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1 Random variables

Let (Ω,F ,P) be a probability space, and (E, E) a measurable space.

1.1 First definitions

Definition 1 (Random variable).
A measurable application X : (Ω,F) 7−→ (E, E) is called a random variable. Its law PX is defined by

PX : E 7−→ [0, 1]
A 7−→ P(X−1(A))

Theorem 2 (Transport theorem).
Let X : (Ω,F ,P) 7−→ (E, E) be a random variable, and ϕ : (E, E) 7−→ (R,B(R)) a measurable function. If ϕ(X) is P
integrable:

E[ϕ(X)] =

∫
Ω

ϕ(X(ω))P(dω) =

∫
E

ϕ(x)PX(dx)

The two main examples of random variables are the discrete and absolute continuous cases.
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Definition 3.

i) A random variable X is called discrete if there exists a finite or countable set S such that P(X ∈ S) = 1. Assume
that S = {xi, i ∈ I} with xi 6= xj for i 6= j. Then, the law of X is given by:

PX =
∑
i∈I

piδxi

where δxi denotes Dirac measure at xi and pi = P(X = xi).

ii) A random variable X taking values in Rd is said to be absolutely continuous with respect to the Lebesgue measure
if there exists a measurable function f : Rd −→ [0,+∞] such that:

∀A ∈ B(Rd), PX(A) = P(X ∈ A) =

∫
A

f(x)dx.

f is called the probability density function of X.

1.2 Characterization of laws in Rd

Definition 4 (Characteristic function).
Let X : (Ω,F ,P) 7−→ (Rd,B(Rd)) be a random variable. The characteristic function of X is defined by:

ΦX(t) = E
[
ei〈t,X〉

]
=

∫
Rd
ei〈t,x〉PX(dx), ∀t ∈ Rd.

Definition 5 (Cumulative distribution function).
Let X : (Ω,F ,P) 7−→ (Rd,B(Rd)) be a random variable. The cumulative distribution function of X = (X1, . . . , Xd) is
defined by:

FX(t1, . . . , td) = P(X1 ≤ t1, . . . , Xd ≤ td) = PX

(
d∏
i=1

]−∞, ti]

)
, ∀t = (t1, . . . , td) ∈ Rd.

These functions characterize the law of X in the following sense.

Theorem 6. Let X and Y be two Rd-valued random variables. The following assertions are equivalent:

i) X and Y have the same law,

ii) ΦX = ΦY .

iii) FX = FY ,

Be careful that the equality in law X
(law)
= Y does not mean that X and Y are a.s. equal. Indeed, if X follows a uniform law

on [0, 1], then Y = 1 − X also follows a uniform law on [0, 1] so their characteristic functions and cumulative distribution
functions are equal, but of course, X is not equal to Y a.s.

1.3 Independence

Definition 7. Let n ∈ N∗. The Rd-valued random variables X1, . . . , Xn defined on (Ω,F ,P) are independent if

∀A1, . . . , An ∈ B(Rd), P(X1 ∈ A1, . . . , Xn ∈ An) =

n∏
i=1

P(Xi ∈ Ai).

This may be written shortly:
P(X1,...,Xn) = PX1

⊗ . . .⊗ PXn .
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The independence between random variables may be directly seen on the characteristic functions.

Theorem 8. Let X1, . . . , Xn be n random variables defined on (Ω,F ,P). We assume that Xi is Rdi-valued. Then the
random variables X1, . . . , Xn are mutually independent if and only if

Φ(X1,...,Xn)(t1, . . . , tn) =

n∏
i=1

ΦXi(ti), ∀(t1, . . . , tn) ∈ Rd1 × . . .× Rdn .

Proof. By definition, there is the equivalence :

X1, . . . , Xn are mutually independent ⇐⇒ P(X1,...,Xn) = PX1
⊗ . . .⊗ PXn .

