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Introduction

In this chapter, we shall define an integration with respect to a family of stochastic processes. But it turns out
that, for continuous martingales, we cannot simply define stochastic integrals via the classical Riemann sums.
Indeed, take for instance a Brownian motion (Bt, t ≥ 0) and assume that you want to define∫ t

0
BsdBs.

Consider a subdivision t0 = 0 < t1 < . . . < tn = t of the segment [0, t]. One natural idea to define such an integral
would be to let n tend to +∞ in

In(ω) =

n−1∑
i=0

Bci(ω)(Bti+1(ω)−Bti(ω)) where ci ∈ [ti, ti+1].

The problem is that this expression highly depends on the choice of ci. For instance:

1. Take ci = ti; then,

E[In] =

n−1∑
i=0

E[Bti(Bti+1 −Bti)] =

n−1∑
i=0

E[Bti ]E[Bti+1 −Bti ] = 0.

2. Take ci = ti+1; then,

E[In] =

n−1∑
i=0

E[Bti+1(Bti+1 −Bti)] =

n−1∑
i=0

E
[
B2

ti+1

]
− E[Bti+1Bti ] =

n−1∑
i=0

(ti+1 − ti) = t.

This remark reflects the fact that the variation of the paths of B are too big to enable us to define this integral
in the classical Riemann-Stieltjes sense, so we shall look for another method.
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1 Quadratic variation

1.1 Definition

Let A be a real-valued, right-continuous function on [0,+∞[. Consider a subdivision ∆ of the interval [0, t] with
0 = t0 < t1 < . . . < tn = t, and modulus |∆| = sup

0≤i≤n−1
|ti+1 − ti|. We define the sum:

V ∆
t =

n−1∑
i=0

|Ati+1 −Ati |.

Definition 1. A function A is said to be of finite variation if for every t ≥ 0:

Vt = sup
∆
V ∆
t < +∞.

The function t→ Vt is called the total variation of A.

In particular, for any locally bounded Borel function f on [0,+∞[, the Stieltjes integral with respect to a contin-
uous function of finite variation A is well defined by:∫ t

0
f(s)dAs = lim

|∆|→0

n−1∑
i=0

f(si)(Asi+1 −Asi).

Note that from Young, this integral is also known to be well-defined if f is α-Hölder continuous and A is β-Hölder
continuous, with α+ β > 1.

Example 2. We discuss below two special cases:

1. If A is increasing, then A is plainly of finite variation since, for any subdivision, V ∆
t = At−A0. In particular,

for As = s, we recover the classical Riemann integral :∫ t

0
f(s)dAs = lim

|∆|→0

n−1∑
i=0

f(si)(si+1 − si).

2. If A is a C1-class function, then A is also of finite variation since

V ∆
t =

n−1∑
i=0

|Ati+1 −Ati | ≤
n−1∑
i=0

∫ ti

ti+1

|A′s|ds ≤
∫ t

0
|A′s|ds,

and the Stieltjes integral with respect to A actually reads :∫ t

0
f(s)dAs =

∫ t

0
f(s)A′sds.

Definition 3. A stochastic process A is said to be of finite variation if it is adapted and if for almost every
ω, the function t→ At(ω) is of finite variation.

Therefore, if X is a locally bounded process and A a continuous process with finite variation, we may define a
stochastic integral with respect to A for almost every ω by:∫ t

0
Xs(ω)dAs(ω).

Unfortunately, this construction turns out to be useless for martingales due to the following result.
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Proposition 4. A continuous martingale M is of finite variation if and only if it is constant.

Proof. We assume without loss of generality that M0 = 0. Let Vt denote the variation of M on the interval [0, t]
and assume first that Vt is bounded by a constantK. Let ∆ be a subdivision of [0, t] with 0 = t0 < t1 < . . . < tn = t:

E
[
M2

t

]
= E

[
n−1∑
i=0

(M2
ti+1
−M2

ti)

]
= E

[
n−1∑
i=0

(Mti+1 −Mti)
2

]

≤ E
[
Vt sup

0≤i≤n−1
|Mti+1 −Mti |

]
≤ KE

[
sup

0≤i≤n−1
|Mti+1 −Mti |

]
−−−−→
|∆|→0

0

since M is continuous. Therefore M = 0 a.s. Now to remove the assumption that the variation of M is bounded
by a constant, consider for any integer n the stopping time :

Tn = inf{t ≥ 0, Vt ≥ n}.

