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Introduction

Let (Ω,F ,P) be a probability space.

Definition 1 (Stochastic process).
Let T be a set and (E, E) a measurable space. A stochastic process indexed by T is a family of random variables
X = (Xt, t ∈ T ) from a probability space (Ω,F ,P) into (E, E). The space (E, E) is called the state space.

In other words, a stochastic process is a random variable taking values in (possibly a subset of) ET . The law of X is thus a
probability measure on ET . The set T may be thought as the ”time”: in practice, we shall restrict our attention to T = N
and T = R+. A stochastic process X may also be seen as a two-arguments mapping

X : T × Ω → E
(t, ω) 7−→ Xt(ω)

such that :

1. for fixed t ∈ T , the mapping ω 7−→ Xt(ω) is a E-valued random variable,

2. for fixed ω ∈ Ω, the mapping t 7−→ Xt(ω) is a path of the stochastic process, which belongs to ET .

We may construct a canonical version of X as follows. Let (Yt, t ∈ T ) denote the coordinate mappings on ET :

Yt : ET → E
w 7−→ w(t),

and consider the application φ defined by :
φ : Ω → ET

ω 7−→ X�(ω).

By construction, we have (Yt ◦φ)(ω) = Xt(ω). Let us define PX the image of P by φ. Then, (Yt, t ∈ T ) is called the canonical
version of X, and the probability measure PX is the law of X.

Several families of stochastic processes have been introduced and studied intensively: for instance Gaussian processes, Markov
processes, Lévy processes, self-similar processes, martingales. . . In this lesson, we shall focus on this last family, since it is of
foremost importance in stochastic calculus.
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1 Discrete-time martingales

The study of martingales is strongly linked to the notion of filtrations as given below.

Definition 2 (Filtration).
A filtration of (Ω,F ,P) is an increasing family (Fn, n ∈ N) of sub-σ-algebra of F :

F0 ⊂ F1 ⊂ . . . ⊂ F .

The smallest σ-algebra which contains all the (Fn) is denoted by F∞.

F∞ := σ

(⋃
n∈N
Fn

)
⊂ F .

The 4-uplet (Ω,F , (Fn)n∈N,P) is a called a filtered probability space. When seeing the parameter n as a time parameter,
for any n ∈ N, the σ-algebra Fn represents the information that is known at time n. Usually, (Fn, n ∈ N) is the natural
filtration of some stochastic process X = (Xn, n ∈ N) defined by :

Fn = σ(Xk, k ≤ n)

and the information at time n consists of the values

X0(ω), X1(ω), . . . , Xn(ω).

Definition 3 (Adapted process).
A stochastic process (Xn, n ∈ N) is adapted to the filtration (Fn)n∈N if, for every n ∈ N, Xn is Fn-measurable.

Of course, a process is always adapted to its natural filtration.

Definition 4 (Martingale).
A process M is called a martingale with respect to ((Fn)n∈N,P) if

i) Mn is integrable for every n ≥ 0,

ii) M is adapted,

iii) Mn = E[Mn+1|Fn] a.s. ∀n ∈ N

In particular, taking the expectation of both sides of Point iii), we deduce that a martingale has a constant expectation over
time :

∀n ∈ N, E[Mn] = E[M0]. (1)

Example 5. Let us give two classic examples of martingales.

1. Let X1, X2, . . . be a sequence of independent, integrable and centered random variables defined on a probability space
(Ω,F ,P). Define the process

M0 = 0 and Mn = X1 + . . .+Xn

and the filtration
F0 = {∅,Ω} and Fn = σ(Xk, k ≤ n).

Then, (Mn, n ∈ N) is a ((Fn)n∈N,P)-martingale.

2. Let X1, X2, . . . be a sequence of independent and positive random variables with expectation equal to 1. Define the
process

M0 = 1 and Mn = X1 × . . .×Xn

and the filtration
F0 = {∅,Ω} and Fn = σ(Xk, k ≤ n).