Since Fourier’s transform is injective, this is also equivalent to :

X1, . . . , Xn are mutually independent ⇐⇒ F
(
P(X1,...,Xn)

)
= F (PX1 ⊗ . . .⊗ PXn) ,

hence the result follows from:

Φ(X1,...,Xn) = F
(
P(X1,...,Xn)

)
= F (PX1 ⊗ . . .⊗ PXn) =

n∏
i=1

F (PXi) =

n∏
i=1

ΦXi .

�

Example 9. Assume for instance that X and Y are two independent R-valued random variables with respective probability
density functions fX and fY . Then, for any λ ∈ R:

E
[
eiλ(X+Y )

]
= E

[
eiλX

]
E
[
eiλY

]
=

∫
R
eiλtfX(t)dt

∫
R
eiλtfY (t)dt

=

∫
R
eiλt

(∫
R
fX(t− s)fY (s)ds

)
dt

which proves that the random variable X + Y is also an absolutely continuous random variable and that its probability
density function is given by:

fX+Y (t) =

∫
R
fX(t− s)fY (s)ds.

2 Gaussian variables

2.1 Real-valued Gaussian random variables

Definition 10 (Gaussian random variables). A random variable X : (Ω,F ,P) 7−→ (R,B(R)) is Gaussian with mean
m and variance σ2 > 0 if its probability law admits the density function:

f(x) =
1√

2πσ2
exp

(
− (x−m)2

2σ2

)
.

We shall write X ∼ N (m,σ2).

Remark 11. A random variable G which follows the law N (0, 1) is called a standard Gaussian random variable, and, for
any m ∈ R and σ > 0,

m+ σG ∼ N (m,σ2).

Therefore, in most situations, it is enough to make the computations with a standard Gaussian random variable, and the
general case follows from this relation.

Proposition 12 (Characteristic function). If X ∼ N (m,σ2), its characteristic function is given by:

E
[
eitX

]
= exp

(
imt− σ2t2

2

)
.

3



Proof. Assume first that G ∼ N (0, 1). We want to compute :

E
[
eitG

]
=

∫
R
eitx

1√
2π
e−

x2

2 dx =
1√
2π

∫
R
e−

x2

2 cos(tx)dx+ i
1√
2π

∫
R
e−

x2

2 sin(tx)dx

Observe first the imaginary part of this expression is null, as the integral of an odd function on an interval symmetric with
respect to 0. Next, we set:

Φ(t) =

∫
R
e−

x2

2 cos(tx)dx

Since ∣∣∣e− x22 x sin(tx)
∣∣∣ ≤ |x|e− x22

which is integrable, we may apply Leibniz integral rule (differentiation under the integral sign) to obtain:

Φ′(t) = −
∫
R
e−

x2

2 x sin(tx)dx,

and integrating by part this last expression:

Φ′(t) = −t
∫
R
e−

x2

2 cos(tx)dx = −tΦ(t).

Therefore, there exists a constant k ∈ R such that:

E
[
eitG

]
=

k√
2π
e−

t2

2

and taking t = 0, we deduce that k =
√

2π. Finally, if X ∼ N (m,σ2), the general expression follows easily from:

E
[
eitX

]
= E

[
eit(m+σG)

]
= eitmE

[
eitσG

]
= eimt−

σ2t2

2 .

�

Remark 13. In particular, thanks to the Taylor series of the exponential function, it is easily seen that the moments of a
standard Gaussian random variable G are given by:E

[
G2n+1

]
= 0

E
[
G2n

]
=

(2n)!

2nn!

Proposition 14 (Sum of independent Gaussian r.v.’s). Let X1 ∼ N (m1, σ
2
1) and X2 ∼ N (m2, σ

2
2) be two independent

Gaussian random variables. Then, X1 +X2 is a Gaussian random variable with law N (m1 +m2, σ
2
1 + σ2

2).

Proof. Since X1 and X2 are independent, we may write, for every t ∈ R:

E
[
eit(X1+X2)

]
= E

[
eitX1

]
E
[
eitX2

]
= exp

(
itm1 −

t2σ2
1

2

)
exp

(
itm2 −

t2σ2
2

2

)
= exp

(
it(m1 +m2)− t2(σ2

1 + σ2
2)

2

)
.

