Lesson n°2: Martingales

UCE, verano 2013

Contents

1	Discrete-time martingales	2
2	Stopping times and Doob's optional stopping theorem	3
3	Convergence theorems 3.1 The martingale convergence theorem	5 5
4	Doob's L^p inequality	8
5	Inverse martingales 5.1 Definition 5.2 Applications	10 10 11
6	Continuous-time martingales 6.1 Definition	

Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition 1 (Stochastic process).

Let T be a set and (E,\mathcal{E}) a measurable space. A stochastic process indexed by T is a family of random variables $X = (X_t, t \in T)$ from a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ into (E, \mathcal{E}) . The space (E, \mathcal{E}) is called the state space.

In other words, a stochastic process is a random variable taking values in (possibly a subset of) E^T . The law of X is thus a probability measure on E^T . The set T may be thought as the "time": in practice, we shall restrict our attention to $T = \mathbb{N}$ and $T = \mathbb{R}^+$. A stochastic process X may also be seen as a two-arguments mapping

$$X: \left| \begin{array}{ccc} T \times \Omega & \to & E \\ (t, \omega) & \longmapsto & X_t(\omega) \end{array} \right|$$

such that:

- 1. for fixed $t \in T$, the mapping $\omega \longmapsto X_t(\omega)$ is a E-valued random variable,
- 2. for fixed $\omega \in \Omega$, the mapping $t \longmapsto X_t(\omega)$ is a path of the stochastic process, which belongs to E^T .

We may construct a canonical version of X as follows. Let $(Y_t, t \in T)$ denote the coordinate mappings on E^T :

$$Y_t: \left| \begin{array}{ccc} E^T & \to & E \\ w & \longmapsto & w(t), \end{array} \right.$$

and consider the application ϕ defined by :

$$\phi: \left| \begin{array}{ccc} \Omega & \to & E^T \\ \omega & \longmapsto & X_{\centerdot}(\omega). \end{array} \right.$$

By construction, we have $(Y_t \circ \phi)(\omega) = X_t(\omega)$. Let us define \mathbb{P}_X the image of \mathbb{P} by ϕ . Then, $(Y_t, t \in T)$ is called the canonical version of X, and the probability measure \mathbb{P}_X is the law of X.

Several families of stochastic processes have been introduced and studied intensively: for instance Gaussian processes, Markov processes, Lévy processes, self-similar processes, martingales... In this lesson, we shall focus on this last family, since it is of foremost importance in stochastic calculus.

1 Discrete-time martingales

The study of martingales is strongly linked to the notion of filtrations as given below.

Definition 2 (Filtration).

A filtration of $(\Omega, \mathcal{F}, \mathbb{P})$ is an increasing family $(\mathcal{F}_n, n \in \mathbb{N})$ of sub- σ -algebra of \mathcal{F} :

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}$$
.

The smallest σ -algebra which contains all the (\mathcal{F}_n) is denoted by \mathcal{F}_{∞} .

$$\mathcal{F}_{\infty} := \sigma \left(\bigcup_{n \in \mathbb{N}} \mathcal{F}_n \right) \subset \mathcal{F}.$$

The 4-uplet $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$ is a called a filtered probability space. When seeing the parameter n as a time parameter, for any $n \in \mathbb{N}$, the σ -algebra \mathcal{F}_n represents the information that is known at time n. Usually, $(\mathcal{F}_n, n \in \mathbb{N})$ is the natural filtration of some stochastic process $X = (X_n, n \in \mathbb{N})$ defined by :

$$\mathcal{F}_n = \sigma(X_k, \ k \le n)$$

and the information at time n consists of the values

$$X_0(\omega), X_1(\omega), \ldots, X_n(\omega).$$

Definition 3 (Adapted process).

A stochastic process $(X_n, n \in \mathbb{N})$ is adapted to the filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ if, for every $n \in \mathbb{N}$, X_n is \mathcal{F}_n -measurable.

Of course, a process is always adapted to its natural filtration.

Definition 4 (Martingale).

A process M is called a martingale with respect to $((\mathcal{F}_n)_{n\in\mathbb{N}}, \mathbb{P})$ if

- i) M_n is integrable for every $n \geq 0$,
- ii) M is adapted,
- iii) $M_n = \mathbb{E}[M_{n+1}|\mathcal{F}_n]$ a.s. $\forall n \in \mathbb{N}$

In particular, taking the expectation of both sides of Point iii), we deduce that a martingale has a constant expectation over time:

$$\forall n \in \mathbb{N}, \qquad \mathbb{E}[M_n] = \mathbb{E}[M_0]. \tag{1}$$

Example 5. Let us give two classic examples of martingales.

1. Let X_1, X_2, \ldots be a sequence of independent, integrable and centered random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define the process

$$M_0 = 0 \qquad \text{and} \qquad M_n = X_1 + \ldots + X_n$$

and the filtration

$$\mathcal{F}_0 = \{\emptyset, \Omega\}$$
 and $\mathcal{F}_n = \sigma(X_k, k \le n)$.

Then, $(M_n, n \in \mathbb{N})$ is a $((\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$ -martingale.

2. Let X_1, X_2, \ldots be a sequence of independent and positive random variables with expectation equal to 1. Define the process

$$M_0 = 1$$
 and $M_n = X_1 \times \ldots \times X_n$

and the filtration

$$\mathcal{F}_0 = \{\emptyset, \Omega\}$$
 and $\mathcal{F}_n = \sigma(X_k, k \le n)$.

Then, $(M_n, n \in \mathbb{N})$ is a $((\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$ -martingale.

2 Stopping times and Doob's optional stopping theorem

Definition 6 (Stopping time).