Then, (Mn, n ∈ N) is a ((Fn)n∈N,P)-martingale.
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2 Stopping times and Doob’s optional stopping theorem

Definition 6 (Stopping time).
A random variable T = Ω −→ N ∪ {∞} is called a stopping time with respect to the filtration (Fn)n∈N if

∀n ∈ N, {T ≤ n} ∈ Fn.

Intuitively, this definition means that at any time n ∈ N, one knows whether T has occurred or not.

Example 7. Let (Xn, n ∈ N) be an adapted process, and A a Borel set of R. Then, the first time the process X enters the
set A:

TA = inf{n ∈ N; Xn ∈ A}
= +∞ if {n ∈ N; Xn ∈ A} = ∅

is a stopping time. Indeed,

{TA ≤ n} =

n⋃
k=0

{Xk ∈ A} ∈ Fn.

Definition 8. Let T be a stopping time and (Xn, n ∈ N) be an adapted process. We define the σ-algebra FT by:

FT = {A ∈ F , ∀n ∈ N ∪ {+∞}, A ∩ {T = n} ∈ Fn},

and, for any ω ∈ Ω:
XT (ω) = XT (ω)(ω).

Then, XT is a FT -measurable random variable.

The importance of stopping times with respect to the notion of martingale lies in the following theorem, which is a general-
ization of Equation (1).

Theorem 9 (Doob’s optional stopping theorem).
Let (Mn, n ∈ N) be a martingale and T a stopping time. If

• either T is bounded,

• or (Mn∧T , n ∈ N) is a bounded process,

then,
E[MT ] = E[M0].

Proof. If T is bounded by a constant N , we may write :

E[MT ] = E

[
MT

N∑
k=0

1{T=k}

]
=

N∑
k=0

E[MT 1{T=k}] =

N∑
k=0

E[Mk1{T=k}].

But, since M is a martingale and thanks to the tower property of conditional expectation :

N∑
k=0

E[Mk1{T=k}] =

N∑
k=0

E[E[MN |Fk]1{T=k}] =

N∑
k=0

E[E[MN1{T=k}|Fk]] =

N∑
k=0

E[MN1{T=k}] = E[MN ] = E[M0]

which proves the first item. Now, applying this result to the bounded stopping time n ∧ T , we obtain

E[Mn∧T ] = E[M0]

and since the process (Mn∧T , n ∈ N) is bounded, the result follows from the dominated convergence theorem.

�

Doob’s optional stopping theorem may be generalized as follows.

Corollary 10. Let (Mn, n ∈ N) be a martingale and S, T be two bounded stopping times such that S ≤ T . Then

E[XT |FS ] = XS .
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Example 11. Suppose that X1, X2, . . . is a sequence of independent and identically distributed (i.i.d.) random variables
whose laws are given by:

P(X = 1) = P(X = −1) =
1

2
.

Define S0 = 0 and Sn = X1 + . . .+Xn. We wish to determine the law of the stopping time

Ta = inf{n ∈ N; Sn = a}

where a ∈ N∗. We set:
Fn = σ(S1, . . . , Sn) = σ(X1, . . . , Xn)

so that the process (Sn, n ∈ N) is adapted to (Fn, n ∈ N) and Ta is a stopping time with respect to this filtration. Observe
first that, for θ > 0, the process

Mθ
n =

eθSn

(cosh(θ))n

is a martingale. Indeed, it is an integrable and adapted process such that:

E[Mθ
n+1|Fn] =

eθSn

(cosh(θ))n+1
E
[
eθXn+1 |Fn

]
=

eθSn

(cosh(θ))n+1
E
[
eθXn+1

]
=

eθSn

(cosh(θ))n+1

(
eθP(Xn+1 = 1) + e−θP(Xn+1 = −1)

)
= Mθ

n

Then, since

Mθ
Ta∧n =

eθSn∧Ta

(cosh(θ))n∧Ta
≤ eθa,

we may apply Doob’s optional stopping theorem to obtain:

1 = E
[
Mθ

0

]
= E

[
Mθ
Ta

]
= E

[
eθSTa

(cosh(θ))Ta

]
= eθaE

[
1

(cosh(θ))Ta

]
which reduces to

e−θa = E
[

1

(cosh(θ))Ta

]
.