�

2.2 Gaussian random vectors

Definition 15 (Gaussian random vectors). A random vector X = (X1, . . . , Xn) taking values in Rn is said to be
Gaussian if, for any λ ∈ Rn, the random variable

< λ,X >=

n∑
i=1

λiXi is a Gaussian random variable.
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Remark 16.

a) It is clear that if X is a Gaussian vector, then each of its components Xi is a Gaussian random variable.

b) However, the converse is not true ! Take for instance:

X =

(
G
εG

)
where G is a standard Gaussian r.v. and ε is an independent Rademacher variable, i.e.

P(ε = 1) = P(ε = −1) =
1

2
.

Both components of X are Gaussian random variables, but

X1 +X2 = G+ εG = (1 + ε)G

is not a Gaussian random variable since P((1 + ε)G = 0) = 1
2 .

c) Of course, if X1, . . . , Xn are independent Gaussian random variables, from Proposition 14, X = (X1, . . . , Xn) is a Gaus-
sian random vector.

Definition 17. The covariance matrix of a Rn-valued random vector X is the matrix :

K = E [(X − E[X])(X − E[X])∗] ,

where ∗ denotes transposition. In particular, the components (Ki,j)1≤i,j≤n are given by :

Ki,j = cov(Xi, Xj) = E [(Xi − E[Xi])(Xj − E[Xj ])] .

This matrix is symmetric and positive.

Proof. The fact that K is symmetric is obvious from the definition. To show that K is positive, observe that for any vector
u ∈ Rn,

u∗Ku = E [u∗(X − E[X])(X − E[X])∗u] = E
[
(u∗(X − E[X]))

2
]
≥ 0.

�

Proposition 18. Let K be the covariance matrix of a Gaussian random vector. Then, for every u ∈ Rn,

E [exp (i〈u,X〉)] = exp

(
i〈u,E[X]〉 − 1

2
u∗Ku

)

Proof. By definition, the random variable Z = 〈u,X〉 = u∗X is Gaussian, with expectation E[Z] = 〈u,E[X]〉 = u∗E[X] and
variance Var(Z) = u∗Ku, hence the result is a direct consequence of Proposition 12.

�

In particular, to characterize a Gaussian random vector, we only need its expectation and covariance matrix. The converse
is also true thanks to the following result.

Theorem 19. Let m ∈ Rn and Γ be a symmetric and positive matrix of order n. Then, their exists a Gaussian
random vector with expectation m and covariance matrix Γ.

Proof. Observe first that there exists a matrix A such that

Γ = AA∗.

Indeed, since Γ is a symmetric and real matrix, it may be diagonalized in an orthonormal basis, i.e. there exists an orthogonal
matrix P such that D = P ∗ΓP is a diagonal matrix. Since Γ is positive, the terms λ1, . . . , λn on the diagonal of D are all
positive, so we may consider the diagonal matrix ∆ whose terms on the diagonal are

√
λ1, . . . ,

√
λn, and A is finally given
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by A = P∆.
Now, let G1, . . . , Gn be n independent standard Gaussian random variables, and define

X = m+AG with G =

 G1

...
Gn

 .

Since the random variables (Gi)1≤i≤n are independent, X is a Gaussian random vector. Its expectation is given by

E[X] = m+AE[G] = m

and its covariance matrix by:

K = E [(X − E[X])(X − E[X])∗] = E [(AG)(AG)∗] = AE[GG∗]A∗ = AInA
∗ = Γ.

�

Theorem 20. Let X = (X1, . . . , Xn)∗ be a Gaussian random vector. Then, the random variables X1, . . . , Xn are
independent if and only if the covariance matrix is diagonal.

