

Lesson n°1: Generalities on random variables

UCE, verano 2013

Contents

1		Random variables			
	1.1	First definitions	1		
	1.2	Characterization of laws in \mathbb{R}^d	2		
	1.3	Independence	2		
2	Gau	assian variables	3		
	2.1	Real-valued Gaussian random variables	3		
	2.2	Gaussian random vectors	4		
3		aditional expectation	7		
	3.1	Definition	7		
		Properties			
		Conditional laws			
		The Gaussian case			
4	Stochastic convergences 1				
	4.1	chastic convergences Convergence in law	12		
	4.2	Convergence in probability			
	4.3	Almost sure convergence			
		The weak law of large numbers			

1 Random variables

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and (E, \mathcal{E}) a measurable space.

1.1 First definitions

Definition 1 (Random variable).

A measurable application $X:(\Omega,\mathcal{F})\longmapsto (E,\mathcal{E})$ is called a random variable. Its law \mathbb{P}_X is defined by

$$\mathbb{P}_X: \mathcal{E} \longmapsto [0,1]$$

$$A \longmapsto \mathbb{P}(X^{-1}(A))$$

Theorem 2 (Transport theorem).

Let $X:(\Omega,\mathcal{F},\mathbb{P})\longmapsto (E,\mathcal{E})$ be a random variable, and $\varphi:(E,\mathcal{E})\longmapsto (\mathbb{R},\mathcal{B}(\mathbb{R}))$ a measurable function. If $\varphi(X)$ is \mathbb{P} integrable:

$$\mathbb{E}[\varphi(X)] = \int_{\Omega} \varphi(X(\omega)) \mathbb{P}(d\omega) = \int_{E} \varphi(x) \mathbb{P}_{X}(dx)$$

The two main examples of random variables are the discrete and absolute continuous cases.

Definition 3.

i) A random variable X is called discrete if there exists a finite or countable set S such that $\mathbb{P}(X \in S) = 1$. Assume that $S = \{x_i, i \in I\}$ with $x_i \neq x_j$ for $i \neq j$. Then, the law of X is given by:

$$\mathbb{P}_X = \sum_{i \in I} p_i \delta_{x_i}$$

where δ_{x_i} denotes Dirac measure at x_i and $p_i = \mathbb{P}(X = x_i)$.

ii) A random variable X taking values in \mathbb{R}^d is said to be absolutely continuous with respect to the Lebesgue measure if there exists a measurable function $f: \mathbb{R}^d \longrightarrow [0, +\infty]$ such that:

$$\forall A \in \mathcal{B}(\mathbb{R}^d), \qquad \mathbb{P}_X(A) = \mathbb{P}(X \in A) = \int_A f(x) dx.$$

f is called the probability density function of X.

1.2 Characterization of laws in \mathbb{R}^d

Definition 4 (Characteristic function).

Let $X:(\Omega,\mathcal{F},\mathbb{P})\longmapsto (\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ be a random variable. The characteristic function of X is defined by:

$$\Phi_X(t) = \mathbb{E}\left[e^{i\langle t, X\rangle}\right] = \int_{\mathbb{R}^d} e^{i\langle t, x\rangle} \mathbb{P}_X(dx), \quad \forall t \in \mathbb{R}^d.$$

Definition 5 (Cumulative distribution function).

Let $X : (\Omega, \mathcal{F}, \mathbb{P}) \longmapsto (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ be a random variable. The cumulative distribution function of $X = (X_1, \dots, X_d)$ is defined by:

$$F_X(t_1,\ldots,t_d) = \mathbb{P}(X_1 \le t_1,\ldots,X_d \le t_d) = \mathbb{P}_X\left(\prod_{i=1}^d]-\infty,t_i\right), \qquad \forall t = (t_1,\ldots,t_d) \in \mathbb{R}^d.$$

These functions characterize the law of X in the following sense.

Theorem 6. Let X and Y be two \mathbb{R}^d -valued random variables. The following assertions are equivalent:

- i) X and Y have the same law,
- $ii) \Phi_X = \Phi_Y.$
- iii) $F_X = F_Y$,

Be careful that the equality in law $X \stackrel{\text{(law)}}{=} Y$ does not mean that X and Y are a.s. equal. Indeed, if X follows a uniform law on [0,1], then Y=1-X also follows a uniform law on [0,1] so their characteristic functions and cumulative distribution functions are equal, but of course, X is not equal to Y a.s.

1.3 Independence

Definition 7. Let $n \in \mathbb{N}^*$. The \mathbb{R}^d -valued random variables X_1, \ldots, X_n defined on $(\Omega, \mathcal{F}, \mathbb{P})$ are independent if

$$\forall A_1, \dots, A_n \in \mathcal{B}(\mathbb{R}^d), \qquad \mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i).$$

This may be written shortly:

$$\mathbb{P}_{(X_1,\ldots,X_n)} = \mathbb{P}_{X_1} \otimes \ldots \otimes \mathbb{P}_{X_n}.$$

The independence between random variables may be directly seen on the characteristic functions.

Theorem 8. Let X_1, \ldots, X_n be n random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$. We assume that X_i is \mathbb{R}^{d_i} -valued. Then the random variables X_1, \ldots, X_n are mutually independent if and only if

$$\Phi_{(X_1,\ldots,X_n)}(t_1,\ldots,t_n)=\prod_{i=1}^n\Phi_{X_i}(t_i), \qquad \forall (t_1,\ldots,t_n)\in\mathbb{R}^{d_1}\times\ldots\times\mathbb{R}^{d_n}.$$

Proof. By definition, there is the equivalence:

$$X_1, \ldots, X_n$$
 are mutually independent $\iff \mathbb{P}_{(X_1, \ldots, X_n)} = \mathbb{P}_{X_1} \otimes \ldots \otimes \mathbb{P}_{X_n}$.