Next, for Ta =∞, the term inside the right-hand side is 0, so that actually :

e−θa = E
[

1

(cosh(θ))Ta
1{Ta<∞}

]
.

In particular, letting θ → 0 and applying the monotone convergence theorem, we deduce that:

1 = E
[
1{Ta<∞}

]
= P(Ta <∞).

Now, setting α =
1

cosh(θ)
∈]0, 1[, we further obtain :

E
[
αTa

]
=

∞∑
n=0

αnP(Ta = n) = e−aArgcosh(1/α).

We now give a converse to Doob’s optional stopping theorem.

Theorem 12. An adapted process (Mn, n ∈ N) is a martingale if and only if for every bounded stopping time T , the
random variable MT is integrable and E[MT ] = E[M0].

Proof. Let k < n and A ∈ Fk. The random variable T = n1Ac + k1A is a bounded stopping time, so

E[M0] = E[MT ] = E[Mn1Ac ] + E[Mk1A].

On the other hand, n is also a bounded stopping time so

E[M0] = E[Mn] = E[Mn1Ac ] + E[Mn1A]

and the comparison of the two equalities yields E[Mn|Fk] = Mk.

4



�

Corollary 13. If M is a martingale and T is a stopping time, then the process MT = (Mn∧T , n ≥ 0) remains a
martingale with respect to the filtration (Fn, n ≥ 0).

Proof. By the definition of a stopping time, the process MT remains adapted to the filtration (Fn, n ≥ 0). If S is another
bounded stopping time:

E
[
MT
S

]
= E[MS∧T ] = E[M0] = E[M0∧T ] = E

[
MT

0

]
,

so Theorem 12 implies that MT is indeed a martingale.

�

3 Convergence theorems

3.1 The martingale convergence theorem

Theorem 14 (Martingale convergence theorem).
Let (Mn, n ∈ N) be a martingale bounded in L1, i.e. sup

n∈N
E[|Mn|] < +∞. Then, Mn converges a.s. as n → +∞ and

its limit M∞ satisfies E[|M∞|] <∞.

Proof. Let N ≥ 1 be fixed. We first restrict our attention to martingale (Mn, 1 ≤ n ≤ N) indexed by a finite set. Define
inductively the following family of stopping times:

s1 = inf{n ≥ 1; Mn > b}, s2 = inf{n ≥ s1; Mn < a}

and, for k ≥ 0,
s2k+1 = inf{n ≥ s2k; Mn > b}, s2k+2 = inf{n ≥ s2k+1; Mn < a}.

where by convention, inf{∅} = N . We define the number of downcrossings of [a, b] before time N by

D([a, b], N) = sup{n ≥ 1, s2n < N}.

The proof of the convergence theorem relies on the following lemma.

Lemma 15 (Doob’s downcrossing lemma).

(b− a)E[D([a, b], N)] ≤ E[(MN − b)+]

Set Ak = {sk < N}. Observe that on the set A2n−1, the random variable Ms2n−1
> b a.s., so we have:

0 ≤ E
[
(Ms2n−1 − b)1A2n−1

]
.

Now, since sk is a stopping time, Ak ∈ Fsk and from Corollary 10 since s2n−1 ≤ s2n ≤ N :

0 ≤ E
[
(E[Ms2n |Fs2n−1

]− b)1A2n−1

]
≤ E

[
(Ms2n − b)1A2n−1

]
.

But, clearly Ak+1 ⊂ Ak, and, since on A2n, the random variable Ms2n−1
< a :

0 ≤ E
[
(Ms2n − b)1A2n−1

]
= E

[
(Ms2n − b)(1A2n

+ 1A2n−1\A2n
)
]

≤ (a− b)P(A2n) + E
[
(Ms2n − b)1A2n−1\A2n

]
.