A random variable $T = \Omega \longrightarrow \mathbb{N} \cup \{\infty\}$ is called a stopping time with respect to the filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ if

$$\forall n \in \mathbb{N}, \qquad \{T \le n\} \in \mathcal{F}_n.$$

Intuitively, this definition means that at any time $n \in \mathbb{N}$, one knows whether T has occurred or not.

Example 7. Let $(X_n, n \in \mathbb{N})$ be an adapted process, and A a Borel set of \mathbb{R} . Then, the first time the process X enters the set A:

$$T_A = \inf\{n \in \mathbb{N}; \ X_n \in A\}$$

$$= +\infty \quad \text{if } \{n \in \mathbb{N}; \ X_n \in A\} = \emptyset$$

is a stopping time. Indeed,

$$\{T_A \le n\} = \bigcup_{k=0}^n \{X_k \in A\} \in \mathcal{F}_n.$$

Definition 8. Let T be a stopping time and $(X_n, n \in \mathbb{N})$ be an adapted process. We define the σ -algebra \mathcal{F}_T by:

$$\mathcal{F}_T = \{ A \in \mathcal{F}, \ \forall n \in \mathbb{N} \cup \{ +\infty \}, \ A \cap \{ T = n \} \in \mathcal{F}_n \},$$

and, for any $\omega \in \Omega$:

$$X_T(\omega) = X_{T(\omega)}(\omega).$$

Then, X_T is a \mathcal{F}_T -measurable random variable.

The importance of stopping times with respect to the notion of martingale lies in the following theorem, which is a generalization of Equation (1).

Theorem 9 (Doob's optional stopping theorem).

Let $(M_n, n \in \mathbb{N})$ be a martingale and T a stopping time. If

- either T is bounded,
- or $(M_{n \wedge T}, n \in \mathbb{N})$ is a bounded process,

then,

$$\mathbb{E}[M_T] = \mathbb{E}[M_0].$$

Proof. If T is bounded by a constant N, we may write :

$$\mathbb{E}[M_T] = \mathbb{E}\left[M_T \sum_{k=0}^{N} 1_{\{T=k\}}\right] = \sum_{k=0}^{N} \mathbb{E}[M_T 1_{\{T=k\}}] = \sum_{k=0}^{N} \mathbb{E}[M_k 1_{\{T=k\}}].$$

But, since M is a martingale and thanks to the tower property of conditional expectation :

$$\sum_{k=0}^{N} \mathbb{E}[M_k 1_{\{T=k\}}] = \sum_{k=0}^{N} \mathbb{E}[\mathbb{E}[M_N | \mathcal{F}_k] 1_{\{T=k\}}] = \sum_{k=0}^{N} \mathbb{E}[\mathbb{E}[M_N 1_{\{T=k\}} | \mathcal{F}_k]] = \sum_{k=0}^{N} \mathbb{E}[M_N 1_{\{T=k\}}] = \mathbb{E}[M_N] = \mathbb{E}[M_N]$$

which proves the first item. Now, applying this result to the bounded stopping time $n \wedge T$, we obtain

$$\mathbb{E}[M_{n\wedge T}] = \mathbb{E}[M_0]$$

and since the process $(M_{n \wedge T}, n \in \mathbb{N})$ is bounded, the result follows from the dominated convergence theorem.

Doob's optional stopping theorem may be generalized as follows.

Corollary 10. Let $(M_n, n \in \mathbb{N})$ be a martingale and S, T be two bounded stopping times such that $S \leq T$. Then

$$\mathbb{E}[X_T|\mathcal{F}_S] = X_S.$$

Example 11. Suppose that $X_1, X_2,...$ is a sequence of independent and identically distributed (i.i.d.) random variables whose laws are given by:

$$\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = \frac{1}{2}.$$

Define $S_0 = 0$ and $S_n = X_1 + \ldots + X_n$. We wish to determine the law of the stopping time

$$T_a = \inf\{n \in \mathbb{N}; \ S_n = a\}$$

where $a \in \mathbb{N}^*$. We set:

$$\mathcal{F}_n = \sigma(S_1, \dots, S_n) = \sigma(X_1, \dots, X_n)$$

so that the process $(S_n, n \in \mathbb{N})$ is adapted to $(\mathcal{F}_n, n \in \mathbb{N})$ and T_a is a stopping time with respect to this filtration. Observe first that, for $\theta > 0$, the process

$$M_n^{\theta} = \frac{e^{\theta S_n}}{(\cosh(\theta))^n}$$

is a martingale. Indeed, it is an integrable and adapted process such that:

$$\mathbb{E}[M_{n+1}^{\theta}|\mathcal{F}_n] = \frac{e^{\theta S_n}}{(\cosh(\theta))^{n+1}} \mathbb{E}\left[e^{\theta X_{n+1}}|\mathcal{F}_n\right] = \frac{e^{\theta S_n}}{(\cosh(\theta))^{n+1}} \mathbb{E}\left[e^{\theta X_{n+1}}\right]$$

$$= \frac{e^{\theta S_n}}{(\cosh(\theta))^{n+1}} \left(e^{\theta} \mathbb{P}(X_{n+1} = 1) + e^{-\theta} \mathbb{P}(X_{n+1} = -1)\right)$$

$$= M_{\theta}^{\theta}$$

Then, since

$$M_{T_a \wedge n}^{\theta} = \frac{e^{\theta S_{n \wedge T_a}}}{(\cosh(\theta))^{n \wedge T_a}} \le e^{\theta a},$$

we may apply Doob's optional stopping theorem to obtain:

$$1 = \mathbb{E}\left[M_0^{\theta}\right] = \mathbb{E}\left[M_{T_a}^{\theta}\right] = \mathbb{E}\left[\frac{e^{\theta S_{T_a}}}{(\cosh(\theta))^{T_a}}\right] = e^{\theta a} \mathbb{E}\left[\frac{1}{(\cosh(\theta))^{T_a}}\right]$$

which reduces to

$$e^{-\theta a} = \mathbb{E}\left[\frac{1}{(\cosh(\theta))^{T_a}}\right].$$

Next, for $T_a = \infty$, the term inside the right-hand side is 0, so that actually :

$$e^{-\theta a} = \mathbb{E}\left[\frac{1}{(\cosh(\theta))^{T_a}} \mathbb{1}_{\{T_a < \infty\}}\right].$$

