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Lesson n°2: Martingales

Let (92, F,P) be a probability space.

UCE, verano 2013

Definition 1 (Stochastic process).

Let T be a set and (E,&) a measurable space. A stochastic process indexed by T is a family of random variables
X = (X, t €T) from a probability space (2, F,P) into (E,E). The space (E,E) is called the state space.

In other words, a stochastic process is a random variable taking values in (possibly a subset of) ET. The law of X is thus a
probability measure on ET. The set T may be thought as the "time”: in practice, we shall restrict our attention to T = N

and T = RT. A stochastic process X may also be seen as a two-arguments mapping

X: | TxQ —

(t,w) — Xi(w)

such that :

1. for fixed t € T, the mapping w — X;(w) is a E-valued random variable,

2. for fixed w € ©, the mapping ¢ — X;(w) is a path of the stochastic process, which belongs to E7".

We may construct a canonical version of X as follows. Let (Y;, ¢t € T') denote the coordinate mappings on E7 :

Y,: | ET =

w  — w(t),

and consider the application ¢ defined by :

o: 1 —

w — X (w).

By construction, we have (Y;0¢)(w) = X;(w). Let us define Px the image of P by ¢. Then, (Y;, t € T') is called the canonical
version of X, and the probability measure Px is the law of X.

Several families of stochastic processes have been introduced and studied intensively: for instance Gaussian processes, Markov
processes, Lévy processes, self-similar processes, martingales. . . In this lesson, we shall focus on this last family, since it is of
foremost importance in stochastic calculus.



1 Discrete-time martingales

The study of martingales is strongly linked to the notion of filtrations as given below.

Definition 2 (Filtration).
A filtration of (Q, F,P) is an increasing family (F,,n € N) of sub-c-algebra of F:

FoCFLC...CF.

The smallest o-algebra which contains all the (Fy,) is denoted by Foo.

Foo ::J<U .7—'n> CF.

neN

The 4-uplet (Q, F, (Fpn)nen, P) is a called a filtered probability space. When seeing the parameter n as a time parameter,
for any n € N, the o-algebra F,, represents the information that is known at time n. Usually, (F,,n € N) is the natural

filtration of some stochastic process X = (X,,,n € N) defined by :
]:n = U(Xk, ]f S ’Il)
and the information at time n consists of the values

Xo(w), Xl(w)7 N ,Xn(w).

Definition 3 (Adapted process).
A stochastic process (X,,,n € N) is adapted to the filtration (Fp)nen if, for every n € N, X,, is F,,-measurable.

Of course, a process is always adapted to its natural filtration.

Definition 4 (Martingale).
A process M is called a martingale with respect to ((Fp)nen, P) if

1) M, is integrable for every n >0,

1) M is adapted,

1) My, = E[M,41|Fn] a.s. Vn €N

In particular, taking the expectation of both sides of Point #ii), we deduce that a martingale has a constant expectation over

time :
Vn € N, E[M,] = E[M)].

Example 5. Let us give two classic examples of martingales.

(1)

1. Let X1, X5, ... be a sequence of independent, integrable and centered random variables defined on a probability space

(Q, F,P). Define the process
My=0 and M,=X1+...+X,

and the filtration
Fo ={0,Q} and Fn =0(Xk, k<n).

Then, (M,,n € N) is a ((F,)nen, P)-martingale.

2. Let X7, Xo,... be a sequence of independent and positive random variables with expectation equal to 1. Define the

process
M():l and M»,LZXlX...XXn

and the filtration
Fo ={0,0} and Fn =0(Xk, k<n).

Then, (M,,n € N) is a ((Fy)nen, P)-martingale.



2 Stopping times and Doob’s optional stopping theorem

Definition 6 (Stopping time).
A random variable T = Q — NU {oo} is called a stopping time with respect to the filtration (Fp)nen if

Vn e N, {T <n}eF,.

Intuitively, this definition means that at any time n € N, one knows whether T" has occurred or not.

Example 7. Let (X,,,n € N) be an adapted process, and A a Borel set of R. Then, the first time the process X enters the

set A:
Ty =inf{neN; X, € A}

=400 if{neN; X,cA}=0

is a stopping time. Indeed,

(Ta <n}= O{Xk €A} € F,.

Definition 8. Let T be a stopping time and (X,,,n € N) be an adapted process. We define the o-algebra Fr by:
Fr={AeF, Vne NU{+o00}, AN{T =n} e F,},

and, for any w € Q:
XT(w) = XT(UJ)(W).