The above computation shows that for any n ≥ 1, the martingale MTn is null, hence Fatou’s lemma yields:

E
[
M2

t

]
= E

[
lim

n→+∞
M2

t∧Tn

]
≤ lim

n→+∞
E
[
M2

t∧Tn

]
= 0,

which ends the proof.

�

This proposition prevents us from constructing a stochastic integral by a path by path procedure. We shall there-
fore use a different approach.

Theorem 5. A continuous and bounded martingale M is of finite quadratic variation and there exists
a unique continuous increasing and adapted process 〈M,M〉 vanishing at 0 such that M2 − 〈M,M〉 is a
martingale. For any subdivision ∆n of the interval [0, t] with 0 = t0 < t1 < . . . < tn = t and such that

lim
n→+∞

|∆n| = 0,

n∑
i=1

(Mti −Mti−1)2 (prob)−−−−−→
n→+∞

〈M,M〉t.

This process is called the quadratic variation of M .

Note that the uniqueness of 〈M,M〉 is an easy consequence of Proposition 4. Indeed, if M2 −A and M2 −B are
martingales, then by difference, so is A−B, but as a finite variation, it must be almost surely constant, and thus
equal to 0.

Remark 6. We have seen previously that Brownian motion is indeed a continuous martingale, but as it is not
bounded, we cannot apply directly Theorem 5. Observe nonetheless that all the results stated remain true for
Brownian motion. Indeed, we have seen that the process (B2

t − t, t ≥ 0) is a martingale, hence we may set

〈B,B〉t = t.

Besides, let ∆n be a subdivision of the interval [0, t] with 0 = t0 < t1 < . . . < tn = t. By the independence of the
increments of Brownian motion:

n∑
i=1

(Bti −Bti−1)2 (law)
=

n∑
i=1

(ti − ti−1)G2
i
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where the (Gi) are i.i.d standard Gaussian random variables. Therefore:

E

( n∑
i=1

(Bti −Bti−1)2 − t

)2
 = E

( n∑
i=1

(ti − ti−1)(G2
i − 1)

)2


=
n∑

i=1

E
[(

(ti − ti−1)(G2
i − 1)

)2]
=

n∑
i=1

(ti − ti−1)2E
[
G4

i − 2G2
i + 1

]
= 2

n∑
i=1

(ti − ti−1)2

≤ 2t sup
1≤i≤n

|ti − ti−1|.

Letting n tend to +∞, we deduce that

n∑
i=1

(Bti −Bti−1)2 L2

−−−−−→
n→+∞

t

hence, also in probability.

To encompass Brownian motion (and more generally unbounded martingales) in the previous theorem, we shall
use the idea of localization.

1.2 Local martingales

Definition 7. An adapted right-continuous process M is a (Ft)-local martingale if there exists a sequence
of stopping times Tn, n ≥ 1 such that :

i) the sequence (Tn) is increasing and lim
n→∞

Tn = +∞ a.s.

ii) for every n, the process MTn1{Tn>0} is a (Ft)-martingale.

In particular, any right-continuous martingale is a local martingale, as is seen by taking Tn = n. This is of course
the case of Brownian motion.

Remark 8. Let M be a local martingale.

1. If there exists an integrable random variable Z such that for every t ≥ 0, |Mt| ≤ Z, then M is a martingale.

2. If M0 = 0, then the sequence
Tn = inf{t ≥ 0, |Mt| = n}

reduces M .

We have the analogue of Theorem 5 for local martingales.

Theorem 9. If M is a continuous local martingale, then there exists a unique continuous increasing process
〈M,M〉 vanishing at 0 such that M2 − 〈M,M〉 is a continuous local martingale. For any subdivision ∆n of
the interval [0, t] with 0 = t0 < t1 < . . . < tn = t and such that lim

n→+∞
|∆n| = 0,

n∑
i=1

(Mti −Mti−1)2 (prob)−−−−−→
n→+∞

〈M,M〉t.