Since Fourier's transform is injective, this is also equivalent to:

$$X_1, \ldots, X_n$$
 are mutually independent $\iff \mathcal{F}\left(\mathbb{P}_{(X_1, \ldots, X_n)}\right) = \mathcal{F}\left(\mathbb{P}_{X_1} \otimes \ldots \otimes \mathbb{P}_{X_n}\right)$,

hence the result follows from:

$$\Phi_{(X_1,\ldots,X_n)} = \mathcal{F}\left(\mathbb{P}_{(X_1,\ldots,X_n)}\right) = \mathcal{F}\left(\mathbb{P}_{X_1}\otimes\ldots\otimes\mathbb{P}_{X_n}\right) = \prod_{i=1}^n \mathcal{F}\left(\mathbb{P}_{X_i}\right) = \prod_{i=1}^n \Phi_{X_i}.$$

Example 9. Assume for instance that X and Y are two independent \mathbb{R} -valued random variables with respective probability density functions f_X and f_Y . Then, for any $\lambda \in \mathbb{R}$:

$$\begin{split} \mathbb{E}\left[e^{i\lambda(X+Y)}\right] &= \mathbb{E}\left[e^{i\lambda X}\right] \mathbb{E}\left[e^{i\lambda Y}\right] = \int_{\mathbb{R}} e^{i\lambda t} f_X(t) dt \ \int_{\mathbb{R}} e^{i\lambda t} f_Y(t) dt \\ &= \int_{\mathbb{R}} e^{i\lambda t} \left(\int_{\mathbb{R}} f_X(t-s) f_Y(s) ds\right) dt \end{split}$$

which proves that the random variable X + Y is also an absolutely continuous random variable and that its probability density function is given by:

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_X(t-s) f_Y(s) ds.$$

2 Gaussian variables

2.1 Real-valued Gaussian random variables

Definition 10 (Gaussian random variables). A random variable $X:(\Omega,\mathcal{F},\mathbb{P})\longmapsto (\mathbb{R},\mathcal{B}(\mathbb{R}))$ is Gaussian with mean m and variance $\sigma^2>0$ if its probability law admits the density function:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right).$$

We shall write $X \sim \mathcal{N}(m, \sigma^2)$.

Remark 11. A random variable G which follows the law $\mathcal{N}(0,1)$ is called a standard Gaussian random variable, and, for any $m \in \mathbb{R}$ and $\sigma > 0$,

$$m + \sigma G \sim \mathcal{N}(m, \sigma^2)$$
.

Therefore, in most situations, it is enough to make the computations with a standard Gaussian random variable, and the general case follows from this relation.

Proposition 12 (Characteristic function). If $X \sim \mathcal{N}(m, \sigma^2)$, its characteristic function is given by:

$$\mathbb{E}\left[e^{itX}\right] = \exp\left(imt - \frac{\sigma^2t^2}{2}\right).$$

Proof. Assume first that $G \sim \mathcal{N}(0,1)$. We want to compute :

$$\mathbb{E}\left[e^{itG}\right] = \int_{\mathbb{R}} e^{itx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{x^2}{2}} \cos(tx) dx + i \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{x^2}{2}} \sin(tx) dx$$

Observe first the imaginary part of this expression is null, as the integral of an odd function on an interval symmetric with respect to 0. Next, we set:

$$\Phi(t) = \int_{\mathbb{R}} e^{-\frac{x^2}{2}} \cos(tx) dx$$

Since

$$\left| e^{-\frac{x^2}{2}} x \sin(tx) \right| \le |x| e^{-\frac{x^2}{2}}$$

which is integrable, we may apply Leibniz integral rule (differentiation under the integral sign) to obtain:

$$\Phi'(t) = -\int_{\mathbb{R}} e^{-\frac{x^2}{2}} x \sin(tx) dx,$$

and integrating by part this last expression:

$$\Phi'(t) = -t \int_{\mathbb{R}} e^{-\frac{x^2}{2}} \cos(tx) dx = -t\Phi(t).$$

Therefore, there exists a constant $k \in \mathbb{R}$ such that:

$$\mathbb{E}\left[e^{itG}\right] = \frac{k}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$$

and taking t=0, we deduce that $k=\sqrt{2\pi}$. Finally, if $X\sim\mathcal{N}(m,\sigma^2)$, the general expression follows easily from:

$$\mathbb{E}\left[e^{itX}\right] = \mathbb{E}\left[e^{it(m+\sigma G)}\right] = e^{itm}\mathbb{E}\left[e^{it\sigma G}\right] = e^{imt - \frac{\sigma^2t^2}{2}}.$$

Remark 13. In particular, thanks to the Taylor series of the exponential function, it is easily seen that the moments of a standard Gaussian random variable G are given by:

$$\begin{cases} \mathbb{E}\left[G^{2n+1}\right] = 0\\ \mathbb{E}\left[G^{2n}\right] = \frac{(2n)!}{2^n n!} \end{cases}$$

Proposition 14 (Sum of independent Gaussian r.v.'s). Let $X_1 \sim \mathcal{N}(m_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(m_2, \sigma_2^2)$ be two independent Gaussian random variables. Then, $X_1 + X_2$ is a Gaussian random variable with law $\mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$.

