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Introduction

Let (Bt, t ≥ 0) be a Brownian motion in Rd. In this lesson, we are interested in solving stochastic differential
equations of the form :

Xt = X0 +

∫ t

0
σ(s,Xs)dBs +

∫ t

0
b(s,Xs)ds

where X0 is a given random variable, b : R+×Rn −→ R is a measurable vector-valued function and σ : R+×Rn −→
Mn×d(R) is a measurable matrix-valued function. For any i ∈ {1, . . . , n}, we thus have componentwise :

X
(i)
t = X

(i)
0 +

∫ t

0

d∑
j=1

σij(s,Xs)dB
(j)
s +

∫ t

0
bi(s,Xs)ds.

Such an equation may also be written in a differential form:{
dXt = σ(t,Xt)dBt + b(t,Xt)dt,

X0 a given random variable.

We start with a few examples in dimension one.

Example 1.

i) (Brownian motion with drift) Take X0 = x ∈ R, b ∈ R and σ = 1. Then Xt = x + Bt + bt is a Brownian
motion with drift.

ii) (Ornstein-Uhlenbeck process) Consider the SDE :{
dXt = dBt − λXtdt,

X0 = x.

The solution of this equation is given by Xt = xe−λt + e−λt
∫ t

0 e
λsdBs and is called an Ornstein-Uhlenbeck

process of parameter λ. X is a Gaussian process which has many applications in physics, when modeling for
instance the displacement of particles in a fluid.
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iii) (Geometric Brownian motion) Consider the SDE :{
dXt = σXtdBt + µXtdt,

X0 = x.

The solution of this equation is given by Xt = x exp
(
σBt +

(
µ− σ2

2

)
t
)

and is called a geometric Brownian

motion. This process was used by Black, Merton and Scholes to model the prices of assets in their celebrated
work on options pricing.

1 Definitions

To study stochastic differential equations, we must first define the notion of solution, as well as the notion of
uniqueness. Let (Bt, t ≥ 0) be Brownian motion in Rd defined on a filtered space (Ω,F , (Ft, t ≥ 0),P) and denote
by (FBt , t ≥ 0) its natural filtration completed with respect to P. Consider the SDE

Xt = X0 +

∫ t

0
σ(s,Xs)dBs +

∫ t

0
b(s,Xs)ds. (∗)

1.1 Definition of solutions

Definition 2 (Solution).
A solution of the stochastic differential equation (∗) is a pair (X,B) of adapted processes defined on a filtered
probability space (Ω,F , (Ft, t ≥ 0),P) such that

i) B is a (Ft)-Brownian motion in Rd

ii) For every 1 ≤ i ≤ n,

∫ t

0
|bi(s,Xs)|ds+

d∑
j=1

∫ t

0
σ2
ij(s,Xs)ds < +∞ a.s.

iii) The pair (X,B) satisfies Equation (∗) a.s.

Remark 3. In particular, a solution is a continuous semimartingale. Note also that Condition ii) may be replaced
by b and σ are locally bounded.

Definition 4 (Strong and weak solution).
A solution (X,B) of the stochastic differential equation (∗) is said to be strong if X is adapted to the
filtration (FBt ). A solution which is not strong will be called weak.

Example 5. Consider the SDE:

Xt =

∫ t

0
sgn(Xs)dBs.

By Lévy’s characterization theorem, X is a Brownian motion and this SDE admits a weak solution. However,
this solution is not strong. Indeed, assume that FXt ⊂ FBt . From Tanaka’s formula

Bt =

∫ t

0
sgn(Xs)dXs = |Xt| − L0

t (X)

so we deduce that FBt ⊂ F
|X|
t , hence FXt ⊂ F

|X|
t which is a contradiction.
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1.2 Uniqueness

Definition 6 (Uniqueness).

1. There is pathwise uniqueness for the stochastic differential equation (∗) if whenever (X(1), B) and
(X(2), B) are two solutions defined on the same filtered probability space with respect to the same

Brownian motion and X
(1)
0 = X

(2)
0 a.s. then:

P
(
X

(1)
t = X

(2)
t , ∀ 0 ≤ t < +∞

)
= 1.

2. There is uniqueness in law for the stochastic differential equation (∗) if whenever (X(1), B(1)) and

(X(2), B(2)) are two solutions, with possibly different Brownian motions, and X
(1)
0

(law)
= X

(2)
0 , then the

laws of X(1) and X(2) are equal.