This process is called the quadratic variation of M .
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More generally, we may look at the bracket of 2 different local martingales.

Theorem 10. If M and N are two continuous local martingales, then there exists a unique continuous
process 〈M,N〉 with finite variation and vanishing at 0 such that MN − 〈M,N〉 is a continuous local
martingale. For any subdivision ∆n of the interval [0, t] with 0 = t0 < t1 < . . . < tn = t and such that

lim
n→+∞

|∆n| = 0,

n∑
i=1

(Mti −Mti−1)(Nti −Nti−1)
(prob)−−−−−→
n→+∞

〈M,N〉t.

This process is called the quadratic variation of M and N .

Proof. The process

〈M,N〉 =
1

4
(〈M +N,M +N〉 − 〈M −N,M −N〉)

is seen to have the desired properties.

�

Observe in particular that the map (M,N) 7−→ 〈M,N〉 is bilinear and symmetric. The quadratic variation be-
haves well with respect to stopping times.

Corollary 11. For any stopping time T :

〈MT , NT 〉 = 〈M,NT 〉 = 〈M,N〉T .

Proof. By Doob’s optional stopping theorem, the processes MTNT − 〈M,N〉T and MTN − 〈M,N〉T are mar-
tingales, hence the result is a consequence of the uniqueness of the bracket.

�

Proposition 12. The quadratic variation of a continuous local martingale M is null if and only if M is
a.s. constant.

Proof. Assume first that M is bounded. Then, M is a bounded martingale and for every t ≥ 0, E[(Mt−M0)2] =
E[〈M,M〉t] = 0, hence M is a.s. constant. The general case follows by localization with Tn = inf{t ≥ 0;Mt = n}
and by applying Fatou’s lemma.

�

We conclude this section by stating a crucial inequality which will be at the heart of the construction of a stochas-
tic integral with respect to a continuous local martingale.

Theorem 13 (Kutani-Watanabe inequality).
Let M,N be two continuous local martingales. For any measurable processes K and H, and any t ∈ [0,+∞],
there is the inequality∣∣∣∣∫ t

0
HsKsd〈M,N〉s

∣∣∣∣ ≤ (∫ t

0
H2

sd〈M,M〉s
)1/2(∫ t

0
K2

sd〈N,N〉s
)1/2

.

Proof. For s < t, set 〈M,N〉ts = 〈M,N〉t − 〈M,N〉s. Since (M,N) 7−→ 〈M,N〉ts is a bilinear map, we have for
r ∈ R:

〈M,M〉ts + 2r〈M,N〉ts + r2〈N,N〉ts = 〈M + rN,M + rN〉ts ≥ 0,

which implies, from the classical quadratic form argument, that :

|〈M,N〉ts| ≤
√
〈M,M〉ts

√
〈N,N〉ts.
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Let ∆n be a subdivision of the interval [0, t] with 0 = t0 < t1 < . . . < tn = t and assume that

K = K01]0,t1] + . . .+Kn−11]tn−1,tn]

where the Ki’s are bounded random variables, and similarly for H. Then,∣∣∣∣∫ t

0
HsKsd〈M,N〉s

∣∣∣∣ ≤ n−1∑
i=0

|HiKi||〈M,N〉ti+1

ti
|

≤
n−1∑
i=0

|HiKi|
√
〈M,M〉ti+1

ti

√
〈N,N〉ti+1

ti
.

Next, the Cauchy-Schwarz inequality for the summation over i gives :

n−1∑
i=0

|HiKi|
√
〈M,M〉ti+1

ti

√
〈N,N〉ti+1

ti
≤

(
n−1∑
i=0

H2
i 〈M,M〉ti+1

ti

)1/2(n−1∑
i=0

K2
i 〈N,N〉

ti+1

ti

)1/2

=

(∫ t

0
H2

sd〈M,M〉s
)1/2(∫ t

0
K2

sd〈N,N〉s
)1/2

.