Therefore, since A2n−1\A2n = {s2n−1 < N, s2n = N}, we deduce that

(b− a)P(A2n) ≤ E
[
(Ms2n − b)+1A2n−1\A2n

]
= E

[
(MN − b)+1A2n−1\A2n

]
.

Observe furthermore that P(A2n) = P(D([a, b], N) ≥ n) so that summing the above inequalities for 1 ≤ n ≤ N and using
the fact that the sets A2n−1\A2n are pairwise disjoint, we obtain

E[(MN − b)+] ≥ (b− a)

N∑
n=1

P(D([a, b], N) ≥ n) = (b− a)E

[
N∑
n=1

1{D([a,b],N)≥n}

]
= (b− a)E[D([a, b], N)]
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which proves the Lemma. Furthermore,

(b− a)E[D([a, b], N)] ≤ E[|MN |] + b ≤ sup
n∈N

E[|Mn|] + b,

so letting N → +∞, we obtain:
(b− a)E[D([a, b],+∞)] ≤ sup

n∈N
E[|Mn|] + b.

We shall now prove that the set
Λ = {ω : Xn(ω) does not converge in [−∞,+∞]}

is of null probability. Indeed, we have:

Λ = {ω : lim inf
n→+∞

Xn(ω) < lim sup
n→+∞

Xn(ω)}

=
⋃

a,b∈Q; a<b

{ω : lim inf
n→+∞

Xn(ω) < a < b < lim sup
n→+∞

Xn(ω)}

=
⋃

a,b∈Q; a<b

Λa,b

But, it is clear that
Λa,b ⊂ {ω, D([a, b],+∞) = +∞},

and therefore P(Λa,b) = 0. As a countable union, we deduce that P(Λ) = 0, hence the limit X∞ exists a.s. in [−∞,+∞].
But, from Fatou’s lemma:

E[|X∞|] = E
[
lim inf
n→+∞

|Xn|
]
≤ lim inf

n→+∞
E[|Xn|] ≤ sup

n≥0
E[|Xn|] < +∞

so that X∞ is finite a.s.

�

Corollary 16. If (Mn, n ∈ N) is a positive martingale, then M∞ = lim
n→+∞

Mn exists a.s. and is in L1.

Proof. Since M is positive E[|Mn|] = E[Mn] = E[M0], hence (Mn, n ∈ N) is bounded in L1 and we may apply Theorem 14.

�

Observe that, in general, when a martingale converges, we do not have Mn = E[M∞|Fn]. Indeed, going back to Example 11,
the martingale (Mθ

n, n ∈ N) is positive, hence it converges a.s. towards a random variable M∞. But, considering the almost
surely finite stopping times T−a for a ≥ 1, we obtain

MT−a =
e−θa

(cosh(θ))
T−a
≤ e−θa −−−−−→

a→+∞
0

which proves that M∞ = 0 a.s.

3.2 Uniformly integrable martingales

A necessary and sufficient condition for the convergence of a martingale to hold in L1 is given by the uniform integrability
condition.

Definition 17. A family (Xi)i∈I of integrable random variables is called uniformly integrable if

lim
a→+∞

(
sup
i∈I

E
[
|Xi|1{|Xi|>a}

])
= 0

The interest of this notion lies in the following result.

Theorem 18. Let (Xn, n ∈ N) be a sequence of integrable random variables which converges in probability towards a
random variable X ∈ L1. Then:

Xn
L1

−−−−−→
n→+∞

X ⇐⇒ the sequence (Xn, n ∈ N) is uniformly integrable

6



When combined with martingales, we get the following result.

Theorem 19. Let (Mn, n ∈ N) be a martingale. The three following assertions are equivalent:

i) The sequence (Mn, n ∈ N) is uniformly integrable.

ii) Mn converges towards M∞ a.s. and in L1.

iii) There exists a random variable M∞ ∈ L1(Ω,F ,P) such that Mn = E[M∞|Fn] for every n ∈ N.

