right]$. Furthermore, as the sequence ($X_{n}, n \in \mathbb{N}$) is positive and increasing, from Remark 26 so is the sequence ($Y_{n}, n \in \mathbb{N}$), and we set:

$$
Y(\omega):=\limsup _{n \rightarrow+\infty} Y_{n}(\omega) .
$$

Since Y_{n} is \mathcal{B}-measurable for every n, Y is also $\mathcal{\mathcal { B }}$-measurable. Take a positive $\mathcal{\mathcal { B }}$-measurable r.v. Z. By the monotone convergence theorem, passing to the limit in the equality $\mathbb{E}\left[Z X_{n}\right]=\mathbb{E}\left[Z Y_{n}\right]$ we deduce that $\mathbb{E}[Z X]=\mathbb{E}[Z Y]$. Taking $Z=1$, we finally conclude that Y is indeed integrable.
b) To prove the uniqueness, assume that Y and \widetilde{Y} are two versions of $\mathbb{E}[X \mid \mathcal{B}]$ such that $\mathbb{P}(Y>\widetilde{Y})>0$. In particular, for n large enough, the set $A=\left\{Y-\widetilde{Y}>\frac{1}{n}\right\}$ has a strictly positive probability. Since 1_{A} is a bounded \mathcal{B}-measurable random variable, it holds

$$
0=\mathbb{E}\left[(Y-\widetilde{Y}) 1_{A}\right] \geq \frac{1}{n} \mathbb{P}(A)>0
$$

which is a contradiction

3.2 Properties

We list below the main properties of conditional expectation.
Theorem 28. Let X and Y be two integrable random variables defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{B} be a sub- σ-algebra of \mathcal{A}. Then:
i) (Linearity) $\mathbb{E}[a X+b Y \mid \mathcal{B}]=a \mathbb{E}[X \mid \mathcal{B}]+b \mathbb{E}[Y \mid \mathcal{B}]$
ii) (Positivity) if $X \geq 0$ a.s., then $\mathbb{E}[X \mid \mathcal{B}] \geq 0$ a.s.
iii) If X is \mathcal{B}-measurable: $\mathbb{E}[X \mid \mathcal{B}]=X$ a.s.
iv) More generally, if Y is \mathcal{B}-measurable and such that $X Y$ is integrable, then: $\mathbb{E}[X Y \mid \mathcal{B}]=Y \mathbb{E}[X \mid \mathcal{B}]$.
v) (Tower property) If \mathcal{C} is a sub- σ-algebra of \mathcal{B}, then $\mathbb{E}[\mathbb{E}[X \mid \mathcal{B}] \mid \mathcal{C}]=\mathbb{E}[X \mid \mathcal{C}]$.
vi) Fatou's lemma, the monotone convergence theorem, the dominated convergence theorem and Jensen inequality hold with conditional expectation.

In practice, it is generally difficult to compute a conditional expectation given a σ-algebra \mathcal{B}. One situation in which this task is easier is when the σ-algebra \mathcal{B} is generated by a r.v. $T:(\Omega, \mathcal{A}) \longrightarrow(E, \mathcal{E})$. The σ-algebra generated by T is denoted by $\sigma(T)$ and defined by:

$$
\sigma(T)=\left\{A \in \mathcal{A}, \exists C \in \mathcal{E}, A=T^{-1}(C)\right\}
$$

A real-valued random variables $X:(\Omega, \mathcal{A}) \longrightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is said to be $\sigma(T)$-measurable if for every $B \in \mathcal{B}(\mathbb{R}), X^{-1}(B) \in \sigma(T)$. Such an application is characterized by:
X is $\sigma(T)$-measurable \Longleftrightarrow There exists a measurable function $f:(E, \mathcal{E}) \longrightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $X=f(T)$.
Example 29. Let (X, Y) be a centered Gaussian random vector, with Y not degenerated. Then :

$$
\mathbb{E}[X \mid Y]=\left(\frac{\mathbb{E}[X Y]}{\operatorname{Var}(Y)}\right) Y
$$

To prove this result, we shall look for $a \in \mathbb{R}$ such that the two Gaussian random variables $X-a Y$ and Y are independent. By Theorem 20, these two random variables are independent if and only if:

$$
\operatorname{cov}(X-a Y, Y)=0
$$

that is,

$$
\mathbb{E}[(X-a Y) Y]=\mathbb{E}[X Y]-a \mathbb{E}\left[Y^{2}\right]=\mathbb{E}[X Y]-a \operatorname{Var}(Y)=0
$$

Since Y is not degenerated, $\operatorname{Var}(Y)>0$ so a is unique and given by

$$
a=\frac{\mathbb{E}[X Y]}{\operatorname{Var}(Y)}
$$

But, by independence,

$$
\mathbb{E}[X-a Y \mid Y]=\mathbb{E}[X-a Y]=0
$$

and by linearity,

$$
\mathbb{E}[X-a Y \mid Y]=\mathbb{E}[X \mid Y]-a \mathbb{E}[Y \mid Y]=\mathbb{E}[X \mid Y]-a Y=0
$$

which proves the announced result.