The proof is then concluded by some density arguments, and the case t = +∞ follows by taking increasing limits.

�

2 Stochastic integrals

Since we cannot naturally construct the stochastic integral by an almost sure convergence, we shall look first at
L2 convergence.

2.1 Construction for martingales bounded in L2

We start with a few definitions.

Definition 14 (Progressively measurable process).
A process K is progressively measurable with respect to the filtration (Ft, t ≥ 0) if, for every t, the map

K [0, t]× Ω −→ (E, E)
(s, ω) 7−→ Ks(ω)

is measurable with respect to B([0, t])×Ft.

Definition 15. We denote by H2 the space of continuous martingales M which are bounded in L2:

sup
t≥0

E
[
M2

t

]
< +∞,

and by H2
0 = {M ∈ H2; M0 = 0}. H2 is a Hilbert space with scalar product :

(M,N) 7−→ E[M∞N∞].

For a martingale in H2, we denote by L2(M) the space of (equivalence classes) of progressively measurable
processes such that:

‖K‖2M = E
[∫ +∞

0
K2

sd〈M,M〉s
]
< +∞.
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Theorem 16. Let M ∈ H2. For each K ∈ L2(M), there exists a unique continuous martingale of H2
0 ,

which we denote by K �M such that, for every N ∈ H2:

〈K �M, N〉 =

∫ �

0
Ksd〈M,N〉s.

The map K 7−→ K �M is an isometry from L2(M) into H2
0 .

Proof.
a) To prove the uniqueness, assume that L1 and L2 are two martingales of H2

0 such that for every N ∈ H2,
〈L1, N〉 = 〈L2, N〉 . Taking N = L1−L2, we obtain in particular 〈L1 − L2, L1 − L2〉 = 0, which, from Proposition
12 implies that L1 = L2.
b) Assume first that M ∈ H2

0 and observe that in this case ‖M‖H2 = E [〈M,M〉∞] . By the Kunita-Watanabe
inequality, for every N ∈ H2

0 : ∣∣∣∣E [∫ +∞

0
Ksd 〈M, N〉s

]∣∣∣∣ ≤ ‖N‖H2‖K‖M ,

so the map

N 7−→ E
[∫ +∞

0
Ksd 〈M, N〉s

]
is a linear and continuous form on the Hilbert space H2

0 , and consequently from Riesz representation theorem,
there exists an element K �M in H2

0 such that

E
[∫ +∞

0
Ksd 〈M, N〉s

]
= E[(K �M)∞N∞] (1)

for every N ∈ H2
0 . Let T be a bounded stopping time. Since martingales in H2 are uniformly bounded, we may

write:

E [(K �M)TNT ] = E [E [(K �M)∞|FT ]NT ]

= E [(K �M)∞NT ]

= E
[
(K �M)∞N

T
∞
]
.

Then, applying Relation (1) with the martingale NT , we obtain:

E
[
(K �M)∞N

T
∞
]

= E
[∫ +∞

0
Ksd

〈
M, NT

〉
s

]
= E

[∫ +∞

0
Ksd 〈M, N〉s∧T

]
= E

[∫ T

0
Ksd 〈M, N〉s

]
.

Therefore, by the converse of Doob’s optional stopping theorem, the process

(K �M)N −
∫ �

0
Ksd 〈M, N〉s

is a martingale, and the equality of Theorem 16 follows by unicity of the quadratic variation of a martingale.
Furthermore, from (1) with N = K �M :

‖K �M‖2H2 = E
[
(K �M)2

∞
]

= E
[∫ +∞

0
Ksd 〈M, K �M〉s

]
= E

[∫ +∞

0
K2

sd 〈M, M〉s
]

= ‖K‖2M

which is the announced isometry. The assumptions that M and H belong to H2
0 may be removed by writing

N = (N −N0) +N0 and M = (M −M0) +M0, since the bracket of a martingale with a constant is 0.
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�

Definition 17. The martingale K �M is called the stochastic integral of K with respect to M and is denoted
by