Proof.

i)→ ii) Since (Mn, n ∈ N) is uniformly integrable, it is bounded in L1, hence from the martingale convergence theorem:
Mn −→ M∞ a.s. Since a.s. convergence implies convergence in probability, Point ii) follows from the previous
theorem.

ii)→ iii) Let Zn be a Fn-measurable r.v. bounded by a constant K. For k ≥ n,

|E[MnZn]− E[M∞Zn]| = |E[MkZn]− E[M∞Zn]| ≤ E[|Mk −M∞|Zn] ≤ KE[|Mk −M∞|] −−−−−→
k→+∞

0,

hence,
E[MnZn] = E[M∞Zn]

which proves Point iii).

iii)→ i) Observe first that E[|Mn|] ≤ E[|M∞|] hence sup
n∈N

E[|Mn|] <∞. Let ε > 0. We next write

E
[
|Mn|1{|Mn|>a}

]
= E [|E[M∞|Fn] |1{|Mn|>a}] ≤ E

[
|M∞|1{|Mn|>a}

]
= E

[
|M∞|1{M∞≤K}1{|Mn|>a}

]
+ E

[
|M∞|1{M∞>K}1{|Mn|>a}

]
≤ KP(|Mn| > a) + E

[
|M∞|1{M∞>K}

]
≤ K

a
sup
n∈N

E [|Mn|] + E
[
|M∞|1{M∞>K}

]
It remains to choose K large enough so that E

[
|M∞|1{M∞>K}

]
≤ ε, and then to let a tends towards +∞ to obtain

the desired result.

�

Corollary 20 (Lévy upward theorem).
Let ξ ∈ L1(Ω,F ,P) and define Mn = E[ξ|Fn]. Then M is a uniformly integrable martingale and

Mn −−−−−→
n→+∞

M∞ = E[ξ|F∞] a.s. and in L1.

For a uniformly integrable martingale, Doob’s optional stopping theorem may be extended to any stopping time.

Theorem 21. Let (Mn, n ∈ N) be a uniformly integrable martingale. For every stopping time T , we have:

MT = E[M∞|FT ].

In particular:
E[MT ] = E[M∞].
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Proof. We first prove that MT ∈ L1:

E[|MT |] =

+∞∑
n=0

E[|Mn|1{T=n}] + E[|M∞|1{T=∞}]

=

+∞∑
n=0

E[|E[M∞|Fn]||1{T=n}] + E[|M∞|1{T=∞}]

≤
+∞∑
n=0

E[E[|M∞||Fn]|1{T=n}] + E[|M∞|1{T=∞}]

≤
+∞∑
n=0

E[E[|M∞|1{T=n}|Fn]] + E[|M∞|1{T=∞}]

≤
+∞∑
n=0

E[|M∞|1{T=n}] + E[|M∞|1{T=∞}]

≤ E[|M∞|].

Next, let Z be a FT -measurable and integrable random variable :

E[ZMT ] =

+∞∑
n=0

E[ZMT 1{T=n}] + E[ZM∞1{T=∞}]

=
+∞∑
n=0

E[ZMn1{T=n}] + E[ZM∞1{T=∞}]

=

+∞∑
n=0

E[ZM∞1{T=n}] + E[ZM∞1{T=∞}]

= E[ZM∞]

which ends the proof.

�

4 Doob’s Lp inequality

Lemma 22. Let (Mn, n ≤ N) be a martingale indexed by a finite set. Then, for every λ > 0:

λP
(

sup
n≤N

Mn ≥ λ
)
≤ E

[
MN1{supn≤N Mn≥λ}

]

Proof. Let T := inf{n ≤ N, Mn ≥ λ} if this set is non-empty, T = N otherwise. T is a bounded stopping time, so by
Doob’s optional stopping theorem:

E[MN ] = E[MT ] = E[MT 1{supn≤N Mn≥λ}] + E[MN1{supn≤N Mn<λ}]

≥ λP
(

sup
n≤N

Mn ≥ λ
)

+ E
[
MN1{supn≤N Mn<λ}

]

since, on the set,

{
sup
n≤N

Mn ≥ λ
}

, we must have MT ≤ λ. The result then follows by subtracting E
[
MN1{supn≤N Mn<λ}

]
.