Then, X1 is a Fpr-measurable random variable.

The importance of stopping times with respect to the notion of martingale lies in the following theorem, which is a general-
ization of Equation (1).

Theorem 9 (Doob’s optional stopping theorem).
Let (M,,n € N) be a martingale and T' a stopping time. If

e either T is bounded,
o or (Muar,n € N) is a bounded process,

then,
E[M7] = E[Mo].

Proof. If T is bounded by a constant N, we may write :

N N N
E[M7] =E [MT > 1{T_,€}] = E[Mrlr_y] = > E[Mglir—py).
k=0 k=0 k=0

But, since M is a martingale and thanks to the tower property of conditional expectation :

N N

> EMilr—y] = > EE[My|Fillir=iy] = > EEMy1r—py|Fel] = Y E[My1lir_py] = E[My] = E[Mo]

which proves the first item. Now, applying this result to the bounded stopping time n A T', we obtain
E[M, 7] = E[My]

and since the process (M,ar,n € N) is bounded, the result follows from the dominated convergence theorem.

Doob’s optional stopping theorem may be generalized as follows.

Corollary 10. Let (M,,n € N) be a martingale and S, T be two bounded stopping times such that S <T. Then

E[Xr|Fs] = Xs.




Example 11. Suppose that X7, Xs,... is a sequence of independent and identically distributed (i.i.d.) random variables

whose laws are given by:

P(X=1)=F(X =-1)= .

Define Sy =0 and S, = X1 + ...+ X,,. We wish to determine the law of the stopping time
T, =inf{n e N; S, = a}

where a € N*. We set:
Fn=0(51,...,5) =0(Xy,...,Xn)

so that the process (S,,n € N) is adapted to (F,,,n € N) and T, is a stopping time with respect to this filtration. Observe

first that, for # > 0, the process
0Sn
0 e

M, = (cosh(6))»

is a martingale. Indeed, it is an integrable and adapted process such that:

E[My 1| Fa] = s E [e?Xn+1|F, ] = o E [efXn+1
(M 41 n]_W [e |n}_W [e ]
e0Sn , .
= ooyt (Pt = 1)+ B (Xoga = -1))
= MY
Then, since
6 €QS”ATa 0
MTa,/\n = W S e,

we may apply Doob’s optional stopping theorem to obtain:

1=E[MJ] =E[M}] =E [@Zip)v} =B [M]

which reduces to
—0Oa

‘ —E{W]'

Next, for T, = oo, the term inside the right-hand side is 0, so that actually :

)

1
—1 .
[<cosh<e>>Ta {Ta<°°}]
In particular, letting # — 0 and applying the monotone convergence theorem, we deduce that:
1=E [I{Ta<o<>}] = P(Ta < OO)

1
osh(6)

Now, setting o = €]0,1[, we further obtain :
¢

E [OLT‘L] _ Z an]P;(Ta _ Tl) _ efaArgcosh(l/a).
n=0

We now give a converse to Doob’s optional stopping theorem.

Theorem 12. An adapted process (M,,n € N) is a martingale if and only if for every bounded stopping time T, the
random variable My is integrable and E[My] = E[My].

Proof. Let k <n and A € Fi. The random variable T = nl e + k1,4 is a bounded stopping time, so
E[Mo] = E[Mr] = E[Mn14c] + E[Mp14].

On the other hand, n is also a bounded stopping time so
E[Mo] = E[M,] = E[M,1ac] + E[M;14]

and the comparison of the two equalities yields E[M,,|Fi] = M.



Corollary 13. If M is a martingale and T is a stopping time, then the process MT = (Myar,n > 0) remains a
martingale with respect to the filtration (F,,n > 0).

Proof. By the definition of a stopping time, the process M7 remains adapted to the filtration (F,,n > 0). If S is another
bounded stopping time:
E [M{] = E[Mspr] = E[Mo] = E[Morr] = E [M{ ],

so Theorem 12 implies that M7 is indeed a martingale.

3 Convergence theorems

3.1 The martingale convergence theorem

Theorem 14 (Martingale convergence theorem).

Let (M,,n € N) be a martingale bounded in L', i.e. supE[|M,|] < +oco. Then, M,, converges a.s. as n — +oo and
neN

its limit Mo, satisfies E[|Moo|] < 0.