K �M =

∫ �

0
KsdMs.

This notation is justified by the following remark: take, for 0 = t0 < t1 < . . . , < tn = t, the elementary process

K =
n−1∑
i=0

Ki1]ti,ti+1](u)

where the (Ki) are Fti-measurable. Then∫ s

0

n−1∑
i=0

Ki1]ti,ti+1](u)d 〈M, N〉u =

n−1∑
i=0

Ki

(
〈M, N〉s∧ti+1

− 〈M, N〉s∧ti
)

=

n−1∑
i=0

Ki

(〈
M ti+1 , N

〉
s
−
〈
M ti , N

〉
s

)
=

n−1∑
i=0

Ki

〈
M ti+1 −M ti , N

〉
s

=
n−1∑
i=0

〈
Ki(M

ti+1 −M ti), N
〉
s

=

〈
n−1∑
i=0

Ki(M
ti+1 −M ti), N

〉
s

.

Therefore, we deduce by uniqueness that∫ s

0

n−1∑
i=0

Ki1]ti,ti+1](u)dMu =
n−1∑
i=0

Ki(Ms∧ti+1 −Ms∧ti)

which is as expected ! But, as before, this construction cannot by applied directly to Brownian motion since it
does not belong to H2. We therefore (once again) rely on a localization argument.

2.2 Construction for semimartingales

Definition 18. If M is a continuous local martingale, we denote by L2
loc(M) the space of (equivalence

classes) of progressively measurable processes K such that there exists a sequence of stopping times (Tn)
increasing to +∞ such that

E
[∫ Tn

0
K2

sd〈M,M〉s
]
< +∞.

Theorem 19. For any K ∈ L2
loc(M), there exists a unique continuous local martingale vanishing at 0,

which we denote by K �M such that, for every continuous local martingale N :

〈K �M, N〉 =

∫ �

0
Ksd〈M,N〉s.

Again, K �M is alternatively written:

K �M =

∫ �

0
KsdMs.
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This theorem implies in particular that the Itô integral with respect to Brownian motion is a continuous local
martingale.

Definition 20. A progressively measurable process K is locally bounded if there exists a sequence (Tn) of
stopping times increasing to infinity and constants Cn such that:

|KTn | ≤ Cn.

We may also include the finite variation processes via the following definition.

Definition 21 (Semimartingale).
A continuous (Ft)-semimartingale is a continuous process X which can be written as

X = M +A

where M is a continuous (Ft)-local martingale and A is a continuous adapted process with finite variation. If
K is a locally bounded process, the stochastic integral of K with respect to X is the continuous semimartingale
defined by ∫ �

0
KsdXs =

∫ �

0
KsdMs +

∫ �

0
KsdAs.

Proposition 22. Let X be a continuous semimartingale. The map K 7−→ K � X enjoys the following
properties:

1. (Associativity) For any pair of locally bounded processes K and H, we have∫ �

0
Hs d

(∫ s

0
KudXu

)
=

∫ �

0
HsKsdXs.

2. (Localization) For every stopping time T :(∫ �

0
KsdXs

)T

=

∫ �

0
Ks1[0,T ](s)dXs =

∫ �

0
KsdX

T
s .

The following result, which is a counterpart of the classical Lebesgue dominated converge theorem, will be of
foremost importance in the sequel.

Theorem 23 (Stochastic dominated convergence theorem).
Let X be a continuous semimartingale. If (Kn) is a sequence of locally bounded processes converging to zero
pointwise and if there exists a locally bounded process K such that |Kn| ≤ K for every n ≥ 1, then :

sup
s≤t

∣∣∣∣∫ s

0
Kn

udXu

∣∣∣∣ (prob)−−−−−→
n→+∞

0.

A consequence of the stochastic dominated convergence theorem is the convergence in probability of the Riemann
sums.

Proposition 24. If K is left-continuous and locally bounded, and |∆n| is a sequence of subdivisions of [0, t]
such that |∆n| → 0, then ∑

ti∈∆n

Kti(Xti+1 −Xti)
(prob)−−−−−→
n→+∞

∫ t

0
Ks dXs.
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3 Itô’s formula

As with the Riemann integrals, the basic definition of stochastic integrals is not really helpful to compute explicitly
their value. We shall therefore develop some ”tools” such as integration by parts and change of variable formulae.