In particular, letting $\theta \to 0$ and applying the monotone convergence theorem, we deduce that:

$$1 = \mathbb{E}\left[1_{\{T_a < \infty\}}\right] = \mathbb{P}(T_a < \infty).$$

Now, setting $\alpha = \frac{1}{\cosh(\theta)} \in]0,1[$, we further obtain :

$$\mathbb{E}\left[\alpha^{T_a}\right] = \sum_{n=0}^{\infty} \alpha^n \mathbb{P}(T_a = n) = e^{-a \operatorname{Argcosh}(1/\alpha)}.$$

We now give a converse to Doob's optional stopping theorem.

Theorem 12. An adapted process $(M_n, n \in \mathbb{N})$ is a martingale if and only if for every bounded stopping time T, the random variable M_T is integrable and $\mathbb{E}[M_T] = \mathbb{E}[M_0]$.

Proof. Let k < n and $A \in \mathcal{F}_k$. The random variable $T = n1_{A^c} + k1_A$ is a bounded stopping time, so

$$\mathbb{E}[M_0] = \mathbb{E}[M_T] = \mathbb{E}[M_n 1_{A^c}] + \mathbb{E}[M_k 1_A].$$

On the other hand, n is also a bounded stopping time so

$$\mathbb{E}[M_0] = \mathbb{E}[M_n] = \mathbb{E}[M_n 1_{A^c}] + \mathbb{E}[M_n 1_A]$$

and the comparison of the two equalities yields $\mathbb{E}[M_n|\mathcal{F}_k] = M_k$.

Corollary 13. If M is a martingale and T is a stopping time, then the process $M^T = (M_{n \wedge T}, n \geq 0)$ remains a martingale with respect to the filtration $(\mathcal{F}_n, n \geq 0)$.

Proof. By the definition of a stopping time, the process M^T remains adapted to the filtration $(\mathcal{F}_n, n \geq 0)$. If S is another bounded stopping time:

 $\mathbb{E}\left[M_S^T\right] = \mathbb{E}[M_{S \wedge T}] = \mathbb{E}[M_0] = \mathbb{E}[M_{0 \wedge T}] = \mathbb{E}\left[M_0^T\right],$

so Theorem 12 implies that M^T is indeed a martingale.

3 Convergence theorems

3.1 The martingale convergence theorem

Theorem 14 (Martingale convergence theorem).

Let $(M_n, n \in \mathbb{N})$ be a martingale bounded in L^1 , i.e. $\sup_{n \in \mathbb{N}} \mathbb{E}[|M_n|] < +\infty$. Then, M_n converges a.s. as $n \to +\infty$ and its limit M_{∞} satisfies $\mathbb{E}[|M_{\infty}|] < \infty$.

Proof. Let $N \ge 1$ be fixed. We first restrict our attention to martingale $(M_n, 1 \le n \le N)$ indexed by a finite set. Define inductively the following family of stopping times:

$$s_1 = \inf\{n \ge 1; \ M_n > b\}, \qquad s_2 = \inf\{n \ge s_1; \ M_n < a\}$$

and, for $k \geq 0$,

$$s_{2k+1} = \inf\{n \ge s_{2k}; \ M_n > b\}, \qquad s_{2k+2} = \inf\{n \ge s_{2k+1}; \ M_n < a\}.$$

where by convention, $\inf\{\emptyset\} = N$. We define the number of downcrossings of [a, b] before time N by

$$D([a, b], N) = \sup\{n \ge 1, \ s_{2n} < N\}.$$

The proof of the convergence theorem relies on the following lemma.

Lemma 15 (Doob's downcrossing lemma).

$$(b-a)\mathbb{E}[D([a,b],N)] \le \mathbb{E}[(M_N-b)^+]$$

Set $A_k = \{s_k < N\}$. Observe that on the set A_{2n-1} , the random variable $M_{s_{2n-1}} > b$ a.s., so we have:

$$0 \le \mathbb{E}\left[(M_{s_{2n-1}} - b) \mathbf{1}_{A_{2n-1}} \right].$$

Now, since s_k is a stopping time, $A_k \in \mathcal{F}_{s_k}$ and from Corollary 10 since $s_{2n-1} \leq s_{2n} \leq N$:

$$0 \le \mathbb{E}\left[\left(\mathbb{E}[M_{s_{2n}}|\mathcal{F}_{s_{2n-1}}] - b\right)1_{A_{2n-1}}\right] \le \mathbb{E}\left[\left(M_{s_{2n}} - b\right)1_{A_{2n-1}}\right].$$

But, clearly $A_{k+1} \subset A_k$, and, since on A_{2n} , the random variable $M_{s_{2n-1}} < a$:

$$0 \le \mathbb{E}\left[(M_{s_{2n}} - b) \mathbf{1}_{A_{2n-1}} \right] = \mathbb{E}\left[(M_{s_{2n}} - b) (\mathbf{1}_{A_{2n}} + \mathbf{1}_{A_{2n-1} \setminus A_{2n}}) \right]$$

$$\le (a - b) \mathbb{P}(A_{2n}) + \mathbb{E}\left[(M_{s_{2n}} - b) \mathbf{1}_{A_{2n-1} \setminus A_{2n}} \right].$$