Proof. Since X_1 and X_2 are independent, we may write, for every $t \in \mathbb{R}$:

$$\mathbb{E}\left[e^{it(X_1+X_2)}\right] = \mathbb{E}\left[e^{itX_1}\right] \mathbb{E}\left[e^{itX_2}\right]$$

$$= \exp\left(itm_1 - \frac{t^2\sigma_1^2}{2}\right) \exp\left(itm_2 - \frac{t^2\sigma_2^2}{2}\right)$$

$$= \exp\left(it(m_1 + m_2) - \frac{t^2(\sigma_1^2 + \sigma_2^2)}{2}\right).$$

2.2 Gaussian random vectors

Definition 15 (Gaussian random vectors). A random vector $X = (X_1, ..., X_n)$ taking values in \mathbb{R}^n is said to be Gaussian if, for any $\lambda \in \mathbb{R}^n$, the random variable

$$<\lambda,X>=\sum_{i=1}^n\lambda_iX_i$$
 is a Gaussian random variable.

Remark 16.

- a) It is clear that if X is a Gaussian vector, then each of its components X_i is a Gaussian random variable.
- b) However, the converse is not true! Take for instance:

$$X = \left(\begin{array}{c} G \\ \varepsilon G \end{array}\right)$$

where G is a standard Gaussian r.v. and ε is an independent Rademacher variable, i.e.

$$\mathbb{P}(\varepsilon = 1) = \mathbb{P}(\varepsilon = -1) = \frac{1}{2}.$$

Both components of X are Gaussian random variables, but

$$X_1 + X_2 = G + \varepsilon G = (1 + \varepsilon)G$$

is not a Gaussian random variable since $\mathbb{P}((1+\varepsilon)G=0)=\frac{1}{2}$.

c) Of course, if X_1, \ldots, X_n are independent Gaussian random variables, from Proposition 14, $X = (X_1, \ldots, X_n)$ is a Gaussian random vector.

Definition 17. The covariance matrix of a \mathbb{R}^n -valued random vector X is the matrix :

$$K = \mathbb{E}\left[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^* \right],$$

where * denotes transposition. In particular, the components $(K_{i,j})_{1 \leq i,j \leq n}$ are given by :

$$K_{i,j} = \operatorname{cov}(X_i, X_j) = \mathbb{E}\left[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])\right].$$

This matrix is symmetric and positive.

Proof. The fact that K is symmetric is obvious from the definition. To show that K is positive, observe that for any vector $u \in \mathbb{R}^n$,

$$u^*Ku = \mathbb{E}[u^*(X - \mathbb{E}[X])(X - \mathbb{E}[X])^*u] = \mathbb{E}[(u^*(X - \mathbb{E}[X]))^2] \ge 0.$$

Proposition 18. Let K be the covariance matrix of a Gaussian random vector. Then, for every $u \in \mathbb{R}^n$,

$$\mathbb{E}\left[\exp\left(i\langle u,X\rangle\right)\right] = \exp\left(i\langle u,\mathbb{E}[X]\rangle - \frac{1}{2}u^*Ku\right)$$

Proof. By definition, the random variable $Z = \langle u, X \rangle = u^*X$ is Gaussian, with expectation $\mathbb{E}[Z] = \langle u, \mathbb{E}[X] \rangle = u^*\mathbb{E}[X]$ and variance $\text{Var}(Z) = u^*Ku$, hence the result is a direct consequence of Proposition 12.

In particular, to characterize a Gaussian random vector, we only need its expectation and covariance matrix. The converse is also true thanks to the following result.

Theorem 19. Let $m \in \mathbb{R}^n$ and Γ be a symmetric and positive matrix of order n. Then, their exists a Gaussian random vector with expectation m and covariance matrix Γ .

Proof. Observe first that there exists a matrix A such that

$$\Gamma = AA^*$$
.

Indeed, since Γ is a symmetric and real matrix, it may be diagonalized in an orthonormal basis, i.e. there exists an orthogonal matrix P such that $D = P^*\Gamma P$ is a diagonal matrix. Since Γ is positive, the terms $\lambda_1, \ldots, \lambda_n$ on the diagonal of D are all positive, so we may consider the diagonal matrix Δ whose terms on the diagonal are $\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n}$, and A is finally given

by $A = P\Delta$.

Now, let G_1, \ldots, G_n be n independent standard Gaussian random variables, and define

$$X = m + AG$$
 with $G = \begin{pmatrix} G_1 \\ \vdots \\ G_n \end{pmatrix}$.

Since the random variables $(G_i)_{1 \leq i \leq n}$ are independent, X is a Gaussian random vector. Its expectation is given by

$$\mathbb{E}[X] = m + A\mathbb{E}[G] = m$$

and its covariance matrix by:

$$K = \mathbb{E}\left[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^* \right] = \mathbb{E}\left[(AG)(AG)^* \right] = A\mathbb{E}[GG^*]A^* = AI_nA^* = \Gamma.$$

Theorem 20. Let $X = (X_1, ..., X_n)^*$ be a Gaussian random vector. Then, the random variables $X_1, ..., X_n$ are independent if and only if the covariance matrix is diagonal.