Proof. It is clear that if X1, . . . , Xn are independent, then cov(Xi, Xj) = 0 when i 6= j, hence K is diagonal. Assume now
that K is diagonal. In particular, for any u ∈ Rn,

u∗Ku =

n∑
j=1

u2
jKj,j =

n∑
j=1

u2
jVar(Xj),

so the characteristic function of X reads:

E
[
ei〈u,X〉

]
= exp

(
i〈u,E[X]〉 − 1

2
u∗Ku

)

= exp

i n∑
j=1

ujE[Xj ]−
1

2

n∑
j=1

u2
jVar(Xj)


=

n∏
j=1

exp

(
iujE[Xj ]−

1

2
u2
jVar(Xj)

)

=

n∏
j=1

E
[
eiujXj

]
which implies, from Theorem 8 that the random variables X1, . . . , Xn are independent.

�

Remark 21. In particular, if (X,Y ) is a Gaussian vector, then X and Y are independent if and only if their covariance
matrix is null :

K = E[(Y − E[Y ])(X − E[X])∗] = 0.

We must insist that this is no longer the case if X and Y are only Gaussian random variables. Indeed, if we take back the
example X = G and Y = εG with G a standard Gaussian r.v. and ε an independent Rademacher variable, then

E[(X − E[X])(Y − E[Y ])] = E[XY ] = E[εG2] = E[ε]E[G2] = 0

but X and Y are obviously not independent since |X| = |Y |.

Theorem 22 (Density of a Gaussian vector).
Let X be a Rn-valued Gaussian vector with covariance matrix K.

1. X admits a density if and only if K is invertible

2. If K is invertible, the density of X is given by:

f(x) =
1

(2π)n/2
√

det(K)
exp

(
−1

2
(x−m)∗K−1(x−m)

)
, x ∈ Rn,

with m = E[X].
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Proof.

a) Observe first that if F is a subspace of Rn with dimension strictly smaller than n and Z is a random vector which admits
a density f , then P(Z ∈ F ) = 0. Indeed, if H is a hyperplane which contains F , say H = {(x1, . . . , xn) ∈ Rn; xn = 0},
then

P(Z ∈ F ) ≤ P(Z ∈ H) =

∫
Rn
f(x1, . . . , xn)1{xn=0}dx1 . . . dxn = 0.

b) Next, we know that X may be written
X = m+AG

where m = E[X], G is a Gaussian vector with independent components whose laws are N (0, 1) and AA∗ = K. If A is
not invertible, then the range of A is strictly included in Rn, and X cannot admit a density. This proves Point 1) since
det(K) = det2(A), i.e. A is invertible if and only if K is.

c) Assume now that K is invertible. The density of G is given by

P(G ∈ dy) =
1

(2π)n/2
exp

(
−1

2
y∗y

)
dy, y ∈ Rn,

and the expression for the density of X follows from the change of variable :

y = A−1(x−m).

�

Theorem 23 (Central Limit Theorem).
Let (Xn, n ≥ 1) be a sequence of random vectors in Rd, independent and identically distributed. We assume that all
these variables are in L2(Ω), and we denote by m their expectation and by Γ the covariance matrix of X1. Then:

X1 + . . .+Xn − nm√
n

(law)−−−−−→
n→+∞

N (0,Γ).

Proof. We first translate the problem and set Zi = Xi −m in order to work with centered r.v.’s. Then

Tn =
X1 + . . .+Xn − nm√

n
=
Z1 + . . .+ Zn√

n
,

so the characteristic function of Tn reads:

E
[
ei〈u,Tn〉

]
=

n∏
j=1

E
[
e
i〈 u√

n
,Zj〉
]

=
(
E
[
e
i〈 u√

n
,Z1〉
])n

.

Now, since Z1 admits a finite moment of order 2, we may use Taylor’s theorem and write

E
[
ei〈t,Z1〉

]
=
t→0

1− 1

2
t∗Γt+ o

(
|t|2
)

so that, as n→ +∞

E
[
ei〈u,Tn〉

]
=

(
1− 1

2

(
u√
n

)∗
Γ

(
u√
n

)
+ o

(
|u|2

n

))n
−−−−−→
n→+∞

exp

(
−1

2
u∗Γu

)
.