3.1 Theorem

Proposition 25 (Integration by part).
If X and Y are two continuous semimartingales, then:

Xt Yt = X0 Y0 +

∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈X,Y 〉t.

In particular:

X2
t = X2

0 + 2

∫ t

0
XsdXs + 〈X,X〉t.

Proof. If ∆ is a subdivision of [0, t] with 0 = t0 < . . . < tn = t, we have:

n−1∑
i=0

(Xti+1 −Xti)
2 = X2

t −X2
0 − 2

n−1∑
i=0

Xti(Xti+1 −Xti)

and letting the mesh |∆| tend to zero, this quantity converges in probability towards :

〈X,X〉t = X2
t −X2

0 − 2

∫ t

0
XsdXs.

Next, by polarization,

〈X,Y 〉 =
1

4
(〈X + Y,X + Y 〉 − 〈X − Y,X − Y 〉)

=
1

4

(
(Xt + Yt)

2 − (X0 + Y0)2 − 2

∫ t

0
(Xs + Ys)d(Xs + Ys)

−(Xt − Yt)2 + (X0 − Y0)2 + 2

∫ t

0
(Xs − Ys)d(Xs − Ys)

)
and the result follows by developing this last expression.

�

Remark 26. If X and Y are of finite variation, then 〈X,Y 〉 = 0 and we recover the classical integration by parts
formula for Stieltjes integrals. Note also that this formula gives an integral representation of the continuous local
martingale M2 − 〈M,M〉.

Theorem 27 (Itô’s formula).
Let X = (X1, . . . , Xn) be n continuous semimartingales, and F ∈ C2(Rn,R). Then F (X1, . . . , Xn) is also
a continuous semimartingale and:

F (X1
t , . . . , X

n
t )

= F (X1
0 , . . . , X

n
0 ) +

n∑
i=1

∫ t

0

∂F

∂xi
(X1

s , . . . , X
n
s )dXi

s +
1

2

n∑
i,j=1

∫ t

0

∂2F

∂xi∂xj
(X1

s , . . . , X
n
s )d〈Xi, Xj〉s

Proof. Observe first that iterating the integration by part formula, the result is seen to be true for any poly-
nomial. Now, by localization, we may assume that X takes its values in a compact set K ⊂ Rn. But, by the
Stone-Weierstrass theorem, any C2(K,R) function is the limit of C2(K,R) polynomial, hence the result follows by
applying the ordinary and stochastic dominated convergence theorems.
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Remark 28. The differentiability properties of F may be relaxed if some of the Xi are of finite variation. Indeed,
in this case, all the brackets which include Xi are null, so F need only be of C1-class in the corresponding
coordinate. In particular, if X is a semimartingale and A is a process of finite variation, then, for F ∈ C2,1(R2,R):

F (Xt, At) = F (X0, A0) +

∫ t

0

∂F

∂x
(Xs, As)dXs +

∫ t

0

∂F

∂y
(Xs, As)dAs +

1

2

∫ t

0

∂2F

∂x2
(Xs, As)d〈X, X〉s.

3.2 Applications

We now give a few applications of the Itô formula.

Theorem 29 (Lévy’s characterization theorem).
Let X = (X(1), . . . , X(n)) be a (Ft)-adapted continuous process vanishing at 0. Then, the following two
conditions are equivalent:

1. X is a n-dimensional (Ft)-Brownian motion

2. X is a continuous local martingale such that, for any 1 ≤ i, j ≤ n, the bracket of X(i) and X(j) is
given by

〈X(i), X(j)〉t = δij t (δij = 1{i=j}).