Proof. It is clear that if X_1, \ldots, X_n are independent, then $cov(X_i, X_j) = 0$ when $i \neq j$, hence K is diagonal. Assume now that K is diagonal. In particular, for any $u \in \mathbb{R}^n$,

$$u^*Ku = \sum_{j=1}^n u_j^2 K_{j,j} = \sum_{j=1}^n u_j^2 \text{Var}(X_j),$$

so the characteristic function of X reads:

$$\begin{split} \mathbb{E}\left[e^{i\langle u,X\rangle}\right] &= \exp\left(i\langle u,\mathbb{E}[X]\rangle - \frac{1}{2}u^*Ku\right) \\ &= \exp\left(i\sum_{j=1}^n u_j\mathbb{E}[X_j] - \frac{1}{2}\sum_{j=1}^n u_j^2\mathrm{Var}(X_j)\right) \\ &= \prod_{j=1}^n \exp\left(iu_j\mathbb{E}[X_j] - \frac{1}{2}u_j^2\mathrm{Var}(X_j)\right) \\ &= \prod_{j=1}^n \mathbb{E}\left[e^{iu_jX_j}\right] \end{split}$$

which implies, from Theorem 8 that the random variables X_1, \ldots, X_n are independent.

Remark 21. In particular, if (X,Y) is a Gaussian vector, then X and Y are independent if and only if their covariance matrix is null:

$$K = \mathbb{E}[(Y - \mathbb{E}[Y])(X - \mathbb{E}[X])^*] = 0.$$

We must insist that this is no longer the case if X and Y are only Gaussian random variables. Indeed, if we take back the example X = G and $Y = \varepsilon G$ with G a standard Gaussian r.v. and ε an independent Rademacher variable, then

$$\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] = \mathbb{E}[\varepsilon G^2] = \mathbb{E}[\varepsilon]\mathbb{E}[G^2] = 0$$

but X and Y are obviously not independent since |X| = |Y|.

Theorem 22 (Density of a Gaussian vector).

Let X be a \mathbb{R}^n -valued Gaussian vector with covariance matrix K.

- 1. X admits a density if and only if K is invertible
- 2. If K is invertible, the density of X is given by:

$$f(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(K)}} \exp\left(-\frac{1}{2}(x-m)^* K^{-1}(x-m)\right), \quad x \in \mathbb{R}^n,$$

with $m = \mathbb{E}[X]$.

6

Proof.

a) Observe first that if F is a subspace of \mathbb{R}^n with dimension strictly smaller than n and Z is a random vector which admits a density f, then $\mathbb{P}(Z \in F) = 0$. Indeed, if H is a hyperplane which contains F, say $H = \{(x_1, \dots, x_n) \in \mathbb{R}^n; x_n = 0\}$, then

$$\mathbb{P}(Z \in F) \le \mathbb{P}(Z \in H) = \int_{\mathbb{R}^n} f(x_1, \dots, x_n) 1_{\{x_n = 0\}} dx_1 \dots dx_n = 0.$$

b) Next, we know that X may be written

$$X = m + AG$$

where $m = \mathbb{E}[X]$, G is a Gaussian vector with independent components whose laws are $\mathcal{N}(0,1)$ and $AA^* = K$. If A is not invertible, then the range of A is strictly included in \mathbb{R}^n , and X cannot admit a density. This proves Point 1) since $\det(K) = \det^2(A)$, i.e. A is invertible if and only if K is.

c) Assume now that K is invertible. The density of G is given by

$$\mathbb{P}(G \in dy) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}y^*y\right) dy, \qquad y \in \mathbb{R}^n,$$

and the expression for the density of X follows from the change of variable:

$$y = A^{-1}(x - m).$$

Theorem 23 (Central Limit Theorem).

Let $(X_n, n \ge 1)$ be a sequence of random vectors in \mathbb{R}^d , independent and identically distributed. We assume that all these variables are in $L^2(\Omega)$, and we denote by m their expectation and by Γ the covariance matrix of X_1 . Then:

$$\frac{X_1 + \ldots + X_n - nm}{\sqrt{n}} \xrightarrow[n \to +\infty]{\text{(law)}} \mathcal{N}(0, \Gamma).$$

Proof. We first translate the problem and set $Z_i = X_i - m$ in order to work with centered r.v.'s. Then

$$T_n = \frac{X_1 + \ldots + X_n - nm}{\sqrt{n}} = \frac{Z_1 + \ldots + Z_n}{\sqrt{n}},$$

so the characteristic function of T_n reads:

$$\mathbb{E}\left[e^{i\langle u, T_n\rangle}\right] = \prod_{j=1}^n \mathbb{E}\left[e^{i\langle \frac{u}{\sqrt{n}}, Z_j\rangle}\right] = \left(\mathbb{E}\left[e^{i\langle \frac{u}{\sqrt{n}}, Z_1\rangle}\right]\right)^n.$$

Now, since Z_1 admits a finite moment of order 2, we may use Taylor's theorem and write

$$\mathbb{E}\left[e^{i\langle t, Z_1\rangle}\right] \underset{t\to 0}{=} 1 - \frac{1}{2}t^*\Gamma t + \mathrm{o}\left(|t|^2\right)$$

so that, as $n \to +\infty$

$$\mathbb{E}\left[e^{i\langle u,T_n\rangle}\right] = \left(1 - \frac{1}{2}\left(\frac{u}{\sqrt{n}}\right)^*\Gamma\left(\frac{u}{\sqrt{n}}\right) + o\left(\frac{|u|^2}{n}\right)\right)^n \xrightarrow[n \to +\infty]{} \exp\left(-\frac{1}{2}u^*\Gamma u\right).$$

3 Conditional expectation

3.1 Definition

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and \mathcal{B} be a sub- σ -algebra of \mathcal{A} . In the following, we shall assume that the σ -algebras we are dealing with are complete, that is to say that they contain all the negligible sets (i.e. the sets A such that $\mathbb{P}(A) = 0$).