�

3 Conditional expectation

3.1 Definition

Let (Ω,A,P) be a probability space, and B be a sub-σ-algebra of A. In the following, we shall assume that the σ-algebras
we are dealing with are complete, that is to say that they contain all the negligible sets (i.e. the sets A such that P(A) = 0).

We first recall the following result on Hilbert space. Let H be a Hilbert space and F be a closed subspace of H. For every
x ∈ H, there exists a unique y ∈ F , called the orthogonal projection of x on F , which satisfies one of the two following
equivalent assertions:
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i) ∀z ∈ F , < x− y, z >= 0,

ii) ∀z ∈ F , ‖x− y‖ ≤ ‖x− z‖.

When applied to the Hilbert space L2(Ω,A,P) and the closed subspace L2(Ω,B,P), the precedent result gives the following
characterization of conditional expectation.

Proposition 24. For every random variable X ∈ L2(Ω,A,P), there exists an a.s. unique random variable Y such
that Y ∈ L

2(Ω,B,P)

E[XZ] = E[Y Z], ∀Z ∈ L2(Ω,B,P).
(1)

We denote this random variable by Y = E[X|B].

Example 25. Take B = {∅,Ω}. The random variables which are B-measurable are a.s. constant, hence, E[X|B] = a. If Z
is B-measurable, then Z = z, and Equation (1) yields

E[ZE[X|B]] = E[za] = za = E[zX] = zE[X], ∀z ∈ R

hence a = E[X]. So the conditional expectation of a random variable X with respect to the trivial σ-algebra is simply its
classical expectation.

Remark 26. If X is a positive and bounded random variable, then E[X|B] ≥ 0 a.s. Indeed, set Y = E[X|B] and assume
that P(Y < 0) > 0. In particular, for n large enough, the set A = {Y < − 1

n} has a strictly positive probability. Since 1A is
a bounded B-measurable random variable, it holds

0 ≤ E[X1A] = E[Y 1A] ≤ − 1

n
P(A) < 0,

which contradicts the assumption that P(Y < 0) > 0.

We now extend the previous construction to any random variable X ∈ L1(Ω,A,P).

Theorem 27. Let X ∈ L1(Ω,A,P). There exists an a.s. unique and integrable random variable E[X|B] such that:
E[X|B] ∈ L1(Ω,B,P)

E[ZX] = E[ZE[X|B]], for every B-measurable and bounded r.v. Z.

Proof.

a) The basic idea of the proof is to work by truncation. We define, for any real a ∈ R:

a+ = sup(a, 0) and a− = sup(0,−a)

Observe first that, by splitting X as X = X+ −X−, we may reduce our study to positive random variables. So assume
now that X is R+-valued, and define Xn = X ∧ n. Since each Xn belongs to L2 (as a bounded r.v.), we can choose a
version of the conditional expectation Yn = E[Xn|B]. Furthermore, as the sequence (Xn, n ∈ N) is positive and increasing,
from Remark 26 so is the sequence (Yn, n ∈ N), and we set:

Y (ω) := lim sup
n→+∞

Yn(ω).

Since Yn is B-measurable for every n, Y is also B-measurable. Take a positive B-measurable r.v. Z. By the monotone
convergence theorem, passing to the limit in the equality E[ZXn] = E[ZYn] we deduce that E[ZX] = E[ZY ]. Taking
Z = 1, we finally conclude that Y is indeed integrable.

b) To prove the uniqueness, assume that Y and Ỹ are two versions of E[X|B] such that P(Y > Ỹ ) > 0. In particular, for n

large enough, the set A = {Y − Ỹ > 1
n} has a strictly positive probability. Since 1A is a bounded B-measurable random

variable, it holds

0 = E
[
(Y − Ỹ )1A

]
≥ 1

n
P(A) > 0

which is a contradiction.

�
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3.2 Properties

We list below the main properties of conditional expectation.