Proof From Itô’s formula, for λ = (λ1, . . . , λn), the process(
exp

(
i

n∑
k=1

λkX
(k)
t +

t

2

n∑
k=1

λ2
k

)
, t ≥ 0

)

is a continuous (complex-valued) local martingale. But since it is bounded, it is a true martingale. Let s < t and
take A ∈ Fs. The martingale property yields

E

[
1A exp

(
i

n∑
k=1

λk(X
(k)
t −X(k)

s )

)]
= E

[
E

[
exp

(
i

n∑
k=1

λkX
(k)
t

)
|Fs

]
1A exp

(
−i

n∑
k=1

λkX
(k)
s )

)]

= P(A) exp

(
−(t− s)

2

n∑
k=1

λ2
k

)
.

Therefore, the increment Xt −Xs is a centered Gaussian vector of covariance matrix (t− s)In (where In denotes
the identity matrix of order n) which is independent from Fs. This implies that X is a n-dimensional Brownian
motion.

�

Theorem 30. Let (Bt, t ≥ 0) be a standard Brownian motion and denote by (FB
t , t ≥ 0) its natural filtration.

Let M be a continuous (FB
t )-local martingale. Then M has a version which may be written

Mt = x+

∫ t

0
HsdBs

where x ∈ R and H is a progressively measurable process which is locally in L2(B). In particular, any
(FB

t )-local martingale has version which is continuous.

4 Local times

We have seen that the Itô formula is a very powerful tool in stochastic calculus, but it requires to work with
C2-function. We shall now extend it to convex functions via the notion of local times of a semimartingale.

11



4.1 Definitions

Theorem 31. Let f be a convex function. If X is a continuous semimartingale, then there exists a contin-
uous increasing process Af such that

f(Xt) = f(X0) +

∫ t

0
f ′−(Xs)dXs +

1

2
Af

t .

Proof. If f is of C2-class, then Itô’s formula yields Af
t =

∫ t
0 f
′′(Xs)d〈X,X〉s. To get the general case, we shall

use an approximation of the identity. Let ϕ : [0, 1] −→ R+ be a C∞-function with compact support and such that∫ 1
0 ϕ(x)dx = 1. We define

ϕn(x) = nϕ(nx) and fn(x) =

∫
R
f(x− y)ϕn(y)dy.

In particular, fn is a C∞-function andfn(x) =
∫
R f
(
x− y

n

)
ϕ
( y
n

) dy
n −−−−−→n→+∞

f(x−)

f ′n(x) −−−−−→
n→+∞

f ′−(x).

Now, from Itô’s formula,

fn(Xt) = fn(X0) +

∫ t

0
f ′n(Xs)dXs +

1

2
Afn

t .

Furthermore, by stopping, we may assume that X is bounded, hence so is f ′−(X) since it is increasing. Letting n
tend to +∞, and applying the stochastic dominated convergence theorem, this is seen to converge in probability
to

f(Xt) = f(X0) +

∫ t

0
f ′−(Xs)dXs +

1

2
Af

t

where Af is an increasing process, as limit of increasing processes. Finally, Af can now be chosen a.s. continuous,
which ends the proof.

�

Remark 32. This theorem implies that if X is a semimartingale and f is a convex function, then f(X) remains
a semimartingale.

Corollary 33 (Tanaka formula).
Let X be a continuous semimartingale. For any a ∈ R, there exists an increasing and continuous process
(La

t , t ≥ 0) called the local time of X at level a such that

|Xt − a| = |X0 − a|+
∫ t

0
sgn(Xs − a)dXs + La

t

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x ≤ 0.

Proof. The functions x 7−→ (x− a)± are convex and continuous hence:
(Xt − a)+ = (X0 − a)+ +

∫ t

0
1{Xs>a}dXs +

1

2
A+

t ,

(Xt − a)− = (X0 − a)− +

∫ t

0
1{Xs≤a}dXs +

1

2
A−t .

By subtraction, we deduce that A+
t = A−t and we set La

t = A+
t . The result then follows by adding the two identity.

�
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Since t 7−→ La
t is increasing, we may define a random measure dLa on R+. The following result shows that dLa

measures, in some sense, the time spent by X at level a.

Proposition 34. The measure dLa is a.s. carried by the set {t ∈ R+, Xt = a}.