We first recall the following result on Hilbert space. Let H be a Hilbert space and F be a closed subspace of H. For every $x \in H$, there exists a unique $y \in F$, called the orthogonal projection of x on F, which satisfies one of the two following equivalent assertions:

$$i) \ \forall z \in F, \qquad \langle x - y, z \rangle = 0,$$

$$ii) \ \forall z \in F, \qquad \|x - y\| \le \|x - z\|.$$

When applied to the Hilbert space $L^2(\Omega, \mathcal{A}, \mathbb{P})$ and the closed subspace $L^2(\Omega, \mathcal{B}, \mathbb{P})$, the precedent result gives the following characterization of conditional expectation.

Proposition 24. For every random variable $X \in L^2(\Omega, \mathcal{A}, \mathbb{P})$, there exists an a.s. unique random variable Y such that

$$\begin{cases} Y \in L^{2}(\Omega, \mathcal{B}, \mathbb{P}) \\ \mathbb{E}[XZ] = \mathbb{E}[YZ], \qquad \forall Z \in L^{2}(\Omega, \mathcal{B}, \mathbb{P}). \end{cases}$$
 (1)

We denote this random variable by $Y = \mathbb{E}[X|\mathcal{B}]$.

Example 25. Take $\mathcal{B} = \{\emptyset, \Omega\}$. The random variables which are \mathcal{B} -measurable are a.s. constant, hence, $\mathbb{E}[X|\mathcal{B}] = a$. If Z is \mathcal{B} -measurable, then Z = z, and Equation (1) yields

$$\mathbb{E}[Z\mathbb{E}[X|\mathcal{B}]] = \mathbb{E}[za] = za = \mathbb{E}[zX] = z\mathbb{E}[X], \qquad \forall z \in \mathbb{R}$$

hence $a = \mathbb{E}[X]$. So the conditional expectation of a random variable X with respect to the trivial σ -algebra is simply its classical expectation.

Remark 26. If X is a positive and bounded random variable, then $\mathbb{E}[X|\mathcal{B}] \geq 0$ a.s. Indeed, set $Y = \mathbb{E}[X|\mathcal{B}]$ and assume that $\mathbb{P}(Y < 0) > 0$. In particular, for n large enough, the set $A = \{Y < -\frac{1}{n}\}$ has a strictly positive probability. Since 1_A is a bounded \mathcal{B} -measurable random variable, it holds

$$0 \le \mathbb{E}[X1_A] = \mathbb{E}[Y1_A] \le -\frac{1}{n}\mathbb{P}(A) < 0,$$

which contradicts the assumption that $\mathbb{P}(Y < 0) > 0$.

We now extend the previous construction to any random variable $X \in L^1(\Omega, \mathcal{A}, \mathbb{P})$.

Theorem 27. Let $X \in L^1(\Omega, \mathcal{A}, \mathbb{P})$. There exists an a.s. unique and integrable random variable $\mathbb{E}[X|\mathcal{B}]$ such that:

$$\begin{cases} \mathbb{E}[X|\mathcal{B}] \in L^1(\Omega,\mathcal{B},\mathbb{P}) \\ \\ \mathbb{E}[ZX] = \mathbb{E}[Z\mathbb{E}[X|\mathcal{B}]], \quad \textit{for every \mathcal{B}-measurable and bounded $r.v. Z.} \end{cases}$$

Proof.

a) The basic idea of the proof is to work by truncation. We define, for any real $a \in \mathbb{R}$:

$$a^{+} = \sup(a, 0)$$
 and $a^{-} = \sup(0, -a)$

Observe first that, by splitting X as $X = X^+ - X^-$, we may reduce our study to positive random variables. So assume now that X is \mathbb{R}^+ -valued, and define $X_n = X \wedge n$. Since each X_n belongs to L^2 (as a bounded r.v.), we can choose a version of the conditional expectation $Y_n = \mathbb{E}[X_n|\mathcal{B}]$. Furthermore, as the sequence $(X_n, n \in \mathbb{N})$ is positive and increasing, from Remark 26 so is the sequence $(Y_n, n \in \mathbb{N})$, and we set:

$$Y(\omega) := \limsup_{n \to +\infty} Y_n(\omega).$$

Since Y_n is \mathcal{B} -measurable for every n, Y is also \mathcal{B} -measurable. Take a positive \mathcal{B} -measurable r.v. Z. By the monotone convergence theorem, passing to the limit in the equality $\mathbb{E}[ZX_n] = \mathbb{E}[ZY_n]$ we deduce that $\mathbb{E}[ZX] = \mathbb{E}[ZY]$. Taking Z = 1, we finally conclude that Y is indeed integrable.

b) To prove the uniqueness, assume that Y and \widetilde{Y} are two versions of $\mathbb{E}[X|\mathcal{B}]$ such that $\mathbb{P}(Y > \widetilde{Y}) > 0$. In particular, for n large enough, the set $A = \{Y - \widetilde{Y} > \frac{1}{n}\}$ has a strictly positive probability. Since 1_A is a bounded \mathcal{B} -measurable random variable, it holds

$$0 = \mathbb{E}\left[(Y - \widetilde{Y})1_A \right] \ge \frac{1}{n} \mathbb{P}(A) > 0$$

which is a contradiction.

8

3.2 Properties

We list below the main properties of conditional expectation.