3.3 Conditional laws

Definition 30. Let (E, \mathcal{E}) and (F, \mathcal{F}) be two measurable spaces. A kernel $N: E \times F \longrightarrow \mathbb{R}^{+}$is a transition probability from E to F if :
i) for every $x \in E$, the application $A \in \mathcal{F} \longmapsto N(x, A)$ is a probability on (F, \mathcal{F}).
ii) for every $A \in \mathcal{F}$, the application $x \in E \longmapsto N(x, A)$ is measurable from (E, \mathcal{E}) on $\left(\mathbb{R}^{+}, \mathcal{B}\left(\mathbb{R}^{+}\right)\right)$.

In other words, a transition probability is a measurable family of probabilities $(N(x, \cdot), x \in E)$ on (F, \mathcal{F}) indexed by the set E.

Definition 31. Let X and Y be two r.v.'s taking values respectively in (E, \mathcal{E}) and (F, \mathcal{F}). The conditional law of Y given X is a transition probability N from E to F such that, for every measurable and positive function φ :

$$
\mathbb{E}[\varphi(Y) \mid X]=\int_{\Omega} \varphi(y) N(X, d y)
$$

Remark 32.

a) As for conditional expectation, the conditional law of Y given X is only determined up to a set of null \mathbb{P}_{X}-measure.
b) Heuristically, $N(x, d y)$ denotes the law of Y given that $X=x$.
c) Of course, if X and Y are independent, then $N(x, d y)=\mathbb{P}_{Y}(d y)$.

Proposition 33. Let (X, Y) be a pair of \mathbb{R}-valued random variables, whose joint density is given by $f(x, y)$. Then the law of the r.v. Y conditionally to X is given by:

$$
N(x, d y)=\frac{f(x, y)}{\alpha(x)} 1_{\{\alpha(x)>0\}} d y
$$

where

$$
\alpha(x)=\int_{\mathbb{R}} f(x, y) d y
$$

is the density of the r.v. X.

Proof. Let h and g be two measurable and bounded functions. By definition:

$$
\mathbb{E}[h(X) g(Y)]=\iint_{\mathbb{R}^{2}} h(x) g(y) f(x, y) d x d y
$$

By taking $h(x)=1_{\{\alpha(x)=0\}}$ and applying Fubini's theorem, we obtain

$$
\mathbb{P}(\alpha(X)=0)=\iint_{\mathbb{R}^{2}} 1_{\{\alpha(x)=0\}} f(x, y) d x d y=\int_{\mathbb{R}} 1_{\{\alpha(x)=0\}}\left(\int_{\mathbb{R}} f(x, y) d y\right) d x=\int_{\mathbb{R}} 1_{\{\alpha(x)=0\}} \alpha(x) d x=0
$$

Therefore, going back to the general expression and applying Fubini's theorem again :

$$
\begin{aligned}
\mathbb{E}[h(X) g(Y)] & =\mathbb{E}\left[h(X) g(Y) 1_{\{\alpha(X)>0\}}\right] \\
& =\int_{\mathbb{R}} h(x) \alpha(x)\left(\int_{\mathbb{R}} g(y) \frac{f(x, y)}{\alpha(x)} 1_{\{\alpha(x)>0\}} d y\right) d x \\
& =\int_{\mathbb{R}} h(x) \alpha(x)\left(\int_{\mathbb{R}} g(y) N(x, d y)\right) d x \\
& =\mathbb{E}\left[h(X)\left(\int_{\mathbb{R}} g(y) N(X, d y)\right)\right]
\end{aligned}
$$

hence, by definition of the conditional expectation:

$$
\mathbb{E}[g(Y) \mid X]=\int_{\mathbb{R}} g(y) N(X, d y)
$$

It remains to justify that N is indeed a transition probability, but this is immediate since :

$$
\int_{\mathbb{R}} N(x, d y)=1_{\{\alpha(x)>0\}} \stackrel{\left(\mathbb{P}_{X}-\text { a.s. }\right)}{=} 1
$$

3.4 The Gaussian case

We now turn our attention back to Gaussian vectors. Let X (resp. Y) be a \mathbb{R}^{n} (resp. \mathbb{R}^{d})-valued Gaussian random vector and assume that X admits a density. In this section, we want to compute the law of Y conditionally to X. We use the following notation:

$$
\left\{\begin{array}{l}
K_{11} \text { denotes the covariance matrix of } X, \text { of order } n, \\
K_{22} \text { denotes the covariance matrix of } Y, \text { of order } d, \\
K_{12}=\mathbb{E}\left[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])^{*}\right] \text { is a matrix of order } n \times d \text { and } K_{21}=K_{12}^{*}
\end{array}\right.
$$

Proposition 34. Let N be the conditional law of Y given X. Then, $N(x,$.$) is the Gaussian law \mathcal{N}(A x+m, \Gamma)$ where $A=K_{21} K_{11}^{-1}, m=\mathbb{E}[Y]-A \mathbb{E}[X]$ and $\Gamma=K_{22}-K_{21} K_{11}^{-1} K_{21}^{*}$.