�

Proposition 23. Let (Mn, n ≤ N) be a martingale indexed by a finite set. Then, for every p > 1:

E
[(

sup
n≤N
|Mn|

)p]
≤
(

p

p− 1

)p
E[|MN |p].
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Proof. Set M∗N = sup
n≤N
|Mn| and choose k > 0:

E[(M∗N ∧ k)p] = E

[∫ M∗N∧k

0

pλp−1dλ

]

= E

[∫ k

0

pλp−11{M∗N≥λ}dλ

]

=

∫ k

0

pλp−1P(M∗N ≥ λ)dλ.

From Lemma 22, this is smaller than :

E[(M∗N ∧ k)p] ≤
∫ k

0

pλp−2E[|MN |1{supn≤N Mn≥λ}]dλ

≤ E

[
|MN |

∫ k

0

pλp−21{supn≤N Mn≥λ}dλ

]

≤ E

[
|MN |

∫ k

0

pλp−21{supn≤N |Mn|≥λ}dλ

]

≤ E

[
|MN |

∫ M∗∧k

0

pλp−2dλ

]
≤ p

p− 1
E
[
|MN | (M∗N ∧ k)

p−1
]
.

Then, Hölder’s inequality yields

E[(M∗N ∧ k)p] ≤ p

p− 1
(E [(M∗N ∧ k)

p
])

p−1
p (E[|MN |p])1/p

which simplifies to

E [(M∗N ∧ k)p] ≤
(

p

p− 1

)p
E[|MN |p]

and the proof is completed by letting k tend to infinity.

�

We now apply this result to martingales bounded in Lp.

Theorem 24 (Doob’s Lp inequality).
Let p > 1 and (Mn, n ∈ N) be a martingale bounded in Lp, i.e. such that

sup
n∈N

E[|Mn|p] < +∞.

There is the inequality:

E
[(

sup
n∈N
|Mn|

)p]
≤
(

p

p− 1

)p
sup
n≥0

E [|Mn|p] .

Proof. From the Proposition 23, for N ≥ 0:

E
[(

sup
n≤N
|Mn|

)p]
≤
(

p

p− 1

)p
E[|MN |p] ≤

(
p

p− 1

)p
sup
n∈N

E[|Mn|p].

Letting N tends towards +∞ in the left-hand side and applying the monotone convergence, we deduce that:

E[(sup
n∈N
|Mn|)p] ≤

(
p

p− 1

)p
sup
n∈N

E[|Xn|],

hence sup
n∈N
|Mn| ∈ Lp.

�
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Corollary 25. Let p > 1 and (Mn, n ∈ N) be a martingale bounded in Lp. Then, (Mn, n ∈ N) converges a.s. and in
Lp towards a random variable M∞ such that

E[|M∞|p] = sup
n∈N

E[|Mn|p]

Proof. Since (Mn, n ∈ N) is bounded in L1, we already know that this martingale converges a.s. towards M∞. Then, since

|M∞ −Mn|p ≤ (|M∞|+ sup
n∈N
|Mn|)p ≤ 2p(sup

n∈N
|Mn|)p

which is integrable, the dominated convergence theorem implies that

Mn
Lp

−−−−−→
n→+∞

M∞.

Furthermore, from Jensen inequality, since the function x 7−→ |x|p is convex,

E[|Mn|p] = E[|E[Mn+1|Fn]|p] ≤ E[E[|Mn+1|p|Fn]] = E[|Mn+1|p]

so we see that the sequence E[|Mn|p] is increasing, and

E[|M∞|p] = lim
n→+∞

E[|Mn|p] = sup
n∈N

E[|Mn|p].