Theorem 28. Let X and Y be two integrable random variables defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{B} be a sub- σ -algebra of \mathcal{A} . Then:

- i) (Linearity) $\mathbb{E}[aX + bY|\mathcal{B}] = a\mathbb{E}[X|\mathcal{B}] + b\mathbb{E}[Y|\mathcal{B}]$
- ii) (Positivity) if $X \geq 0$ a.s., then $\mathbb{E}[X|\mathcal{B}] \geq 0$ a.s.
- iii) If X is \mathcal{B} -measurable: $\mathbb{E}[X|\mathcal{B}] = X$ a.s.
- iv) More generally, if Y is \mathcal{B} -measurable and such that XY is integrable, then: $\mathbb{E}[XY|\mathcal{B}] = Y\mathbb{E}[X|\mathcal{B}]$.
- v) (Tower property) If \mathcal{C} is a sub- σ -algebra of \mathcal{B} , then $\mathbb{E}[\mathbb{E}[X|\mathcal{B}]|\mathcal{C}] = \mathbb{E}[X|\mathcal{C}]$.
- vi) Fatou's lemma, the monotone convergence theorem, the dominated convergence theorem and Jensen inequality hold with conditional expectation.

In practice, it is generally difficult to compute a conditional expectation given a σ -algebra \mathcal{B} . One situation in which this task is easier is when the σ -algebra \mathcal{B} is generated by a r.v. $T:(\Omega,\mathcal{A})\longrightarrow (E,\mathcal{E})$. The σ -algebra generated by T is denoted by $\sigma(T)$ and defined by:

$$\sigma(T) = \{ A \in \mathcal{A}, \ \exists C \in \mathcal{E}, A = T^{-1}(C) \}.$$

A real-valued random variables $X:(\Omega,\mathcal{A})\longrightarrow (\mathbb{R},\mathcal{B}(\mathbb{R}))$ is said to be $\sigma(T)$ -measurable if for every $B\in \mathcal{B}(\mathbb{R}), X^{-1}(B)\in \sigma(T)$. Such an application is characterized by:

X is $\sigma(T)$ -measurable \iff There exists a measurable function $f:(E,\mathcal{E})\longrightarrow (\mathbb{R},\mathcal{B}(\mathbb{R}))$ such that X=f(T).

Example 29. Let (X,Y) be a centered Gaussian random vector, with Y not degenerated. Then:

$$\mathbb{E}[X|Y] = \left(\frac{\mathbb{E}[XY]}{\operatorname{Var}(Y)}\right) Y.$$

To prove this result, we shall look for $a \in \mathbb{R}$ such that the two Gaussian random variables X - aY and Y are independent. By Theorem 20, these two random variables are independent if and only if:

$$cov(X - aY, Y) = 0$$

that is,

$$\mathbb{E}[(X - aY)Y] = \mathbb{E}[XY] - a\mathbb{E}[Y^2] = \mathbb{E}[XY] - a\operatorname{Var}(Y) = 0.$$

Since Y is not degenerated, Var(Y) > 0 so a is unique and given by

$$a = \frac{\mathbb{E}[XY]}{\operatorname{Var}(Y)}.$$

But, by independence,

$$\mathbb{E}[X - aY|Y] = \mathbb{E}[X - aY] = 0$$

and by linearity,

$$\mathbb{E}[X - aY|Y] = \mathbb{E}[X|Y] - a\mathbb{E}[Y|Y] = \mathbb{E}[X|Y] - aY = 0,$$

which proves the announced result.

3.3 Conditional laws

Definition 30. Let (E, \mathcal{E}) and (F, \mathcal{F}) be two measurable spaces. A kernel $N: E \times F \longrightarrow \mathbb{R}^+$ is a transition probability from E to F if:

- i) for every $x \in E$, the application $A \in \mathcal{F} \longmapsto N(x,A)$ is a probability on (F,\mathcal{F}) .
- ii) for every $A \in \mathcal{F}$, the application $x \in E \longmapsto N(x,A)$ is measurable from (E,\mathcal{E}) on $(\mathbb{R}^+,\mathcal{B}(\mathbb{R}^+))$.

In other words, a transition probability is a measurable family of probabilities $(N(x, \cdot), x \in E)$ on (F, \mathcal{F}) indexed by the set E.

Definition 31. Let X and Y be two r.v.'s taking values respectively in (E, \mathcal{E}) and (F, \mathcal{F}) . The conditional law of Y given X is a transition probability N from E to F such that, for every measurable and positive function φ :

$$\mathbb{E}[\varphi(Y)|X] = \int_{\Omega} \varphi(y)N(X, dy).$$

Remark 32.

- a) As for conditional expectation, the conditional law of Y given X is only determined up to a set of null \mathbb{P}_X -measure.
- b) Heuristically, N(x, dy) denotes the law of Y given that X = x.
- c) Of course, if X and Y are independent, then $N(x, dy) = \mathbb{P}_Y(dy)$.

Proposition 33. Let (X,Y) be a pair of \mathbb{R} -valued random variables, whose joint density is given by f(x,y). Then the law of the r.v. Y conditionally to X is given by:

$$N(x, dy) = \frac{f(x, y)}{\alpha(x)} \mathbb{1}_{\{\alpha(x) > 0\}} dy$$

where

$$\alpha(x) = \int_{\mathbb{R}} f(x, y) dy$$

is the density of the r.v. X.