Remark 7. It may be proven that pathwise uniqueness implies uniqueness in law, although it does not seem
obvious from the definition.

Example 8. Consider the stochastic differential equation

Xt = X0 +Bt +

∫ t

0
b(s,Xs)ds

where (Bt, t ≥ 0) is a standard Brownian motion and b : R+ × R −→ R is a measurable and bounded function
which is decreasing in the space variable. Then pathwise uniqueness holds for this equation. Indeed, assume that

(X(1), B) and (X(2), B) are two solutions with respect to the same Brownian motion and that X
(1)
0 = X

(2)
0 a.s.

By subtraction, we have

X
(1)
t −X

(2)
t =

∫ t

0

(
b(s,X(1)

s )− b(s,X(2)
s )
)
ds

hence the integration by parts formula yields :

(X
(1)
t −X

(2)
t )2 = 2

∫ t

0
(X(1)

s −X(2)
s )d(X(1) −X(2))t = 2

∫ t

0
(X(1)

s −X(2)
s )

(
b(s,X(1)

s )− b(s,X(2)
s )
)
ds ≤ 0

since b is decreasing in its space variable. Therefore, for any t ≥ 0, X
(1)
t = X

(2)
t a.s. and pathwise uniqueness

follows since X(1) and X(2) are a.s. continuous.

Example 9. Consider (once again) the SDE:

Xt =

∫ t

0
sgn(Xs)dBs.

This SDE admits uniqueness in law since X is a Brownian motion. However, the pair (−X,B) is also a weak
solution, hence there is no pathwise uniqueness.

2 Existence and uniqueness of strong solutions

Let (Bt, t ≥ 0) be Brownian motion in Rd with natural filtration (FBt , t ≥ 0) and consider the stochastic differential
equation {

dXt = σ(t,Xt)dBt + b(t,Xt)dt,

X0 a given random variable.

where b : R+ × Rn −→ R is a measurable vector-valued function and σ : R+ × Rn −→Mn×d(R) is a measurable
matrix-valued function. We consider the L2 norms

‖b‖22 =

n∑
i=1

b2i and ‖σ‖22 =

n∑
i=1

d∑
j=1

σ2
ij .
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Assume that X0 is independent from FB∞ and define the augmented filtration

Gt = σ(X0) ∨ FBt = σ(X0, Bt; 0 ≤ s ≤ t)

as well as the collection of null sets

N = {N ∈ Ω, ∃A ∈ G∞ such that N ⊂ A and P(A) = 0}.

We finally set :
Ft = σ(Gt ∪N ).

(Ft, t ≥ 0) is a filtration with satisfy the usual conditions (i.e. which is right-continuous and complete), and B
remains a Brownian motion with respect to (Ft, t ≥ 0).

Theorem 10. Assume that the coefficients b and σ satisfy

i) a global Lipschitz condition

∃K > 0, ∀x, y ∈ Rn, ‖b(t, x)− b(t, y)‖2 + ‖σ(t, x)− σ(t, y)‖2 ≤ K‖x− y‖2,

ii) and a linear growth condition

∃K > 0, ∀x ∈ Rn, ‖b(t, x)‖22 + ‖σ(t, x)‖22 ≤ K2(1 + ‖x‖2),

iii) and that X0 is independent from B with E[‖X0‖2] < +∞.

Then, the SDE (∗) has a pathwise unique strong solution, and for any T > 0, there exists a constant C,
which only depends on K and T , such that

E
[
‖Xt‖2

]
≤ C(1 + E

[
‖X0‖2

]
)eCt 0 ≤ t ≤ T.

The proof of this result is based on an approximation procedure,X
(0)
t = X0

X
(k+1)
t = X0 +

∫ t

0
σ(s,X(k)

s )dBs +

∫ t

0
b(s,X(k)

s )ds

by proving that the sequence of processes X(k) is a Cauchy sequence in the Banach space C([0, T ],R) for any
T > 0. The required estimates are obtained thanks to the isometry property of Itô’s integral.

Remark 11. In particular, if b and σ do not depend on the time parameter, then the linear growth condition is
a consequence of the global Lipschitz condition. Observe that the three examples given in the introduction fit in
this theorem.