Proof.

Consider the Gaussian vector $Z=Y-A X$. We claim that Z is independent from X. Indeed, the covariance matrix of Z and X is given by:

$$
\begin{aligned}
\mathbb{E}\left[(Z-\mathbb{E}[Z])(X-\mathbb{E}[X])^{*}\right] & =\mathbb{E}\left[(Y-A X-\mathbb{E}[Y]+A \mathbb{E}[X])(X-\mathbb{E}[X])^{*}\right] \\
& =\mathbb{E}\left[(Y-\mathbb{E}[Y])(X-\mathbb{E}[X])^{*}\right]+A \mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{*}\right] \\
& =K_{21}-A K_{11}=0
\end{aligned}
$$

by definition of A. Now, we may write :

$$
\mathbb{E}[f(X) g(Y)]=\mathbb{E}[f(X) g(A X+Z)]=\mathbb{E}[\mathbb{E}[f(X) g(A X+Z) \mid X]]=\mathbb{E}[f(X) \mathbb{E}[g(A X+Z) \mid X]],
$$

but, since Z is independent from X,

$$
\mathbb{E}[g(A X+Z) \mid X]=G(X)
$$

where G is given by

$$
G(x)=\mathbb{E}[g(A x+Z)]=\int_{\mathbb{R}^{d}} g(y) N(x, d y)
$$

with $N(x,$.$) the law of the random vector A x+Z$, i.e. the Gaussian law with expectation $\mathbb{E}[A x+Z]=A x+\mathbb{E}[Z]=A x+m$ and covariance matrix
$\mathbb{E}\left[(A x+Z-(A x+m))(A x+Z-(A x+m))^{*}\right]=\mathbb{E}\left[(Z-m)(Z-m)^{*}\right]=\mathbb{E}\left[(Y-\mathbb{E}[Y]-A X+A \mathbb{E}[X])(Y-\mathbb{E}[Y]-A X+A \mathbb{E}[X])^{*}\right]$.
To simplify the notation, we set $X_{0}=X-\mathbb{E}[X]$ and $Y_{0}=Y_{0}-\mathbb{E}[Y]$. Then:

$$
\left.\begin{array}{rl}
\mathbb{E}\left[\left(Y_{0}-A X_{0}\right)\left(Y_{0}-A X_{0}\right)^{*}\right] & =\mathbb{E}\left[\left(Y_{0}-A X_{0}\right)\left(Y_{0}^{*}-X_{0}^{*} A^{*}\right)\right] \\
& =\mathbb{E}\left[Y_{0} Y_{0}^{*}\right]-\mathbb{E}\left[Y_{0} X_{0}^{*}\right] A^{*}-A \mathbb{E}\left[X_{0} Y_{0}^{*}\right]+A \mathbb{E}\left[X_{0} X_{0}^{*}\right] A^{*} \\
& =K_{22}-K_{21} A^{*}-A K_{12}+A K_{11} A^{*} \\
& =K_{22}-A K_{12} \\
& =K_{22}-K_{21} K_{11}^{-1} K_{21}^{*} .
\end{array} \quad \text { (since } K_{21}=A K_{11}\right) \text {) }
$$

4 Stochastic convergences

We finally conclude this first lesson by a short section on the different modes of convergence we shall use in the sequel, the general pattern being as follows:

4.1 Convergence in law

Definition 35. A sequence of random vectors $\left(X_{n}\right)_{n \geq 1}$ converges in law towards a random vector X if for every continuous and bounded function $\varphi \in \mathcal{C}_{0}\left(\mathbb{R}^{d}\right)$:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \mathbb{E}\left[\varphi\left(X_{n}\right)\right]=\mathbb{E}[\varphi(X)] \tag{2}
\end{equation*}
$$

We shall denote :

$$
X_{n} \xrightarrow[n \rightarrow+\infty]{(\text { law })} X
$$

The convergence in law, as its name indicates, does not depend on the random variable X, but rather on its law $\mathbb{P}_{X}=\mu$. In other words, the convergence in law is actually a convergence of measures: if μ_{n} denotes the law of the random variable X_{n}, then (2) may be rewritten:

$$
\lim _{n \rightarrow+\infty} \int_{\mathbb{R}^{d}} f(x) \mu_{n}(d x)=\int_{\mathbb{R}^{d}} f(x) \mu(d x)
$$

In practice, we may restrict our attention to the family of functions

$$
\varphi_{u}(x)=\exp (i\langle u, x\rangle), \quad u \in \mathbb{R}^{d},
$$

thanks to Theorem 6.