Proof. Let h and g be two measurable and bounded functions. By definition:

$$\mathbb{E}[h(X)g(Y)] = \iint_{\mathbb{R}^2} h(x)g(y)f(x,y)dxdy.$$

By taking $h(x) = 1_{\{\alpha(x)=0\}}$ and applying Fubini's theorem, we obtain

$$\mathbb{P}(\alpha(X) = 0) = \iint_{\mathbb{R}^2} 1_{\{\alpha(x) = 0\}} f(x, y) dx dy = \int_{\mathbb{R}} 1_{\{\alpha(x) = 0\}} \left(\int_{\mathbb{R}} f(x, y) dy \right) dx = \int_{\mathbb{R}} 1_{\{\alpha(x) = 0\}} \alpha(x) dx = 0.$$

Therefore, going back to the general expression and applying Fubini's theorem again :

$$\begin{split} \mathbb{E}[h(X)g(Y)] &= \mathbb{E}[h(X)g(Y)1_{\{\alpha(X)>0\}}] \\ &= \int_{\mathbb{R}} h(x)\alpha(x) \left(\int_{\mathbb{R}} g(y) \frac{f(x,y)}{\alpha(x)} 1_{\{\alpha(x)>0\}} dy \right) dx \\ &= \int_{\mathbb{R}} h(x)\alpha(x) \left(\int_{\mathbb{R}} g(y) N(x,dy) \right) dx \\ &= \mathbb{E}\left[h(X) \left(\int_{\mathbb{R}} g(y) N(X,dy) \right) \right] \end{split}$$

hence, by definition of the conditional expectation:

$$\mathbb{E}[g(Y)|X] = \int_{\mathbb{D}} g(y)N(X, dy).$$

It remains to justify that N is indeed a transition probability, but this is immediate since :

$$\int_{\mathbb{R}} N(x, dy) = 1_{\{\alpha(x) > 0\}} \stackrel{(\mathbb{P}_X - \text{a.s.})}{=} 1.$$

3.4 The Gaussian case

We now turn our attention back to Gaussian vectors. Let X (resp. Y) be a \mathbb{R}^n (resp. \mathbb{R}^d)-valued Gaussian random vector and assume that X admits a density. In this section, we want to compute the law of Y conditionally to X. We use the following notation:

$$\begin{cases} K_{11} \text{ denotes the covariance matrix of } X, \text{ of order } n, \\ K_{22} \text{ denotes the covariance matrix of } Y, \text{ of order } d, \\ K_{12} = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])^*] \text{ is a matrix of order } n \times d \text{ and } K_{21} = K_{12}^*. \end{cases}$$

Proposition 34. Let N be the conditional law of Y given X. Then, N(x, .) is the Gaussian law $\mathcal{N}(Ax + m, \Gamma)$ where $A = K_{21}K_{11}^{-1}$, $m = \mathbb{E}[Y] - A\mathbb{E}[X]$ and $\Gamma = K_{22} - K_{21}K_{11}^{-1}K_{21}^*$.

Proof.

Consider the Gaussian vector Z = Y - AX. We claim that Z is independent from X. Indeed, the covariance matrix of Z and X is given by:

$$\mathbb{E}[(Z - \mathbb{E}[Z])(X - \mathbb{E}[X])^*] = \mathbb{E}[(Y - AX - \mathbb{E}[Y] + A\mathbb{E}[X])(X - \mathbb{E}[X])^*]$$

$$= \mathbb{E}[(Y - \mathbb{E}[Y])(X - \mathbb{E}[X])^*] + A\mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^*]$$

$$= K_{21} - AK_{11} = 0$$

by definition of A. Now, we may write:

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)g(AX+Z)] = \mathbb{E}[\mathbb{E}[f(X)g(AX+Z)|X]] = \mathbb{E}[f(X)\mathbb{E}[g(AX+Z)|X]],$$

but, since Z is independent from X,

$$\mathbb{E}[g(AX+Z)|X] = G(X)$$

where G is given by

$$G(x) = \mathbb{E}[g(Ax + Z)] = \int_{\mathbb{R}^d} g(y)N(x, dy)$$

with $N(x, \cdot)$ the law of the random vector Ax + Z, i.e. the Gaussian law with expectation $\mathbb{E}[Ax + Z] = Ax + \mathbb{E}[Z] = Ax + m$ and covariance matrix

$$\mathbb{E}[(Ax+Z-(Ax+m))(Ax+Z-(Ax+m))^*] = \mathbb{E}[(Z-m)(Z-m)^*] = \mathbb{E}[(Y-\mathbb{E}[Y]-AX+A\mathbb{E}[X])(Y-\mathbb{E}[Y]-AX+A\mathbb{E}[X])^*].$$

To simplify the notation, we set $X_0 = X - \mathbb{E}[X]$ and $Y_0 = Y_0 - \mathbb{E}[Y]$. Then:

$$\mathbb{E}[(Y_0 - AX_0)(Y_0 - AX_0)^*] = \mathbb{E}[(Y_0 - AX_0)(Y_0^* - X_0^*A^*)]$$

$$= \mathbb{E}[Y_0Y_0^*] - \mathbb{E}[Y_0X_0^*]A^* - A\mathbb{E}[X_0Y_0^*] + A\mathbb{E}[X_0X_0^*]A^*$$

$$= K_{22} - K_{21}A^* - AK_{12} + AK_{11}A^*$$

$$= K_{22} - AK_{12} \qquad \text{(since } K_{21} = AK_{11})$$

$$= K_{22} - K_{21}K_{11}^{-1}K_{21}^*.$$

4 Stochastic convergences

We finally conclude this first lesson by a short section on the different modes of convergence we shall use in the sequel, the general pattern being as follows:

11

4.1 Convergence in law

Definition 35. A sequence of random vectors $(X_n)_{n\geq 1}$ converges in law towards a random vector X if for every continuous and bounded function $\varphi \in \mathcal{C}_0(\mathbb{R}^d)$:

$$\lim_{n \to +\infty} \mathbb{E}[\varphi(X_n)] = \mathbb{E}[\varphi(X)]. \tag{2}$$

We shall denote:

$$X_n \xrightarrow[n \to +\infty]{(\text{law})} X$$

The convergence in law, as its name indicates, does not depend on the random variable X, but rather on its law $\mathbb{P}_X = \mu$. In other words, the convergence in law is actually a convergence of measures: if μ_n denotes the law of the random variable X_n , then (2) may be rewritten:

$$\lim_{n \to +\infty} \int_{\mathbb{R}^d} f(x) \mu_n(dx) = \int_{\mathbb{R}^d} f(x) \mu(dx).$$

In practice, we may restrict our attention to the family of functions

$$\varphi_u(x) = \exp(i\langle u, x \rangle), \qquad u \in \mathbb{R}^d,$$

thanks to Theorem 6.

Theorem 36. The sequence of random vectors $(X_n)_{n\geq 1}$ converges in law towards X if and only if the sequence of characteristic functions Φ_{X_n} converges pointwise towards the characteristic function of X:

$$X_n \xrightarrow[n \to +\infty]{(\text{law})} X \qquad \Longleftrightarrow \qquad \Phi_{X_n}(u) \xrightarrow[n \to +\infty]{} \Phi_X(u) \quad \textit{for every } u \in \mathbb{R}^d.$$

4.2 Convergence in probability

Definition 37. A sequence of random vectors $(X_n)_{n\geq 1}$ converges in probability towards a random vector X if for every $\varepsilon > 0$:

$$\lim_{n \to +\infty} \mathbb{P}(\|X_n - X\| > \varepsilon) = 0.$$

We shall denote:

$$X_n \xrightarrow[n \to +\infty]{\text{(prob)}} X.$$

The limit in probability of a sequence of random vectors is almost surely unique.

Proposition 38. If a sequence of random vectors $(X_n)_{n\geq 1}$ converges in probability towards a random vector X and towards a random vector Y, then:

$$X = Y$$
 a.s.

Proof. For every $\varepsilon > 0$:

$$\{\|X - Y\| > \varepsilon\} \subset \left\{\|X - X_n\| > \frac{\varepsilon}{2}\right\} \cup \left\{\|X_n - Y\| > \frac{\varepsilon}{2}\right\}$$

hence,

$$\mathbb{P}\left(\|X - Y\| > \varepsilon\right) \le \mathbb{P}\left(\|X - X_n\| > \frac{\varepsilon}{2}\right) + \mathbb{P}\left(\|X_n - Y\| > \frac{\varepsilon}{2}\right).$$

Letting n tend to $+\infty$, we deduce that

$$\forall \varepsilon > 0, \qquad \mathbb{P}(\|X - Y\| > \varepsilon) = 0$$

and, letting then ε tend to 0, the monotone convergence theorem yields

$$\mathbb{P}(\|X - Y\| > 0) = 0,$$

which means that X and Y are equal a.s.

4.3 Almost sure convergence

Definition 39. A sequence of random vectors $(X_n)_{n\geq 1}$ converges almost surely towards a random vector X if there exists a negligible set N such that, for every $\omega \notin N$, the numerical sequence $X_n(\omega)$ converges towards $X(\omega)$:

$$\lim_{n \to +\infty} X_n(\omega) = X(\omega) \quad \text{for every } \omega \notin N.$$

We shall denote:

$$X_n \xrightarrow[n \to +\infty]{\text{(a.s)}} X.$$

4.4 Convergence in L^p

Definition 40. Let $p \ge 1$. A sequence of random vectors $(X_n)_{n\ge 1}$ in $L^p(\Omega, \mathcal{F}, \mathbb{P})$ converges in L^p towards a random vector $X \in L^p(\Omega, \mathcal{F}, \mathbb{P})$ if:

$$\lim_{n \to +\infty} \mathbb{E}\left[\|X_n - X\|^p \right] = 0$$

We shall denote:

$$X_n \xrightarrow[n \to +\infty]{L^p} X.$$

4.5 The weak law of large numbers

Theorem 41. Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables with finite moment of order 2. Then:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \quad \xrightarrow[n \to +\infty]{\text{(prob)}} \quad \mathbb{E}[X_1].$$

Proof. By independence and scaling, we have

$$\operatorname{Var}\left(\overline{X}_{n}\right) = \frac{1}{n^{2}}\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}\right) = \frac{\operatorname{Var}(X_{1})}{n}.$$

But, by definition of the variance:

$$\operatorname{Var}\left(\overline{X}_{n}\right) = \mathbb{E}\left[\left|\overline{X}_{n} - \mathbb{E}\left[\overline{X}_{n}\right]\right|^{2}\right] = \mathbb{E}\left[\left|\overline{X}_{n} - \mathbb{E}[X_{1}]\right|^{2}\right] \xrightarrow[n \to +\infty]{} 0,$$

which means that

$$\overline{X}_n \xrightarrow[n \to +\infty]{L^2} \mathbb{E}[X_1]$$

and the result follows since convergence in L^2 implies convergence in probability.