Example 12 (Strong existence without uniqueness).
Consider the stochastic differential equation

Xt = 2

∫ t

0
X2/3
s dBs + 3

∫ t

0
X1/3
s ds.

Then, for any θ ≥ 0, the process defined by :

X
(θ)
t =

{
0 if 0 ≤ t ≤ T0 = inf{s ≥ θ; Bs = 0}
B3
t if t ≥ T0

is a strong solution of this SDE.
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Definition 13 (Time homogeneous Itô diffusion).
Assume that the coefficients b and σ do not depend on the time parameter, and satisfy a global Lipschitz
condition

∃K > 0, ∀x, y ∈ Rn, ‖b(x)− b(y)‖2 + ‖σ(x)− σ(y)‖2 ≤ K‖x− y‖2.

The pathwise unique strong solution of the SDE:

dXt = σ(Xt)dBt + b(Xt)dt, X0 = x ∈ R,

is called an (time-homogeneous) Itô diffusion.

Theorem 14 (Strong Markov property).
An Itô diffusion enjoys the strong Markov property: for any positive F∞-measurable random variable Z and
any a.s. finite stopping time T with respect to (Ft, t ≥ 0) we have

Ex [Z ◦ θT |FT ] = EXT
[Z]

where θ denotes the usual translation operator.

We shall now look for weak solutions.

3 Girsanov’s theorem

One way to prove the existence of a weak solution to a stochastic differential equation is to use an absolutely
continuous change of probability measures. This is the purpose of Girsanov’s theorem, which states that if Q is a
probability measure on (Ω,F) which is absolutely continuous with respect to P, then every semimartingale with
respect to P remains a semimartingale with respect to Q.

3.1 Change of probability

Let (Ω,F , (Ft, t ≥ 0),P) be a filtered probability space. We assume that (Ft) is a right-continuous and complete
with terminal σ-field F∞.

Definition 15. Let Q be a probability measure on (Ω,F).

i) Q is said to be weakly absolutely continuous with respect to P (we denote Q C P) is there exists a
positive process (Dt, t ≥ 0) such that

Q|Ft
= Dt � P|Ft

.

ii) Q is absolutely continuous with respect to P (we denote Q � P) if there exists a random variable D∞
such that

Q = D∞ � P.

Remark 16. Observe that the process (Dt, t ≥ 0) is necessarily a positive martingale. Indeed, let s < t and
A ∈ Fs. Since A is also Ft-measurable, we have QFt(A) = Q|Fs

(A) and the weak absolute continuity formula gives
E[Dt1A] = E[Ds1A] which proves that D is a positive ((Ft),P)-martingale. As such, D converges a.s. towards a
random variable D∞ and from Fatou’s lemma

E[D∞] = E
[

lim
t→+∞

Dt

]
≤ lim inf

t→+∞
E[Dt] = 1

since E[Dt] = Q|Ft
(Ω) = 1. If the convergence of D also holds in L1, we have the equivalences :

(Dt, t ≥ 0) is a uniformly integrable martingale ⇐⇒ E[D∞] = 1 ⇐⇒ Q� P.
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Proposition 17. Assume that Q C P. Then

i) if T is a (Ft)-stopping time, then

∀A ∈ FT ∩ {T < +∞}, Q(A) =

∫
A
DT � dP.

If Q = D∞ � P, this relation is valid for any A ∈ FT .

ii) The martingale D is strictly positive Q-a.s., i.e. Q(Dt > 0, ∀t ≥ 0) = 1.

Proof. If T is a (Ft)-stopping time, for any A ∈ FT

Q(A ∩ {T ≤ t}) =

∫
A∩{T≤t}

Dt dP =

∫
A∩{T≤t}

Dt∧T dP

and letting t→ +∞
Q(A ∩ {T < +∞}) =

∫
A∩{T<+∞}

DT dP.

If Q = D∞ � P, this relation is also valid when T = +∞. Point ii) is then a consequence of Point i) applied with
the stopping time T0 = inf{t ≥ 0, Dt = 0}:

Q(T < +∞) =

∫
{T<+∞}

DT dP = 0.

�

Theorem 18 (Girsanov’s theorem).
Assume that Q C P. Let (Mt, t ≥ 0) be a continuous ((Ft),P)-local martingale. Then, the process

M̃t = Mt −
∫ t

0

1

Ds
d〈M,D〉s

is a continuous ((Ft),Q)-local martingale.