�

5 Inverse martingales

5.1 Definition

We have so far dealt with classical filtrations, i.e. increasing families of sub-σ-algebras. But it is also interesting to look at
decreasing families and to define similarly inverse martingales.

Definition 26.
Let (Ω,F ,P) be a probability space, and consider (G−n, n ∈ N) a decreasing family of sub-σ-algebrae of F such that:

G−∞ :=
⋂
k∈N
G−k ⊂ . . . ⊂ G−n ⊂ . . . ⊂ G−1.

A process (M−n, n ≥ 0) is an inverse martingale if:

1. M−n is integrable for every n ≥ 0,

2. M is adapted to (G−n, n ∈ N),

3. M−n−1 = E[M−n|G−n] a.s. ∀n ∈ N.

Theorem 27 (Lévy downward theorem).
Let (Ω,F ,P) be a probability space, and consider (G−n, n ∈ N) a decreasing family of sub-σ-algebrar of F . Let
ξ ∈ L1(Ω,F ,P) and define

M−n = E[ξ|G−n].

Then:
M−n −−−−−→

n→+∞
M−∞ = E[ξ|G−∞] a.s. and in L1.

We now give two applications of the notion of decreasing families of σ-algebrae.
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5.2 Applications

Theorem 28 (Kolmogorov’s 0-1 law).
Let X1, . . . , Xn be a sequence of independent random variables and define the σ-algebras

Tn = σ(Xn+1, Xn+2, . . .), and T =
⋂
n≥0

Tn.

Then, if A ∈ T , we necessarily have P(A) = 0 or 1. In particular, if Z is a T -measurable random variable, then Z is
a.s. constant.

Proof. Define the filtration Fn := σ(X1, . . . , Xn) and let A ∈ T . We set ξ = 1A and define the martingale

Mn = E[ξ|Fn].

Since ξ is bounded, ξ ∈ L1, hence from Lévy upward theorem, the martingale M is uniformly integrable and converges a.s.
towards:

M∞ = lim
n→+∞

E[ξ|F∞].

Observe now that, on the one hand, since ξ is F∞-measurable, we have M∞ = ξ. On the other hand, since ξ is measurable
with respect to every Tn, we deduce that ξ is independent of every Fn, so that

ξ = lim
n→+∞

Mn = lim
n→+∞

E[ξ|Fn] = lim
n→+∞

E[ξ] = P(A)

and since ξ can only take the values 0 or 1, so does P(A). Next, if Z is a T -measurable random variable, we may choose
A = {Z ≤ t} so that:

FZ(t) = P(Z ≤ t) = 0 or 1,

and, as FZ is right-continuous and increasing, we deduce that there exists a ∈ R such that FZ(t) = 1[a,+∞[, i.e. Z = a a.s.

�

Theorem 29 (Strong law of large numbers).
Let (Xi, i ∈ N) be a sequence of i.i.d. random variables with finite first moment. Then:

Xn =
1

n

n∑
i=1

Xi
(a.s.)−−−−−→
n→+∞

E[X1].

Proof. Define the decreasing filtration:

G−n = σ(Xn, Xn+1, . . .) and G−∞ :=
⋂
n∈N
G−n.

By independence and symmetry, it is clear that:

E[X1|G−n] = E[Xk|G−n], ∀k ≤ n,

so that

E[X1|G−n] =
1

n

n∑
k=1

E[Xk|G−n] = E[Xn|G−n] = Xn.

Therefore (Xn, n ≥ 0) is an inverse martingale, which, from Lévy downward theorem converges a.s. towards

Xn
(a.s.)−−−−−→
n→+∞

X∞ = E[X1|G−∞].

Observe furthermore that the random variable lim
n→+∞

Xn is G−∞ measurable, since it does not depend on the first terms of

the sum. By the Kolmogorov’s 0-1 law, X∞ = a is a.s. constant. But, as the convergence of X also holds in L1, we deduce
that

a = E
[
X∞

]
= lim
n→+∞

E
[
Xn

]
= lim
n→+∞

E[X1] = E[X1].