Therefore, since $A_{2n-1} \setminus A_{2n} = \{s_{2n-1} < N, s_{2n} = N\}$, we deduce that

$$(b-a)\mathbb{P}(A_{2n}) \le \mathbb{E}\left[(M_{s_{2n}}-b)^+ 1_{A_{2n-1}\setminus A_{2n}}\right] = \mathbb{E}\left[(M_N-b)^+ 1_{A_{2n-1}\setminus A_{2n}}\right].$$

Observe furthermore that $\mathbb{P}(A_{2n}) = \mathbb{P}(D([a,b],N) \geq n)$ so that summing the above inequalities for $1 \leq n \leq N$ and using the fact that the sets $A_{2n-1} \setminus A_{2n}$ are pairwise disjoint, we obtain

$$\mathbb{E}[(M_N - b)^+] \ge (b - a) \sum_{n=1}^N \mathbb{P}(D([a, b], N) \ge n) = (b - a) \mathbb{E}\left[\sum_{n=1}^N \mathbb{1}_{\{D([a, b], N) \ge n\}}\right] = (b - a) \mathbb{E}[D([a, b], N)]$$

which proves the Lemma. Furthermore,

$$(b-a)\mathbb{E}[D([a,b],N)] \le \mathbb{E}[|M_N|] + b \le \sup_{n \in \mathbb{N}} \mathbb{E}[|M_n|] + b,$$

so letting $N \to +\infty$, we obtain:

$$(b-a)\mathbb{E}[D([a,b],+\infty)] \le \sup_{n\in\mathbb{N}} \mathbb{E}[|M_n|] + b.$$

We shall now prove that the set

$$\Lambda = \{\omega : X_n(\omega) \text{ does not converge in } [-\infty, +\infty] \}$$

is of null probability. Indeed, we have:

$$\begin{split} & \Lambda = \{\omega: \liminf_{n \to +\infty} X_n(\omega) < \limsup_{n \to +\infty} X_n(\omega) \} \\ & = \bigcup_{a,b \in \mathbb{Q}; \ a < b} \{\omega: \liminf_{n \to +\infty} X_n(\omega) < a < b < \limsup_{n \to +\infty} X_n(\omega) \} \\ & = \bigcup_{a,b \in \mathbb{Q}; \ a < b} \Lambda_{a,b} \end{split}$$

But, it is clear that

$$\Lambda_{a,b} \subset \{\omega, \ D([a,b], +\infty) = +\infty\},\$$

and therefore $\mathbb{P}(\Lambda_{a,b}) = 0$. As a countable union, we deduce that $\mathbb{P}(\Lambda) = 0$, hence the limit X_{∞} exists a.s. in $[-\infty, +\infty]$. But, from Fatou's lemma:

$$\mathbb{E}[|X_{\infty}|] = \mathbb{E}\left[\liminf_{n \to +\infty} |X_n| \right] \leq \liminf_{n \to +\infty} \mathbb{E}[|X_n|] \leq \sup_{n \geq 0} \mathbb{E}[|X_n|] < +\infty$$

so that X_{∞} is finite a.s.

Corollary 16. If $(M_n, n \in \mathbb{N})$ is a positive martingale, then $M_{\infty} = \lim_{n \to +\infty} M_n$ exists a.s. and is in L^1 .

Proof. Since M is positive $\mathbb{E}[|M_n|] = \mathbb{E}[M_n] = \mathbb{E}[M_0]$, hence $(M_n, n \in \mathbb{N})$ is bounded in L^1 and we may apply Theorem 14.

Observe that, in general, when a martingale converges, we do not have $M_n = \mathbb{E}[M_\infty | \mathcal{F}_n]$. Indeed, going back to Example 11, the martingale $(M_n^{\theta}, n \in \mathbb{N})$ is positive, hence it converges a.s. towards a random variable M_∞ . But, considering the almost surely finite stopping times T_{-a} for $a \geq 1$, we obtain

$$M_{T_{-a}} = \frac{e^{-\theta a}}{\left(\cosh(\theta)\right)^{T_{-a}}} \le e^{-\theta a} \xrightarrow[a \to +\infty]{} 0$$

which proves that $M_{\infty} = 0$ a.s.

3.2 Uniformly integrable martingales

A necessary and sufficient condition for the convergence of a martingale to hold in L^1 is given by the uniform integrability condition.

Definition 17. A family $(X_i)_{i \in I}$ of integrable random variables is called uniformly integrable if

$$\lim_{a \to +\infty} \left(\sup_{i \in I} \mathbb{E} \left[|X_i| 1_{\{|X_i| > a\}} \right] \right) = 0$$

The interest of this notion lies in the following result.

Theorem 18. Let $(X_n, n \in \mathbb{N})$ be a sequence of integrable random variables which converges in probability towards a random variable $X \in L^1$. Then:

$$X_n \xrightarrow[n \to +\infty]{L^1} X \iff the sequence (X_n, n \in \mathbb{N}) is uniformly integrable$$

When combined with martingales, we get the following result.

Theorem 19. Let $(M_n, n \in \mathbb{N})$ be a martingale. The three following assertions are equivalent:

- i) The sequence $(M_n, n \in \mathbb{N})$ is uniformly integrable.
- ii) M_n converges towards M_{∞} a.s. and in L^1 .
- iii) There exists a random variable $M_{\infty} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ such that $M_n = \mathbb{E}[M_{\infty}|\mathcal{F}_n]$ for every $n \in \mathbb{N}$.

Proof.