Proof. The process |X − a| being a semimartingale, we may apply Itô’s formula with the function x 7−→ x2 to
obtain :

(Xt − a)2 = (X0 − a)2 + 2

∫ t

0
|Xs − a|d|Xs − a|+ 〈|X − a|, |X − a|〉s

= (X0 − a)2 + 2

∫ t

0
|Xs − a|sgn(Xs − a)dXs + 2

∫ t

0
|Xs − a|dLa

t + 〈X,X〉t

On the other hand, Itô’s formula applied to X with the function x 7−→ (x− a)2 yields :

(Xt − a)2 = (X0 − a)2 + 2

∫ t

0
(Xs − a)dXs + 〈X,X〉t

and the comparison of both formulae gives∫ t

0
|Xs − a|dLa

s = 0 a.s.

�

4.2 The Itô-Tanaka formula

We now give an extension of Itô’s formula to convex functions.

Theorem 35 (Itô-Tanaka formula).
Let X be a continuous semimartingale. If f is the difference of two convex functions, then

f(Xt) = f(X0) +

∫ t

0
f ′−(Xs)dXs +

1

2

∫
R
La
t f
′′(da).

Comparing the Itô’s formula and the Itô-Tanaka formula when f is of C2-class, we deduce the following corollary.

Corollary 36 (Occupation times formula).
For every t ≥ 0 and every positive Borel function f ,∫ t

0
f(Xs)d〈X,X〉s =

∫
R
f(a)La

t da a.s.

The occupation time formula is then the key ingredient in the proof of the following theorem.

Theorem 37. Let X be a continuous semimartingale. There exists a modification of the process (La
t , a ∈

R, t ∈ R+) such that the map (t, a) 7−→ La
t is a.s. continuous in t and càdlàg in a. Furthermore, almost

surely

La
t = lim

ε→0

1

ε

∫ t

0
1[a,a+ε[(Xs)d〈X,X〉s,

for every a and t.
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4.3 The local time of Brownian motion

We now study the special case of Brownian motion.

Lemma 38 (Skorokhod). Let f be a real-valued continuous function on [0,+∞[ such that f(0) = 0. There
exists a unique pair (g, `) of functions defined on [0,+∞[ such that

i) g = f + `

ii) g is positive

iii) ` is continuous, increasing, vanishing at 0 and and

∫ +∞

0
1]0,+∞[(g(t))d`(t) = 0.

The function ` is given by:
`(t) = sup

s≤t
(−f(s)).

Proof. Observe first that the pair `(t) = sup
s≤t

(−f(s)) and g = f + ` satisfies Properties i) through iii). To prove

uniqueness, assume there exists two pairs (g1, `1) and (g2, `2) satisfying Properties i) through iii). Then, by the
integration by parts formula, since ` has finite variation,

0 ≤ (`1(t)− `2(t))2 = 2

∫ t

0
(`1(s)− `2(s))d(`1(s)− `2(s)) = 2

∫ t

0
(g1(s)− g2(s))d(`1(s)− `2(s))

Thanks to iii), this reduces to

0 ≤ (`1(t)− `2(t))2 ≤ −2

∫ t

0
g1(s)d`2(s)− 2

∫ t

0
g2(s)d`1(s) ≤ 0

which concludes the proof.

�

Theorem 39 (Lévy).
Let (Bt, t ≥ 0) be a Brownian motion started from 0, S its running supremum and L its local time at 0.
Then, the two-dimensional processes ((St −Bt, St), t ≥ 0) and ((|Bt|, Lt), t ≥ 0) have the same law.

Proof. On one hand, by Tanaka’s formula :

|Bt| =
∫ t

0
sgn(Bs)dBs + Lt.

But, since

(
βt =

∫ t

0
sgn(Bs)dBs, t ≥ 0

)
is a a local martingale whose quadratic variation equals 〈β, β〉t = t,

Lévy’s characterization theorem implies that β is a Brownian motion and the decomposition reads :

|Bt| = βt + Lt.

On the other hand, plainly, St −Bt = −Bt + St, thus from Skorokhod’s lemma, one obtain S and S −B (resp. L
and |B|) from −B (resp. β) by the same deterministic procedure. But since −B and β have the same law, the
proof is finished.

�
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