When the continuous martingale D is also strictly positive P-a.s., we may obtain another formulation.

Corollary 19. Assume that Q C P and that D is strictly positive P-a.s.

i) There exists a unique continuous local martingale L such that

D = exp

(
L− 1

2
〈L,L〉

)
.

ii) Let (Mt, t ≥ 0) be a continuous ((Ft),P)-local martingale. Then, the process

M̃t = Mt − 〈L,M〉t = Mt −
∫ t

0

1

Ds
d〈D,M〉s

is a continuous ((Ft),Q)-local martingale.

Proof. Assume first that there are two continuous local martingales L(1) and L(2) such that

exp

(
L(1) − 1

2
〈L(1), L(1)〉

)
= exp

(
L(2) − 1

2
〈L(2), L(2)〉

)
.
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This implies that L(1) − L(2) = 1
2〈L

(1), L(1)〉 − 1
2〈L

(2), L(2)〉 is a continuous local martingale with finite variation,

hence L(1) = L(2) a.s. The result then follows by applying Itô’s formula to ln(Dt):

ln(Dt) = ln(D0) +

∫ t

0

1

Ds
dDs −

1

2

∫ t

0

1

D2
s

d〈D,D〉t

= ln(D0) + Lt −
1

2
〈L,L〉t

and noticing that

〈M,L〉t =

〈∫ �
0
dMs,

∫ �
0

1

Ds
dDs

〉
t

=

∫ t

0

1

Ds
〈M,D〉s.

�

Corollary 20. Assume that Q C P and that D = exp(L − 1
2〈L,L〉) is a continuous martingale. Let

(Bt, t ≥ 0) be a ((Ft),P)-Brownian motion. Then, the process

B̃t = Bt − 〈L,B〉t = Bt −
∫ t

0

1

Ds
d〈D,B〉s

is a ((Ft),Q)-Brownian motion.

Proof. This is a direct consequence of Lévy characterization of Brownian motion.

�

3.2 Application to SDE

Let L be a continuous local martingale. In general, from Itô’s formula, the process D = exp
(
L− 1

2〈L,L〉
)

is only
a continuous local martingale, hence, to define a new measure Q by a weak absolute continuity formula, we need
to know if D is actually a true martingale. A sufficiency condition for this is given by the following Novikov’s
condition.

Theorem 21 (Novikov’s condition).
Let L be a continuous local martingale and define D = exp

(
L− 1

2〈L,L〉
)
. If

E
[
exp

(
1

2
〈L,L〉t

)]
< +∞, ∀t ≥ 0,

then D is a true continuous martingale.

This result allows to construct weak solutions.

Theorem 22. Consider a fixed horizon T > 0 and let b : [0, T ]×Rn −→ Rn be a measurable function such
that

‖b(t, x)‖2 ≤ K(1 + ‖x‖2) ∀ 0 ≤ t ≤ T, x ∈ Rn

for a constant K > 0. Then, for every initial condition x ∈ R, the stochastic differential equation

dXt = dBt + b(t,Xt)dt

admits a weak solution.

Sketch of proof. Let (Xt, t ≥ 0) be a n-dimensional Brownian motion defined on a filtered probability space
(Ω,F , (Ft),P) and started at x ∈ Rn. Consider the process

Dt = exp

(
n∑
i=1

∫ t

0
bi(s,Xs)dXs −

1

2

∫ t

0
‖b(s,Xs)‖22ds

)
.
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It may be prove thanks to a (slight generalization of) Novikov’s condition that D is actually a true martingale.
Therefore, the process

Bt = Xt − x−
∫ t

0
b(s,Xs)ds

is a ((Ft),Q)-Brownian motion hence, the process (X,B) defined on the filtered probability space (Ω,F , (Ft),Q)
is a weak solution with initial condition X0 = x a.s.

�

4 Feynman-Kac formulae

We shall now establish some links between Itô diffusions and partial differential equations.

Definition 23 (Infinitesimal generator).
Let X be an Itô diffusion in Rn. The infinitesimal generator of X is defined by

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t
, x ∈ Rn.

The set of functions such that the limit exists for any x ∈ Rn is denoted by DA.