Proof. Let N > 1 be fixed. We first restrict our attention to martingale (M,,, 1 <n < N) indexed by a finite set. Define
inductively the following family of stopping times:

s1 =inf{n > 1; M, > b}, so =inf{n > s1; M, < a}

and, for k& > 0,
Sop+1 = inf{n > sor; M, > b}, Sopt+o = inf{n > sopi1; M, < a}.

where by convention, inf{(#} = N. We define the number of downcrossings of [a, b] before time N by
D([a,b], N) = sup{n > 1, 55, < N}.

The proof of the convergence theorem relies on the following lemma.

Lemma 15 (Doob’s downcrossing lemma).

(b—a)E[D([a,b], N)] < E[(My —b)"]

Set Ay = {sr < N}. Observe that on the set Ag,_1, the random variable M, _, > b a.s., so we have:
0<E [(MSQn—l - b)]‘AQn—l] .

Now, since s is a stopping time, A € F.

s, and from Corollary 10 since S2p,—1 < 82, < N:

0 <E[(E[M

S2n

‘7:52”71] - b)lAZ'rL—I:I <E [(MSZH - b)1A2n71:| .

But, clearly Ap+1 C Ak, and, since on As,, the random variable M,, , < a:

0 S E [(M?zn, - b)1A2n—l] =E [(M32n - b)(lAzn + 1A2n71\A2n)]
<(a—b)P(Ay,) +E [(Msan - b)]‘A2n—1\A271:| :

Therefore, since As,—1\A2, = {S2n—1 < N, 2, = N}, we deduce that
(b - a)P(AZH) <E [(Mszn - b)+1A2n—1\A2n] =E [(MN - b)+1A2n—1\A2n] :
Observe furthermore that P(Ag,) = P(D([a,b], N) > n) so that summing the above inequalities for 1 < n < N and using

the fact that the sets Ag,—1\Asg, are pairwise disjoint, we obtain

N
E[(My —b)"]> (b—a) Y P(D([a,b],N) >n) = (b—a)E

n=1

N
>, 1{D<[a,b1,zv>zn}1 = (b — a)E[D([a,b], N)]

n=1



which proves the Lemma. Furthermore,

(b —a)E[D([a,b], N)] <E[|[My|]+b < ilégEHMnl] +9,

so letting N — 400, we obtain:

(b — a)E[D([a,b], +-00)] < iléglE[anH + 0.

We shall now prove that the set
A ={w: X, (w) does not converge in [—o0, +0co]}

is of null probability. Indeed, we have:

A={w: liminf X,,(w) < limsup X, (w)}

n—+oo n—-+oo

U {w: liminf X,,(w) < a < b < limsup X,,(w)}
a,beQ; a<b norhee n—+oo

U Aa,b

a,beQ; a<b

But, it is clear that
Aa,b - {W, D([O/, b]a +OO) = +OO},

and therefore P(A, ) = 0. As a countable union, we deduce that P(A) = 0, hence the limit X, exists a.s. in [—oo, +00].
But, from Fatou’s lemma:

E|[Xs|] =E [lim inf|Xn|} <liminf E[|X,|] < supE[|X,|] < +oo
n—-+o00 n——+o0o n>0

so that X is finite a.s.

Corollary 16. If (M,,,n € N) is a positive martingale, then My, = lim M, exists a.s. and is in L'.

n——+00

Proof. Since M is positive E[|M,|] = E[M,,] = E[My], hence (M,,,n € N) is bounded in L' and we may apply Theorem 14.
|

Observe that, in general, when a martingale converges, we do not have M,, = E[M|F,]. Indeed, going back to Example 11,
the martingale (M?,n € N) is positive, hence it converges a.s. towards a random variable M.,. But, considering the almost
surely finite stopping times 7", for a > 1, we obtain

6—911

MT,Q = T S e_ea —_— 0
(cosh(8)) a—+o0

which proves that M., = 0 a.s.

3.2 Uniformly integrable martingales

A necessary and sufficient condition for the convergence of a martingale to hold in L' is given by the uniform integrability
condition.

Definition 17. A family (X;):cr of integrable random variables is called uniformly integrable if

a—-+oo

lim (suglE[IXill{xi|>a}}) =0
1€

The interest of this notion lies in the following result.

Theorem 18. Let (X,,n € N) be a sequence of integrable random variables which converges in probability towards a
random variable X € L*. Then:

1
X, ~L—+—+ X = the sequence (X,,,n € N) is uniformly integrable
n—-+oo




When combined with martingales, we get the following result.