- $i) \to ii)$ Since $(M_n, n \in \mathbb{N})$ is uniformly integrable, it is bounded in L^1 , hence from the martingale convergence theorem: $M_n \longrightarrow M_\infty$ a.s. Since a.s. convergence implies convergence in probability, Point ii) follows from the previous theorem.
- $ii) \rightarrow iii)$ Let Z_n be a \mathcal{F}_n -measurable r.v. bounded by a constant K. For $k \geq n$,

$$|\mathbb{E}[M_n Z_n] - \mathbb{E}[M_\infty Z_n]| = |\mathbb{E}[M_k Z_n] - \mathbb{E}[M_\infty Z_n]| \le \mathbb{E}[|M_k - M_\infty|Z_n] \le K\mathbb{E}[|M_k - M_\infty|] \xrightarrow[k \to +\infty]{} 0,$$

hence,

$$\mathbb{E}[M_n Z_n] = \mathbb{E}[M_\infty Z_n]$$

which proves Point iii).

 $(iii) \to i)$ Observe first that $\mathbb{E}[|M_n|] \le \mathbb{E}[|M_\infty|]$ hence $\sup_{n \in \mathbb{N}} \mathbb{E}[|M_n|] < \infty$. Let $\varepsilon > 0$. We next write

$$\begin{split} \mathbb{E}\left[|M_{n}|1_{\{|M_{n}|>a\}}\right] &= \mathbb{E}\left[|\mathbb{E}[M_{\infty}|\mathcal{F}_{n}]|1_{\{|M_{n}|>a\}}\right] \leq \mathbb{E}\left[|M_{\infty}|1_{\{|M_{n}|>a\}}\right] \\ &= \mathbb{E}\left[|M_{\infty}|1_{\{M_{\infty}\leq K\}}1_{\{|M_{n}|>a\}}\right] + \mathbb{E}\left[|M_{\infty}|1_{\{M_{\infty}>K\}}1_{\{|M_{n}|>a\}}\right] \\ &\leq K\mathbb{P}(|M_{n}|>a) + \mathbb{E}\left[|M_{\infty}|1_{\{M_{\infty}>K\}}\right] \\ &\leq \frac{K}{a} \sup_{n\in\mathbb{N}} \mathbb{E}\left[|M_{n}|\right] + \mathbb{E}\left[|M_{\infty}|1_{\{M_{\infty}>K\}}\right] \end{split}$$

It remains to choose K large enough so that $\mathbb{E}\left[|M_{\infty}|1_{\{M_{\infty}>K\}}\right] \leq \varepsilon$, and then to let a tends towards $+\infty$ to obtain the desired result.

Corollary 20 (Lévy upward theorem).

Let $\xi \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and define $M_n = \mathbb{E}[\xi | \mathcal{F}_n]$. Then M is a uniformly integrable martingale and

$$M_n \xrightarrow[n \to +\infty]{} M_\infty = \mathbb{E}[\xi | \mathcal{F}_\infty]$$
 a.s. and in L^1 .

For a uniformly integrable martingale, Doob's optional stopping theorem may be extended to any stopping time.

Theorem 21. Let $(M_n, n \in \mathbb{N})$ be a uniformly integrable martingale. For every stopping time T, we have:

$$M_T = \mathbb{E}[M_{\infty}|\mathcal{F}_T].$$

In particular:

$$\mathbb{E}[M_T] = \mathbb{E}[M_{\infty}].$$

Proof. We first prove that $M_T \in L^1$:

$$\begin{split} \mathbb{E}[|M_{T}|] &= \sum_{n=0}^{+\infty} \mathbb{E}[|M_{n}|1_{\{T=n\}}] \; + \; \mathbb{E}[|M_{\infty}|1_{\{T=\infty\}}] \\ &= \sum_{n=0}^{+\infty} \mathbb{E}[|\mathbb{E}[M_{\infty}|\mathcal{F}_{n}]||1_{\{T=n\}}] \; + \; \mathbb{E}[|M_{\infty}|1_{\{T=\infty\}}] \\ &\leq \sum_{n=0}^{+\infty} \mathbb{E}[\mathbb{E}[|M_{\infty}||\mathcal{F}_{n}]|1_{\{T=n\}}] \; + \; \mathbb{E}[|M_{\infty}|1_{\{T=\infty\}}] \\ &\leq \sum_{n=0}^{+\infty} \mathbb{E}[\mathbb{E}[|M_{\infty}|1_{\{T=n\}}|\mathcal{F}_{n}]] \; + \; \mathbb{E}[|M_{\infty}|1_{\{T=\infty\}}] \\ &\leq \sum_{n=0}^{+\infty} \mathbb{E}[|M_{\infty}|1_{\{T=n\}}] \; + \; \mathbb{E}[|M_{\infty}|1_{\{T=\infty\}}] \\ &\leq \mathbb{E}[|M_{\infty}|]. \end{split}$$

Next, let Z be a \mathcal{F}_T -measurable and integrable random variable :

$$\mathbb{E}[ZM_T] = \sum_{n=0}^{+\infty} \mathbb{E}[ZM_T 1_{\{T=n\}}] + \mathbb{E}[ZM_\infty 1_{\{T=\infty\}}]$$

$$= \sum_{n=0}^{+\infty} \mathbb{E}[ZM_n 1_{\{T=n\}}] + \mathbb{E}[ZM_\infty 1_{\{T=\infty\}}]$$

$$= \sum_{n=0}^{+\infty} \mathbb{E}[ZM_\infty 1_{\{T=n\}}] + \mathbb{E}[ZM_\infty 1_{\{T=\infty\}}]$$

$$= \mathbb{E}[ZM_\infty]$$

which ends the proof.