Theorem 24. Let X be an Itô diffusion in Rn. If f ∈ C2(Rn) with compact support, then f ∈ DA and

Af(x) =
1

2

n∑
i,j=1

ai,j(x)
∂2f

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂f

∂xi
(x) where ai,j(x) = (σ(x)σ∗(x))ij .

Furthermore, for any stopping time τ with finite expectation E[τ ] < +∞ and f ∈ C2(Rn) with compact
support, we have Dynkin’s formula:

Ex [f(Xτ )] = f(x) + Ex
[∫ τ

0
Af(Xs)ds

]
.

Sketch of Proof. The proof relies plainly on Itô’s formula. Indeed, with obvious notation :

Ex
[
f
(
X

(1)
t , . . . , X

(n)
t

)]
= f(x) + Ex

 n∑
i=1

∫ t

0

∂f

∂xi
(Xs)dX

(i)
s +

1

2

n∑
i=1

n∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Xs)d〈X(i), X(j)〉s

 .
Now, the bracket between X(i) and X(j) equals :

〈X(i), X(j)〉t =

〈
n∑
k=1

∫ �
0
σik(Xs)dB

(k)
s ,

n∑
k=1

∫ �
0
σjk(Xs)dB

(k)
s

〉
t

=

n∑
k=1

∫ t

0
σik(Xs)σjk(Xs)ds

=

n∑
k=1

∫ t

0
σik(Xs)σ

∗
kj(Xs)ds

=

∫ t

0
(σ(Xs)σ

∗(Xs))ijds.

Using the fact that the stochastic integrals with respect to Brownian motions are martingales with null expectation,
we obtain:

Ex[f(Xt)]− f(x) = Ex

 n∑
i=1

∫ t

0

∂f

∂xi
(Xs)bi(Xs)ds+

1

2

n∑
i=1

n∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Xs)(σ(Xs)σ

∗(Xs))ijds

 .
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This is Dynkin’s formula with the constant stopping time τ = t. It remains to divide this expression by t and to
let t→ 0 to obtain the infinitesimal generator A.

�

A useful relationship between the Itô diffusion X and its infinitesimal generator is presented in the following
Feynman-Kac formulae.

Theorem 25 (The Feynman-Kac formula).
Let f ∈ C2(Rn) with compact support and V : Rn −→ R+ be a continuous function. Define the function

u(t, x) = Ex
[
e−

∫ t
0 V (Xs)dsf(Xt)

]
.

Then, u solves the Cauchy problem
∂u

∂t
(t, x) + V (x)u(t, x) = Au(t, x) (t, x) ∈ [0,+∞[×R

u(0, x) = f(x).

Proof. Fix t > 0. For h > 0 we have, applying the Markov property :

1

h
(Ex [u(t,Xh)]− u(t, x)) =

1

h

(
Ex
[
EXh

[
e−

∫ t
0 V (Xs)dsf(Xt)

]]
− Ex

[
e−

∫ t
0 V (Xs)dsf(Xt)

])
=

1

h

(
Ex
[
Ex
[
e−

∫ t
0 V (Xs+h)dsf(Xt+h)|Fh

]]
− Ex

[
e−

∫ t
0 V (Xs)dsf(Xt)

])
=

1

h
Ex
[
e−

∫ t+h
h V (Xs)dsf(Xt+h)− e−

∫ t
0 V (Xs)dsf(Xt)

]
.

This last term may be decomposed in

1

h
Ex
[
e−

∫ t+h
0 V (Xs)dsf(Xt+h)− e−

∫ t
0 V (Xs)dsf(Xt)

]
+

1

h
Ex
[
e−

∫ t+h
0 V (Xs)dsf(Xt+h)

(
e
∫ h
0 V (Xs)ds − 1

)]
.

Now, the first term converges towards

1

h
Ex
[
e−

∫ t+h
0 V (Xs)dsf(Xt+h)− e−

∫ t
0 V (Xs)dsf(Xt)

]
=
u(t+ h, x)− u(t, x)

h
−−−→
h→0

∂u

∂t
(t, x)

while the second term

1

h
Ex
[
e−

∫ t+h
0 V (Xs)dsf(Xt+h)

(
e
∫ h
0 V (Xs)ds − 1

)]
−−−→
h→0

u(t, x)V (x),

which ends the proof.

�

We may also state a converse version.