Theorem 19. Let (M,,n € N) be a martingale. The three following assertions are equivalent:
i) The sequence (M,,n € N) is uniformly integrable.

i1) M, converges towards My a.s. and in L.

iii) There exists a random variable My, € L*(Q, F,P) such that M, = E[M|F,] for every n € N.

Proof.

i) — i) Since (M,,n € N) is uniformly integrable, it is bounded in L', hence from the martingale convergence theorem:
M, — My as. Since a.s. convergence implies convergence in probability, Point i:) follows from the previous
theorem.

i1) — i1i) Let Z, be a F,,-measurable r.v. bounded by a constant K. For k > n,

E[M,Zy] — E[Mso Zy)| = |E[My,Z0] — E[Moc Zy)| < E[|M, — Moo| Z0]) < KE[| My — Moo|] —— 0,

- k—+oo

hence,
E[M,Z,) = E[MxZ,]

which proves Point ii).
i14) — i) Observe first that E[|M,|] < E[|Ms|] hence sup E[|M,,|] < co. Let € > 0. We next write
neN

E [IMn|1{0,1501] = EE[Moo| Fol 15101, 150} < E [[Moo|lgias, >a}]
E [|Moo|linre <y insni>ay] + B [[Moo|Liase > 3 1100, 5}
KP(|My| > a) +E [|[Moo|Liar, > k1]

K
—_— supE HMn” + ]E [‘Moo‘l{JV[oo>K}]
4 peN

IN

IN

It remains to choose K large enough so that E [\Mw\l{Mm>K}] < g, and then to let a tends towards +oo to obtain
the desired result.

Corollary 20 (Lévy upward theorem).
Let £ € LY(Q, F,P) and define M,, = E[¢|F,]). Then M is a uniformly integrable martingale and

M,, —+> My = E[¢|Foo) a.s. and in L.
n——+00

For a uniformly integrable martingale, Doob’s optional stopping theorem may be extended to any stopping time.

Theorem 21. Let (M,,n € N) be a uniformly integrable martingale. For every stopping time T, we have:
My = E[M|Fr].

In particular:

E[Mr] = E[M)].




Proof. We first prove that My € L:

+oo
E(|Mr]] = > E[[Mallir=n] + E[lMw|lir=o]

n=0
“+o0

=Y E[E[Mu| Fullllir=n}] + E[[Moo|l{r—oc}]
n=0
“+o0
n=0
“+o0
n=0
400

< ZE“MOOH{T:n}] + E“MOOII{T:OO}]
n=0

< E[[Moo|]-

Next, let Z be a Fr-measurable and integrable random variable :

—+oo
E(ZMr] =Y E[ZMrlir—pn)] + E[ZMl{r—oc]
n=0
+oo
=Y E[ZMulir—ny] + E[ZMoclir—oc)]
n=0
—+o0
=Y E[ZMulir=n}] + E[ZMsl{r-o)]
n=0

= E[ZMOO]

which ends the proof.

4 Doob’s L? inequality

Lemma 22. Let (M,,n < N) be a martingale indezxed by a finite set. Then, for every A > 0:

AP (:Lljpi[ Mn > )‘) § E [MNI{SUPTLSN MnZ)\}]

Proof. Let T := inf{n < N, M, > A} if this set is non-empty, T = N otherwise. T is a bounded stopping time, so by
Doob’s optional stopping theorem:

E[MN] = E[MT] = E[MTl{S‘JPngN MnZA}] + E[MNl{Sup,,LSN M'n,<>\}]

> AP (Sup M, > /\) +E [MNl{SUPn<N M'n.<>\}:|
n<N -

since, on the set, {sup M, > )\}, we must have My < A. The result then follows by subtracting E {MNl{SupMN M, <A} |-
n<N <

Proposition 23. Let (M,,n < N) be a martingale indexed by a finite set. Then, for everyp > 1:

() (2




Proof. Set My, = sup |M,| and choose k > 0:
n<N

My Ak
E[(M} ANk)P] =R / p)\p_ld)\]
0

k
E l/ pAp_ll{M;f>)\}d)\‘|
0
k

:/ pAPTIP(M Py > N)dA.
0

From Lemma 22, this is smaller than :

k
E((Mi ABP) < | oA ML, .y a1,201)dN
0 ,

k
SE |MN|/ p)‘p_21{supn<N Mn>)\}d)\‘|
0 <

k
<E |MN|/ p)‘p_Zl{supn<N|Mn|>)\}d)“|
o <

M*Nk
<E |ALVy/' pAp—QdA]
0

< TB[IMx| (M3 Ak

Then, Holder’s inequality yields

which simplifies to
and the proof is completed by letting &k tend to infinity.