Theorem 28. Let X and Y be two integrable random variables defined on a probability space (Ω,A,P) and B be a
sub-σ-algebra of A. Then:

i) (Linearity) E[aX + bY |B] = aE[X|B] + bE[Y |B]

ii) (Positivity) if X ≥ 0 a.s., then E[X|B] ≥ 0 a.s.

iii) If X is B-measurable: E[X|B] = X a.s.

iv) More generally, if Y is B-measurable and such that XY is integrable, then: E[XY |B] = Y E[X|B].

v) (Tower property) If C is a sub-σ-algebra of B, then E
[
E[X|B]|C

]
= E[X|C].

vi) Fatou’s lemma, the monotone convergence theorem, the dominated convergence theorem and Jensen inequality
hold with conditional expectation.

In practice, it is generally difficult to compute a conditional expectation given a σ-algebra B. One situation in which this
task is easier is when the σ-algebra B is generated by a r.v. T : (Ω,A) −→ (E, E). The σ-algebra generated by T is denoted
by σ(T ) and defined by:

σ(T ) = {A ∈ A, ∃C ∈ E , A = T−1(C)}.

A real-valued random variablesX : (Ω,A) −→ (R,B(R)) is said to be σ(T )-measurable if for everyB ∈ B(R), X−1(B) ∈ σ(T ).
Such an application is characterized by:

X is σ(T )-measurable ⇐⇒ There exists a measurable function f : (E, E) −→ (R,B(R)) such that X = f(T ).

Example 29. Let (X,Y ) be a centered Gaussian random vector, with Y not degenerated. Then :

E[X|Y ] =

(
E[XY ]

Var(Y )

)
Y.

To prove this result, we shall look for a ∈ R such that the two Gaussian random variables X − aY and Y are independent.
By Theorem 20, these two random variables are independent if and only if:

cov(X − aY, Y ) = 0

that is,
E[(X − aY )Y ] = E[XY ]− aE[Y 2] = E[XY ]− aVar(Y ) = 0.

Since Y is not degenerated, Var(Y ) > 0 so a is unique and given by

a =
E[XY ]

Var(Y )
.

But, by independence,
E[X − aY |Y ] = E[X − aY ] = 0

and by linearity,
E[X − aY |Y ] = E[X|Y ]− aE[Y |Y ] = E[X|Y ]− aY = 0,

which proves the announced result.

3.3 Conditional laws

Definition 30. Let (E, E) and (F,F) be two measurable spaces. A kernel N : E×F −→ R+ is a transition probability
from E to F if :

i) for every x ∈ E, the application A ∈ F 7−→ N(x,A) is a probability on (F,F).

ii) for every A ∈ F , the application x ∈ E 7−→ N(x,A) is measurable from (E, E) on (R+,B(R+)).

In other words, a transition probability is a measurable family of probabilities (N(x, �), x ∈ E) on (F,F) indexed by the set E.

9



Definition 31. Let X and Y be two r.v.’s taking values respectively in (E, E) and (F,F). The conditional law of Y
given X is a transition probability N from E to F such that, for every measurable and positive function ϕ:

E[ϕ(Y )|X] =

∫
Ω

ϕ(y)N(X, dy).

Remark 32.

a) As for conditional expectation, the conditional law of Y given X is only determined up to a set of null PX -measure.

b) Heuristically, N(x, dy) denotes the law of Y given that X = x.

c) Of course, if X and Y are independent, then N(x, dy) = PY (dy).

Proposition 33. Let (X,Y ) be a pair of R-valued random variables, whose joint density is given by f(x, y). Then
the law of the r.v. Y conditionally to X is given by:

N(x, dy) =
f(x, y)

α(x)
1{α(x)>0}dy

where

α(x) =

∫
R
f(x, y)dy

is the density of the r.v. X.

Proof. Let h and g be two measurable and bounded functions. By definition:

E[h(X)g(Y )] =

∫∫
R2

h(x)g(y)f(x, y)dxdy.