�
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6 Continuous-time martingales

6.1 Definition

We now assume that the time parameter belongs to T = R+. As in the discrete case, the definition of martingale relies on
the notion of filtrations.

Definition 30 (Filtration).
A filtration of (Ω,F ,P) is an increasing family (Ft, t ≥ 0) of sub-σ-algebra of F :

∀s ≤ t, Fs ⊂ Ft.

Remark 31.

i) A filtration is called complete if all negligible sets (the sets N such that P(N) = 0) are included in F0.

ii) A filtration is right-continuous if Ft =
⋂
s>t

Fs.

Definition 32 (Martingale).
A process M is called a martingale with respect to ((Ft)t≥0,P) if

i) Mt is integrable for every t ≥ 0,

ii) M is adapted, that is, for every t ≥ 0, the random variable Mt is Ft-measurable,

iii) For every 0 ≤ s ≤ t, Ms = E[Mt|Fs] a.s.

When dealing with continuous-time stochastic processes, one interesting question is to the study the properties of its paths.

Definition 33. Two processes X and Y defined on the same probability space (Ω,F ,P) are said to be modifications
of each other if, for each t ≥ 0:

Xt = Yt a.s.

Theorem 34. Let (Mt, t ≥ 0) be a martingale with respect to a right-continuous and complete filtration (Ft, t ≥ 0).
Then, M has a modification which is a right-continuous and left-limited (Ft, t ≥ 0)-martingale.

Right-continuous and left-limited processes are generally referred as càdlàg process, from the French ”continus à droite,
limités à gauche”.

Theorem 35. Let (Mt, t ≥ 0) be a right-continuous martingale. Then, the foregoing theorems

i) Doob’s optional stopping theorem

ii) The convergence theorems

iii) Doob’s Lp inequality

remain true for continuous-time martingale, with the obvious adaptation on the time parameter.

6.2 An application to European options

An European call (resp. put) option is a contract which gives the holder the right, but not the obligation, to buy (resp.
sell) some underlying asset at a specified price K, at a future date t. A natural question is: how much is the value of such a
contract ? This depends of course on the nature of the underlying asset (Mt, t ≥ 0). In the case of an European call option,
the expected profit is E[(Mt − K)+], which therefore seems to be a fair price. For an European put option, the expected
profit has plainly a symmetric expression E[(K−Mt)

+]. We study in the following the latter quantity, under the assumption
that (Mt, t ≥ 0) is a positive and continuous martingale which converges a.s. towards M∞ = 0.

12



Theorem 36 (Doob’s maximal identity).
The law of the supremum of M is given by :

sup
s≥0

Ms
(law)
=

M0

U

where U is a uniform random variable on [0, 1] independent from F0.

Proof. Let a > M0 and set Ta = inf{t ≥ 0; Mt = a}. Since the process (Mt∧Ta , t ≥ 0) is bounded by a, we deduce from
Doob’s optional stopping theorem that :

M0 = E[MTa
] = aP(Ta < +∞|F0)

as MTa = 0 if Ta = +∞. Thus:

P
(

sup
t≥0

Mt > a|F0

)
=
M0

a
.

�

Theorem 37. Let GK := sup{t ≥ 0; Mt = K} denote the last passage time of M to level K. Then, the law of the
European put option is given by:

E
[
(K −Mt)

+
]

= KP(GK ≤ t).

Proof. Let t > 0 be fixed. Observe first that

{GK < t} =

{
sup
s≥t

Ms < K

}
.

We now apply Doob’s maximal identity to the martingale (Mt+s, s ≥ 0), in the filtration (Ft+s, s ≥ 0):

sup
s≥0

Mt+s = sup
s≥t

Ms
(law)
=

Mt

U

where U is a uniform random variable on [0, 1] independent from Ft. Consequently:

P(GK < t) = P
(

sup
s≥t

Ms < K

)
= P

(
Mt

U
< K

)
= E

[∫ 1

0

1{Mt
K <x}dx

]
= E

[(
1− Mt

K

)+
]
.

�
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