We now apply this result to martingales bounded in LP.

Theorem 24 (Doob’s L? inequality).
Let p > 1 and (M,,,n € N) be a martingale bounded in L?, i.e. such that

sup E[|M,,|P] < +o0.
neN

p P p
E [(sup |Mn|) } < (> sup E [[ M, ["].
neN D= 1 n>0

There is the inequality:

Proof. From the Proposition 23, for N > 0:

P » \? » \?
B | (suplonl) | < (S25) Elanpl < (2 swpEla,)
n<N p—1 Pp—1/ nen
Letting NV tends towards +o0 in the left-hand side and applying the monotone convergence, we deduce that:
» \?
Eliup 04,7 < (527 ) sup BII,
neN p—1 neN

hence sup |M,| € L”.
neN



Corollary 25. Let p > 1 and (My,n € N) be a martingale bounded in LP. Then, (My,n € N) converges a.s. and in
LP towards a random variable My, such that

B[ Moo|"] = sup E[| M, "]
neN

Proof. Since (M,,,n € N) is bounded in L!, we already know that this martingale converges a.s. towards M,,. Then, since

(Moo — My |P < (|Moso| + sup | My])P < 2”(su§|Mn|)”
ne ne

which is integrable, the dominated convergence theorem implies that

LP
M, —— M.
n—-+oo

Furthermore, from Jensen inequality, since the function 2 — |z|P is convex,
E[|My|") = B[[E[Mp 1| Fol ) < BIE[[ My 1 [P|Fn]] = E[| M1 [7)
so we see that the sequence E[|M,,|?] is increasing, and

E[|Mecl?] = lim_E[M, "] = supE[|AL, ).

5 Inverse martingales

5.1 Definition

We have so far dealt with classical filtrations, i.e. increasing families of sub-o-algebras. But it is also interesting to look at
decreasing families and to define similarly inverse martingales.

Definition 26.
Let (Q, F,P) be a probability space, and consider (G_,,,n € N) a decreasing family of sub-c-algebrae of F such that:

Gooi=[19-kC...CGnC...CG1.

keN
A process (M_p,n > 0) is an inverse martingale if:
1. M_,, is integrable for every n > 0,

2. M is adapted to (G_p,n € N),

3. M_,,_1 =E[M_,|G_,] a.s. Vn € N.

Theorem 27 (Lévy downward theorem).
Let (0, F,P) be a probability space, and consider (G_,,n € N) a decreasing family of sub-c-algebrar of F. Let
¢ e LY(Q,F,P) and define

M., =E[EG ).

Then:
M_, —— M_o =E[¢|G_] a.s. and in L'.

n—-+o0o

We now give two applications of the notion of decreasing families of o-algebrae.

10




5.2 Applications

Theorem 28 (Kolmogorov’s 0-1 law).
Let X1,...,X, be a sequence of independent random variables and define the o-algebras

7"” :U(Xn+17Xn+2,...), and T: m 7;1

n>0

Then, if A € T, we necessarily have P(A) =0 or 1. In particular, if Z is a T-measurable random variable, then Z is
a.s. constant.

Proof. Define the filtration F,, := 0(X1,...,X,) and let A € T. We set £ = 14 and define the martingale
M, = E[¢|F,).

Since ¢ is bounded, ¢ € L', hence from Lévy upward theorem, the martingale M is uniformly integrable and converges a.s.
towards:
My = lim E[¢|F].
n——+4oo

Observe now that, on the one hand, since ¢ is F,-measurable, we have M., = £. On the other hand, since ¢ is measurable
with respect to every 7,, we deduce that £ is independent of every F,,, so that

¢= lim M,= lim E[|F,]= lim E[¢]=P(A)

n—-+4oo n—-+o0o n—-+oo

and since £ can only take the values 0 or 1, so does P(A). Next, if Z is a T-measurable random variable, we may choose
A ={Z <t} so that:
Fz(t)=P(Z<t)=0o0r1,

and, as Fz is right-continuous and increasing, we deduce that there exists a € R such that Fz(t) = 1[4 4oc[, I.6. Z =a as.