4 Doob's L^p inequality

Lemma 22. Let $(M_n, n \le N)$ be a martingale indexed by a finite set. Then, for every $\lambda > 0$:

$$\lambda \mathbb{P}\left(\sup_{n < N} M_n \ge \lambda\right) \le \mathbb{E}\left[M_N \mathbb{1}_{\{\sup_{n \le N} M_n \ge \lambda\}}\right]$$

Proof. Let $T := \inf\{n \leq N, M_n \geq \lambda\}$ if this set is non-empty, T = N otherwise. T is a bounded stopping time, so by Doob's optional stopping theorem:

$$\mathbb{E}[M_N] = \mathbb{E}[M_T] = \mathbb{E}[M_T \mathbb{1}_{\{\sup_{n \le N} M_n \ge \lambda\}}] + \mathbb{E}[M_N \mathbb{1}_{\{\sup_{n \le N} M_n < \lambda\}}]$$

$$\ge \lambda \mathbb{P}\left(\sup_{n \le N} M_n \ge \lambda\right) + \mathbb{E}\left[M_N \mathbb{1}_{\{\sup_{n \le N} M_n < \lambda\}}\right]$$

since, on the set, $\left\{\sup_{n\leq N}M_n\geq\lambda\right\}$, we must have $M_T\leq\lambda$. The result then follows by subtracting $\mathbb{E}\left[M_N1_{\left\{\sup_{n\leq N}M_n<\lambda\right\}}\right]$.

Proposition 23. Let $(M_n, n \leq N)$ be a martingale indexed by a finite set. Then, for every p > 1:

$$\mathbb{E}\left[\left(\sup_{n\leq N}|M_n|\right)^p\right] \leq \left(\frac{p}{p-1}\right)^p \mathbb{E}[|M_N|^p].$$

Proof. Set $M_N^* = \sup_{n \le N} |M_n|$ and choose k > 0:

$$\begin{split} \mathbb{E}[(M_N^* \wedge k)^p] &= \mathbb{E}\left[\int_0^{M_N^* \wedge k} p \lambda^{p-1} d\lambda\right] \\ &= \mathbb{E}\left[\int_0^k p \lambda^{p-1} 1_{\{M_N^* \geq \lambda\}} d\lambda\right] \\ &= \int_0^k p \lambda^{p-1} \mathbb{P}(M_N^* \geq \lambda) d\lambda. \end{split}$$

From Lemma 22, this is smaller than:

$$\mathbb{E}[(M_N^* \wedge k)^p] \leq \int_0^k p\lambda^{p-2} \mathbb{E}[|M_N| 1_{\{\sup_{n \leq N} M_n \geq \lambda\}}] d\lambda$$

$$\leq \mathbb{E}\left[|M_N| \int_0^k p\lambda^{p-2} 1_{\{\sup_{n \leq N} M_n \geq \lambda\}} d\lambda\right]$$

$$\leq \mathbb{E}\left[|M_N| \int_0^k p\lambda^{p-2} 1_{\{\sup_{n \leq N} |M_n| \geq \lambda\}} d\lambda\right]$$

$$\leq \mathbb{E}\left[|M_N| \int_0^{M^* \wedge k} p\lambda^{p-2} d\lambda\right]$$

$$\leq \frac{p}{p-1} \mathbb{E}\left[|M_N| (M_N^* \wedge k)^{p-1}\right].$$

Then, Hölder's inequality yields

$$\mathbb{E}[(M_N^* \wedge k)^p] \le \frac{p}{p-1} \left(\mathbb{E}\left[\left(M_N^* \wedge k \right)^p \right] \right)^{\frac{p-1}{p}} \left(\mathbb{E}[|M_N|^p] \right)^{1/p}$$

which simplifies to

$$\mathbb{E}\left[(M_N^* \wedge k)^p\right] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}[|M_N|^p]$$

and the proof is completed by letting k tend to infinity.

We now apply this result to martingales bounded in L^p .

Theorem 24 (Doob's L^p inequality).

Let p > 1 and $(M_n, n \in \mathbb{N})$ be a martingale bounded in L^p , i.e. such that

$$\sup_{n\in\mathbb{N}}\mathbb{E}[|M_n|^p]<+\infty.$$

There is the inequality:

$$\mathbb{E}\left[\left(\sup_{n\in\mathbb{N}}|M_n|\right)^p\right] \leq \left(\frac{p}{p-1}\right)^p\sup_{n\geq 0}\mathbb{E}\left[|M_n|^p\right].$$

Proof. From the Proposition 23, for $N \ge 0$:

$$\mathbb{E}\left[\left(\sup_{n\leq N}|M_n|\right)^p\right]\leq \left(\frac{p}{p-1}\right)^p\mathbb{E}[|M_N|^p]\leq \left(\frac{p}{p-1}\right)^p\sup_{n\in\mathbb{N}}\mathbb{E}[|M_n|^p].$$

Letting N tends towards $+\infty$ in the left-hand side and applying the monotone convergence, we deduce that:

$$\mathbb{E}[(\sup_{n\in\mathbb{N}}|M_n|)^p] \le \left(\frac{p}{p-1}\right)^p \sup_{n\in\mathbb{N}} \mathbb{E}[|X_n|],$$

hence $\sup_{n\in\mathbb{N}} |M_n| \in L^p$.

Corollary 25. Let p > 1 and $(M_n, n \in \mathbb{N})$ be a martingale bounded in L^p . Then, $(M_n, n \in \mathbb{N})$ converges a.s. and in L^p towards a random variable M_{∞} such that

$$\mathbb{E}[|M_{\infty}|^p] = \sup_{n \in \mathbb{N}} \mathbb{E}[|M_n|^p]$$

Proof. Since $(M_n, n \in \mathbb{N})$ is bounded in L^1 , we already know that this martingale converges a.s. towards M_{∞} . Then, since

$$|M_{\infty} - M_n|^p \le (|M_{\infty}| + \sup_{n \in \mathbb{N}} |M_n|)^p \le 2^p (\sup_{n \in \mathbb{N}} |M_n|)^p$$

which is integrable, the dominated convergence theorem implies that

$$M_n \xrightarrow[n \to +\infty]{L^p} M_\infty$$
.