By taking h(x) = 1{α(x)=0} and applying Fubini’s theorem, we obtain

P(α(X) = 0) =

∫∫
R2

1{α(x)=0}f(x, y)dxdy =

∫
R

1{α(x)=0}

(∫
R
f(x, y)dy

)
dx =

∫
R

1{α(x)=0}α(x)dx = 0.

Therefore, going back to the general expression and applying Fubini’s theorem again :

E[h(X)g(Y )] = E[h(X)g(Y )1{α(X)>0}]

=

∫
R
h(x)α(x)

(∫
R
g(y)

f(x, y)

α(x)
1{α(x)>0}dy

)
dx

=

∫
R
h(x)α(x)

(∫
R
g(y)N(x, dy)

)
dx

= E
[
h(X)

(∫
R
g(y)N(X, dy)

)]
hence, by definition of the conditional expectation:

E[g(Y )|X] =

∫
R
g(y)N(X, dy).

It remains to justify that N is indeed a transition probability, but this is immediate since :∫
R
N(x, dy) = 1{α(x)>0}

(PX−a.s.)
= 1.

�

3.4 The Gaussian case

We now turn our attention back to Gaussian vectors. Let X (resp. Y ) be a Rn (resp. Rd)-valued Gaussian random vector
and assume that X admits a density. In this section, we want to compute the law of Y conditionally to X. We use the
following notation: 

K11 denotes the covariance matrix of X, of order n,

K22 denotes the covariance matrix of Y , of order d,

K12 = E[(X − E[X])(Y − E[Y ])∗] is a matrix of order n× d and K21 = K∗12.

10



Proposition 34. Let N be the conditional law of Y given X. Then, N(x, �) is the Gaussian law N (Ax+m,Γ) where
A = K21K

−1
11 , m = E[Y ]−AE[X] and Γ = K22 −K21K

−1
11 K

∗
21.

Proof.
Consider the Gaussian vector Z = Y − AX. We claim that Z is independent from X. Indeed, the covariance matrix of Z
and X is given by:

E[(Z − E[Z])(X − E[X])∗] = E[(Y −AX − E[Y ] +AE[X])(X − E[X])∗]

= E[(Y − E[Y ])(X − E[X])∗] +AE[(X − E[X])(X − E[X])∗]

= K21 −AK11 = 0

by definition of A. Now, we may write :

E[f(X)g(Y )] = E[f(X)g(AX + Z)] = E[E[f(X)g(AX + Z)|X]] = E[f(X)E[g(AX + Z)|X]],

but, since Z is independent from X,
E[g(AX + Z)|X] = G(X)

where G is given by

G(x) = E[g(Ax+ Z)] =

∫
Rd
g(y)N(x, dy)

with N(x, �) the law of the random vector Ax+Z, i.e. the Gaussian law with expectation E[Ax+Z] = Ax+E[Z] = Ax+m
and covariance matrix

E[(Ax+Z−(Ax+m))(Ax+Z−(Ax+m))∗] = E[(Z−m)(Z−m)∗] = E[(Y −E[Y ]−AX+AE[X])(Y −E[Y ]−AX+AE[X])∗].

To simplify the notation, we set X0 = X − E[X] and Y0 = Y0 − E[Y ]. Then:

E[(Y0 −AX0)(Y0 −AX0)∗] = E[(Y0 −AX0)(Y ∗0 −X∗0A∗)]
= E[Y0Y

∗
0 ]− E[Y0X

∗
0 ]A∗ −AE[X0Y

∗
0 ] +AE[X0X

∗
0 ]A∗

= K22 −K21A
∗ −AK12 +AK11A

∗

= K22 −AK12 (since K21 = AK11)

= K22 −K21K
−1
11 K

∗
21.

�

4 Stochastic convergences

We finally conclude this first lesson by a short section on the different modes of convergence we shall use in the sequel, the
general pattern being as follows:

Convergence in Lq

��

(1 ≤ p ≤ q)

Convergence in Lp

��

Convergence in L1

&.