Theorem 36. The sequence of random vectors $\left(X_{n}\right)_{n \geq 1}$ converges in law towards X if and only if the sequence of characteristic functions $\Phi_{X_{n}}$ converges pointwise towards the characteristic function of X :

$$
X_{n} \xrightarrow[n \rightarrow+\infty]{\text { (law) }} X \quad \Longleftrightarrow \quad \Phi_{X_{n}}(u) \underset{n \rightarrow+\infty}{ } \Phi_{X}(u) \quad \text { for every } u \in \mathbb{R}^{d}
$$

4.2 Convergence in probability

Definition 37. A sequence of random vectors $\left(X_{n}\right)_{n \geq 1}$ converges in probability towards a random vector X if for every $\varepsilon>0$:

$$
\lim _{n \rightarrow+\infty} \mathbb{P}\left(\left\|X_{n}-X\right\|>\varepsilon\right)=0
$$

We shall denote :

$$
X_{n} \xrightarrow[n \rightarrow+\infty]{\text { (prob) }} X .
$$

The limit in probability of a sequence of random vectors is almost surely unique.
Proposition 38. If a sequence of random vectors $\left(X_{n}\right)_{n \geq 1}$ converges in probability towards a random vector X and towards a random vector Y, then:

$$
X=Y \quad \text { a.s. }
$$

Proof. For every $\varepsilon>0$:

$$
\{\|X-Y\|>\varepsilon\} \subset\left\{\left\|X-X_{n}\right\|>\frac{\varepsilon}{2}\right\} \cup\left\{\left\|X_{n}-Y\right\|>\frac{\varepsilon}{2}\right\}
$$

hence,

$$
\mathbb{P}(\|X-Y\|>\varepsilon) \leq \mathbb{P}\left(\left\|X-X_{n}\right\|>\frac{\varepsilon}{2}\right)+\mathbb{P}\left(\left\|X_{n}-Y\right\|>\frac{\varepsilon}{2}\right) .
$$

Letting n tend to $+\infty$, we deduce that

$$
\forall \varepsilon>0, \quad \mathbb{P}(\|X-Y\|>\varepsilon)=0
$$

and, letting then ε tend to 0 , the monotone convergence theorem yields

$$
\mathbb{P}(\|X-Y\|>0)=0
$$

which means that X and Y are equal a.s.

4.3 Almost sure convergence

Definition 39. A sequence of random vectors $\left(X_{n}\right)_{n \geq 1}$ converges almost surely towards a random vector X if there exists a negligible set N such that, for every $\omega \notin N$, the numerical sequence $X_{n}(\omega)$ converges towards $X(\omega)$:

$$
\lim _{n \rightarrow+\infty} X_{n}(\omega)=X(\omega) \quad \text { for every } \omega \notin N
$$

We shall denote :

$$
X_{n} \xrightarrow[n \rightarrow+\infty]{(\mathrm{a} . \mathrm{s})} X
$$

4.4 Convergence in L^{p}

Definition 40. Let $p \geq 1$. A sequence of random vectors $\left(X_{n}\right)_{n \geq 1}$ in $L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ converges in L^{p} towards a random vector $X \in L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ if :

$$
\lim _{n \rightarrow+\infty} \mathbb{E}\left[\left\|X_{n}-X\right\|^{p}\right]=0
$$

We shall denote :

$$
X_{n} \xrightarrow[n \rightarrow+\infty]{L^{p}} X
$$

4.5 The weak law of large numbers

Theorem 41. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables with finite moment of order 2. Then:

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow[n \rightarrow+\infty]{(\text { prob })} \quad \mathbb{E}\left[X_{1}\right] .
$$

Proof. By independence and scaling, we have

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\frac{\operatorname{Var}\left(X_{1}\right)}{n} .
$$

But, by definition of the variance:

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\mathbb{E}\left[\left|\bar{X}_{n}-\mathbb{E}\left[\bar{X}_{n}\right]\right|^{2}\right]=\mathbb{E}\left[\left|\bar{X}_{n}-\mathbb{E}\left[X_{1}\right]\right|^{2}\right] \xrightarrow[n \rightarrow+\infty]{ } 0
$$

which means that

$$
\bar{X}_{n} \quad \stackrel{L^{2}}{n \rightarrow+\infty} \quad \mathbb{E}\left[X_{1}\right]
$$

and the result follows since convergence in L^{2} implies convergence in probability.