Furthermore, from Jensen inequality, since the function $x \longmapsto |x|^p$ is convex,

$$\mathbb{E}[|M_n|^p] = \mathbb{E}[|\mathbb{E}[M_{n+1}|\mathcal{F}_n]|^p] \le \mathbb{E}[\mathbb{E}[|M_{n+1}|^p|\mathcal{F}_n]] = \mathbb{E}[|M_{n+1}|^p]$$

so we see that the sequence $\mathbb{E}[|M_n|^p]$ is increasing, and

$$\mathbb{E}[|M_{\infty}|^p] = \lim_{n \to +\infty} \mathbb{E}[|M_n|^p] = \sup_{n \in \mathbb{N}} \mathbb{E}[|M_n|^p].$$

5 Inverse martingales

5.1 Definition

We have so far dealt with classical filtrations, i.e. increasing families of sub- σ -algebras. But it is also interesting to look at decreasing families and to define similarly inverse martingales.

Definition 26.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and consider $(\mathcal{G}_{-n}, n \in \mathbb{N})$ a decreasing family of sub- σ -algebrae of \mathcal{F} such that:

$$\mathcal{G}_{-\infty} := \bigcap_{k \in \mathbb{N}} \mathcal{G}_{-k} \subset \ldots \subset \mathcal{G}_{-n} \subset \ldots \subset \mathcal{G}_{-1}.$$

A process $(M_{-n}, n \ge 0)$ is an inverse martingale if:

- 1. M_{-n} is integrable for every $n \geq 0$,
- 2. M is adapted to $(\mathcal{G}_{-n}, n \in \mathbb{N})$,
- 3. $M_{-n-1} = \mathbb{E}[M_{-n}|\mathcal{G}_{-n}]$ a.s. $\forall n \in \mathbb{N}$.

Theorem 27 (Lévy downward theorem).

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and consider $(\mathcal{G}_{-n}, n \in \mathbb{N})$ a decreasing family of sub- σ -algebrar of \mathcal{F} . Let $\xi \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and define

$$M_{-n} = \mathbb{E}[\xi|\mathcal{G}_{-n}].$$

Then:

$$M_{-n} \xrightarrow[n \to +\infty]{} M_{-\infty} = \mathbb{E}[\xi | \mathcal{G}_{-\infty}]$$
 a.s. and in L^1 .

We now give two applications of the notion of decreasing families of σ -algebrae.

5.2 Applications

Theorem 28 (Kolmogorov's 0-1 law).

Let X_1, \ldots, X_n be a sequence of independent random variables and define the σ -algebras

$$\mathcal{T}_n = \sigma(X_{n+1}, X_{n+2}, \ldots), \quad and \quad \mathcal{T} = \bigcap_{n \geq 0} \mathcal{T}_n.$$

Then, if $A \in \mathcal{T}$, we necessarily have $\mathbb{P}(A) = 0$ or 1. In particular, if Z is a \mathcal{T} -measurable random variable, then Z is a.s. constant.

Proof. Define the filtration $\mathcal{F}_n := \sigma(X_1, \dots, X_n)$ and let $A \in \mathcal{T}$. We set $\xi = 1_A$ and define the martingale

$$M_n = \mathbb{E}[\xi|\mathcal{F}_n].$$

Since ξ is bounded, $\xi \in L^1$, hence from Lévy upward theorem, the martingale M is uniformly integrable and converges a.s. towards:

$$M_{\infty} = \lim_{n \to +\infty} \mathbb{E}[\xi | \mathcal{F}_{\infty}].$$

Observe now that, on the one hand, since ξ is \mathcal{F}_{∞} -measurable, we have $M_{\infty} = \xi$. On the other hand, since ξ is measurable with respect to every \mathcal{T}_n , we deduce that ξ is independent of every \mathcal{F}_n , so that

$$\xi = \lim_{n \to +\infty} M_n = \lim_{n \to +\infty} \mathbb{E}[\xi | \mathcal{F}_n] = \lim_{n \to +\infty} \mathbb{E}[\xi] = \mathbb{P}(A)$$

and since ξ can only take the values 0 or 1, so does $\mathbb{P}(A)$. Next, if Z is a \mathcal{T} -measurable random variable, we may choose $A = \{Z \leq t\}$ so that:

$$F_Z(t) = \mathbb{P}(Z < t) = 0 \text{ or } 1,$$

and, as F_Z is right-continuous and increasing, we deduce that there exists $a \in \mathbb{R}$ such that $F_Z(t) = 1_{[a,+\infty[}$, i.e. Z = a a.s.

Theorem 29 (Strong law of large numbers).

Let $(X_i, i \in \mathbb{N})$ be a sequence of i.i.d. random variables with finite first moment. Then:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow[n \to +\infty]{\text{(a.s.)}} \mathbb{E}[X_1].$$

Proof. Define the decreasing filtration:

$$\mathcal{G}_{-n} = \sigma(\overline{X}_n, \overline{X}_{n+1}, \ldots)$$
 and $\mathcal{G}_{-\infty} := \bigcap_{n \in \mathbb{N}} \mathcal{G}_{-n}$.