Almost sure convergence

px
Convergence in probability

��
Convergence in law
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4.1 Convergence in law

Definition 35. A sequence of random vectors (Xn)n≥1 converges in law towards a random vector X if for every
continuous and bounded function ϕ ∈ C0(Rd) :

lim
n→+∞

E[ϕ(Xn)] = E[ϕ(X)]. (2)

We shall denote :

Xn
(law)−−−−−→
n→+∞

X

The convergence in law, as its name indicates, does not depend on the random variable X, but rather on its law PX = µ.
In other words, the convergence in law is actually a convergence of measures: if µn denotes the law of the random variable
Xn, then (2) may be rewritten:

lim
n→+∞

∫
Rd
f(x)µn(dx) =

∫
Rd
f(x)µ(dx).

In practice, we may restrict our attention to the family of functions

ϕu(x) = exp (i〈u, x〉) , u ∈ Rd,

thanks to Theorem 6.

Theorem 36. The sequence of random vectors (Xn)n≥1 converges in law towards X if and only if the sequence of
characteristic functions ΦXn converges pointwise towards the characteristic function of X:

Xn
(law)−−−−−→
n→+∞

X ⇐⇒ ΦXn(u) −−−−−→
n→+∞

ΦX(u) for every u ∈ Rd.

4.2 Convergence in probability

Definition 37. A sequence of random vectors (Xn)n≥1 converges in probability towards a random vector X if for
every ε > 0 :

lim
n→+∞

P(‖Xn −X‖ > ε) = 0.

We shall denote :

Xn
(prob)−−−−−→
n→+∞

X.

The limit in probability of a sequence of random vectors is almost surely unique.

Proposition 38. If a sequence of random vectors (Xn)n≥1 converges in probability towards a random vector X and
towards a random vector Y , then:

X = Y a.s.

Proof. For every ε > 0:

{‖X − Y ‖ > ε} ⊂
{
‖X −Xn‖ >

ε

2

}
∪
{
‖Xn − Y ‖ >

ε

2

}
hence,

P (‖X − Y ‖ > ε) ≤ P
(
‖X −Xn‖ >

ε

2

)
+ P

(
‖Xn − Y ‖ >

ε

2

)
.

Letting n tend to +∞, we deduce that
∀ε > 0, P (‖X − Y ‖ > ε) = 0

and, letting then ε tend to 0, the monotone convergence theorem yields

P (‖X − Y ‖ > 0) = 0,

which means that X and Y are equal a.s.

�
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4.3 Almost sure convergence

Definition 39. A sequence of random vectors (Xn)n≥1 converges almost surely towards a random vector X if there
exists a negligible set N such that, for every ω /∈ N , the numerical sequence Xn(ω) converges towards X(ω):

lim
n→+∞

Xn(ω) = X(ω) for every ω /∈ N.

We shall denote :

Xn
(a.s)−−−−−→

n→+∞
X.

4.4 Convergence in Lp

Definition 40. Let p ≥ 1. A sequence of random vectors (Xn)n≥1 in Lp(Ω,F ,P) converges in Lp towards a random
vector X ∈ Lp(Ω,F ,P) if :

lim
n→+∞

E [‖Xn −X‖p] = 0

We shall denote :
Xn

Lp−−−−−→
n→+∞

X.

4.5 The weak law of large numbers

Theorem 41. Let (Xn)n≥1 be a sequence of i.i.d. random variables with finite moment of order 2. Then:

Xn =
1

n

n∑
i=1

Xi
(prob)−−−−−→
n→+∞

E[X1].

Proof. By independence and scaling, we have

Var
(
Xn

)
=

1

n2
Var

(
n∑
i=1

Xi

)
=

Var(X1)

n
.

But, by definition of the variance:

Var
(
Xn

)
= E

[
|Xn − E

[
Xn

]
|2
]

= E
[
|Xn − E[X1]|2

]
−−−−−→
n→+∞

0,

which means that

Xn
L2

−−−−−→
n→+∞

E[X1]

and the result follows since convergence in L2 implies convergence in probability.

�
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