Theorem 29 (Strong law of large numbers).
Let (X;,i € N) be a sequence of i.i.d. random variables with finite first moment. Then:

Z X, 2 mx).

n—-4o0o

Proof. Define the decreasing filtration:

g—n = O'(Yn,yn-ﬁ-l, . ) and g—(x) = m g_n.

neN

By independence and symmetry, it is clear that:
E[X1]G_n] = E[Xk|G 0], VEk < n,

so that
1 & - -
E[X1|G-n] =~ > E[Xs|Gn] = E[Xn|G-n] = X,
k=1

Therefore (X,,,n > 0) is an inverse martingale, which, from Lévy downward theorem converges a.s. towards

Yn (a.s.)

n——+o0o

Xoo = E[X1|G_o]-

Observe furthermore that the random variable lirf X, is G_o measurable, since it does not depend on the first terms of
n—-+0oo

the sum. By the Kolmogorov’s 0-1 law, X o, = a is a.s. constant. But, as the convergence of X also holds in L', we deduce
that
a=E[Xs]= lim E[X,]= lim E[X;]=E[Xi].

n—-+o0o n—-+oo

11



6 Continuous-time martingales

6.1 Definition

We now assume that the time parameter belongs to T = RT. As in the discrete case, the definition of martingale relies on
the notion of filtrations.

Definition 30 (Filtration).
A filtration of (0, F,P) is an increasing family (F,t > 0) of sub-o-algebra of F:

VSSt, .FSC]:t.

Remark 31.

i) A filtration is called complete if all negligible sets (the sets N such that P(N) = 0) are included in Fy.

i1) A filtration is right-continuous if F; = ﬂ Fs.
s>t

Definition 32 (Martingale).
A process M is called a martingale with respect to ((F¢)i>o0,P) if

i) M, is integrable for every t > 0,

i) M is adapted, that is, for every t > 0, the random variable M, is F;-measurable,

iii) For every 0 < s <t, My, = E[M;|F] a.s.

When dealing with continuous-time stochastic processes, one interesting question is to the study the properties of its paths.

Definition 33. Two processes X and Y defined on the same probability space (2, F,P) are said to be modifications
of each other if, for each t > 0:
X =Y, a.s.

Theorem 34. Let (M;,t > 0) be a martingale with respect to a right-continuous and complete filtration (Fy,t > 0).
Then, M has a modification which is a right-continuous and left-limited (Fy,t > 0)-martingale.

Right-continuous and left-limited processes are generally referred as cadlag process, from the French ”continus a droite,
limités a gauche”.

Theorem 35. Let (M;,t > 0) be a right-continuous martingale. Then, the foregoing theorems
1) Doob’s optional stopping theorem
1) The convergence theorems

1i1) Doob’s LP inequality

remain true for continuous-time martingale, with the obvious adaptation on the time parameter.

6.2 An application to European options

An European call (resp. put) option is a contract which gives the holder the right, but not the obligation, to buy (resp.
sell) some underlying asset at a specified price K, at a future date ¢t. A natural question is: how much is the value of such a
contract ? This depends of course on the nature of the underlying asset (M, ¢ > 0). In the case of an European call option,
the expected profit is E[(M; — K)*], which therefore seems to be a fair price. For an European put option, the expected
profit has plainly a symmetric expression E[(K — M;)*]. We study in the following the latter quantity, under the assumption
that (My,t > 0) is a positive and continuous martingale which converges a.s. towards M., = 0.
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Theorem 36 (Doob’s maximal identity).

The law of the supremum of M is given by :
(law) My
supM, =" —
SZIO) U

where U is a uniform random variable on [0, 1] independent from Fy.

Proof. Let a > My and set T, = inf{¢t > 0; M; = a}. Since the process (Miar,,t > 0) is bounded by a, we deduce from
Doob’s optional stopping theorem that :
MO = ]E[MTQ] = aP(Ta < +OO|]:0>
as My, = 0 if T, = +o0. Thus:
M
P (suth > a]-"o) ==
>0

Theorem 37. Let Gk :=sup{t > 0; M; = K} denote the last passage time of M to level K. Then, the law of the
FEuropean put option is given by:
E [(K — Mt)ﬂ = KP(Gk <t).

Proof. Let t > 0 be fixed. Observe first that

{Gk <t} = {supMs <K}.

s>t

We now apply Doob’s maximal identity to the martingale (M5, s > 0), in the filtration (Fiys,s > 0):

1 M
sup Myy o = sup M, (=) =t
s>0 s>t U

where U is a uniform random variable on [0, 1] independent from F;. Consequently:

]P’(GK<t):]P’<supMS<K> :]P’<]\((][t<K> :E[/Oll{z\;f(t<w}dx} =E <1—]\[ft>+].

s>t
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