By independence and symmetry, it is clear that:

$$\mathbb{E}[X_1|\mathcal{G}_{-n}] = \mathbb{E}[X_k|\mathcal{G}_{-n}], \qquad \forall k \le n,$$

so that

$$\mathbb{E}[X_1|\mathcal{G}_{-n}] = \frac{1}{n} \sum_{k=1}^n \mathbb{E}[X_k|\mathcal{G}_{-n}] = \mathbb{E}[\overline{X}_n|\mathcal{G}_{-n}] = \overline{X}_n.$$

Therefore $(\overline{X}_n, n \ge 0)$ is an inverse martingale, which, from Lévy downward theorem converges a.s. towards

$$\overline{X}_n \xrightarrow[n \to +\infty]{(a.s.)} \overline{X}_\infty = \mathbb{E}[X_1 | \mathcal{G}_{-\infty}].$$

Observe furthermore that the random variable $\lim_{n\to+\infty} \overline{X}_n$ is $\mathcal{G}_{-\infty}$ measurable, since it does not depend on the first terms of the sum. By the Kolmogorov's 0-1 law, $\overline{X}_{\infty}=a$ is a.s. constant. But, as the convergence of \overline{X} also holds in L^1 , we deduce that

$$a = \mathbb{E}\left[\overline{X}_{\infty}\right] = \lim_{n \to +\infty} \mathbb{E}\left[\overline{X}_{n}\right] = \lim_{n \to +\infty} \mathbb{E}[X_{1}] = \mathbb{E}[X_{1}].$$

11

6 Continuous-time martingales

6.1 Definition

We now assume that the time parameter belongs to $T = \mathbb{R}^+$. As in the discrete case, the definition of martingale relies on the notion of filtrations.

Definition 30 (Filtration).

A filtration of $(\Omega, \mathcal{F}, \mathbb{P})$ is an increasing family $(\mathcal{F}_t, t \geq 0)$ of sub- σ -algebra of \mathcal{F} :

$$\forall s \leq t, \qquad \mathcal{F}_s \subset \mathcal{F}_t$$

Remark 31.

- i) A filtration is called complete if all negligible sets (the sets N such that $\mathbb{P}(N) = 0$) are included in \mathcal{F}_0 .
- *ii*) A filtration is right-continuous if $\mathcal{F}_t = \bigcap_{s>t} \mathcal{F}_s$.

Definition 32 (Martingale).

A process M is called a martingale with respect to $((\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ if

- i) M_t is integrable for every $t \geq 0$,
- ii) M is adapted, that is, for every $t \geq 0$, the random variable M_t is \mathcal{F}_t -measurable,
- iii) For every $0 \le s \le t$, $M_s = \mathbb{E}[M_t | \mathcal{F}_s]$ a.s.

When dealing with continuous-time stochastic processes, one interesting question is to the study the properties of its paths.

Definition 33. Two processes X and Y defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$ are said to be modifications of each other if, for each t > 0:

$$X_t = Y_t$$
 a.s.

Theorem 34. Let $(M_t, t \ge 0)$ be a martingale with respect to a right-continuous and complete filtration $(\mathcal{F}_t, t \ge 0)$. Then, M has a modification which is a right-continuous and left-limited $(\mathcal{F}_t, t \ge 0)$ -martingale.

Right-continuous and left-limited processes are generally referred as $c\grave{a}dl\grave{a}g$ process, from the French "continus \grave{a} droite, limités \grave{a} gauche".

Theorem 35. Let $(M_t, t > 0)$ be a right-continuous martingale. Then, the foregoing theorems

- i) Doob's optional stopping theorem
- ii) The convergence theorems
- iii) Doob's L^p inequality

remain true for continuous-time martingale, with the obvious adaptation on the time parameter.

6.2 An application to European options

An European call (resp. put) option is a contract which gives the holder the right, but not the obligation, to buy (resp. sell) some underlying asset at a specified price K, at a future date t. A natural question is: how much is the value of such a contract? This depends of course on the nature of the underlying asset $(M_t, t \ge 0)$. In the case of an European call option, the expected profit is $\mathbb{E}[(M_t - K)^+]$, which therefore seems to be a fair price. For an European put option, the expected profit has plainly a symmetric expression $\mathbb{E}[(K - M_t)^+]$. We study in the following the latter quantity, under the assumption that $(M_t, t \ge 0)$ is a positive and continuous martingale which converges a.s. towards $M_{\infty} = 0$.

Theorem 36 (Doob's maximal identity).

The law of the supremum of M is given by :

$$\sup_{s\geq 0} M_s \stackrel{(\text{law})}{=} \frac{M_0}{U}$$

where U is a uniform random variable on [0,1] independent from \mathcal{F}_0 .

Proof. Let $a > M_0$ and set $T_a = \inf\{t \ge 0; M_t = a\}$. Since the process $(M_{t \land T_a}, t \ge 0)$ is bounded by a, we deduce from Doob's optional stopping theorem that:

$$M_0 = \mathbb{E}[M_{T_a}] = a\mathbb{P}(T_a < +\infty | \mathcal{F}_0)$$

as $M_{T_a} = 0$ if $T_a = +\infty$. Thus:

$$\mathbb{P}\left(\sup_{t>0} M_t > a | \mathcal{F}_0\right) = \frac{M_0}{a}.$$

Theorem 37. Let $G_K := \sup\{t \geq 0; M_t = K\}$ denote the last passage time of M to level K. Then, the law of the European put option is given by:

$$\mathbb{E}\left[(K - M_t)^+\right] = K\mathbb{P}(G_K \le t).$$

Proof. Let t > 0 be fixed. Observe first that

$$\{G_K < t\} = \left\{ \sup_{s \ge t} M_s < K \right\}.$$

We now apply Doob's maximal identity to the martingale $(M_{t+s}, s \ge 0)$, in the filtration $(\mathcal{F}_{t+s}, s \ge 0)$:

$$\sup_{s \ge 0} M_{t+s} = \sup_{s \ge t} M_s \stackrel{\text{(law)}}{=} \frac{M_t}{U}$$

where U is a uniform random variable on [0,1] independent from \mathcal{F}_t . Consequently:

$$\mathbb{P}(G_K < t) = \mathbb{P}\left(\sup_{s \ge t} M_s < K\right) = \mathbb{P}\left(\frac{M_t}{U} < K\right) = \mathbb{E}\left[\int_0^1 1_{\left\{\frac{M_t}{K} < x\right\}} dx\right] = \mathbb{E}\left[\left(1 - \frac{M_t}{K}\right)^+\right].$$