Theorem 26. Let f ∈ C2(Rn) with compact support and V : Rn −→ R+ be a continuous function. Let
u : [0,+∞[×Rn −→ R be a C1,2(R× Rn) function which is solution of the Cauchy problem

∂u

∂t
(t, x) + V (x)u(t, x) = Au(t, x)

u(0, x) = f(x).

Assume furthermore that for each compact K ⊂ R, the function u is bounded on K × Rn. Then,

u(t, x) = Ex
[
e−

∫ t
0 V (Xs)dsf(Xt)

]
.
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We now state and prove a simple one-dimensional version for Brownian motion, which relies on ordinary differen-
tial equations.

Theorem 27. Let V (x) ≥ 0 be a positive continuous function on R, λ > 0, and let φ+ and φ− be two
C2-solutions of the differential equation

1

2
φ′′(x) = (V (x) + λ)φ(x) (1)

such that :
φ+ is bounded on [0,+∞[ and φ− is bounded on ]−∞, 0].

Let wλ := φ+(0)φ′−(0) − φ−(0)φ′+(0) and assume that ωλ 6= 0. Then, for any bounded and measurable
function f on R and any x ∈ R:∫ +∞

0
e−λtEx

[
e−

∫ t
0 V (Bs)dsf(Bt)

]
dt =

2

ωλ

(
φ+(x)

∫ x

−∞
φ−(y)f(y)dy + φ−(x)

∫ +∞

x
φ+(y)f(y)dy

)
. (2)

Proof. Define the Wronskien:
Wλ(x) = φ+(x)φ′−(x)− φ−(x)φ′+(x).

Since φ+ and φ− are solutions of (1), we deduce that W ′λ(x) = 0, hence for any x ∈ R, Wλ(x) = Wλ(0) = ωλ.
Assume first that f is continuous and has compact support, and define:

φ(x) = φ+(x)

∫ x

−∞
φ−(y)f(y)dy + φ−(x)

∫ +∞

x
φ+(y)f(y)dy.

φ is a function of C1-class, and differentiation yields:

φ′(x) = φ′+(x)

∫ x

−∞
φ−(y)f(y)dy + φ′−(x)

∫ +∞

x
φ+(y)f(y)dy.

We thus deduce that φ is actually of C2-class, and from (1):

φ′′(x) = 2(V (x) + λ)φ(x)−Wλ(x)f(x) = 2(V (x) + λ)φ(x)− ωλf(x).

Observe also that, since f is a function with compact support, the function φ is bounded on R. Consider now the
process

Mt = e−λt−
∫ t
0 V (Bs)dsφ(Bt) +

ωλ
2

∫ t

0
e−λu−

∫ u
0 V (Bs)dsf(Bu)du.

From Itô’s formula, this process is a local martingale and we have the estimate:

|Mt| ≤ sup
x∈R
|φ(x)|+ ωλ

2
sup
x∈R
|f(x)|

∫ t

0
e−λudu ≤ sup

x∈R
|φ(x)|+ ωλ

2λ
sup
x∈R
|f(x)|.

Therefore M is uniformly bounded, i.e. M is a bounded martingale and

φ(x) = Ex [M0] = Ex [M∞] =
ωλ
2
Ex
[∫ +∞

0
e−λu−

∫ u
0 V (Bs)dsf(Bu)du

]
.

By a monotone class argument, the assumption on the continuity of f may be dropped, so Relation (2) is in fact
valid for any positive and measurable function with compact support in [−N,N ]. Choose now a real x such that
φ−(x) 6= 0 and define fN (y) = sgn(φ+(y))1{x<y<K}. Applying Formula (2) to fN and letting N → +∞, we deduce

that
∫ +∞
x |φ+(y)|dy < +∞. Therefore, φ+ is integrable at +∞, and by a similar argument, so is φ− at −∞. The

result then follows by dominated convergence, with the sequence of functions fN (x) = f(x)1{|x|<N}.

�
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Example 28. Let us apply this result to prove the third Arcsine law. Let (Bs, s ≥ 0) be a standard Brownian
motion started from 0 and let

At =

∫ t

0
1{Bs>0}ds

be the time spent by Brownian motion over 0 in the time interval [0, t]. From the above Feynman-Kac formula :∫ +∞

0
e−λtE0

[
e−a

∫ t
0 1{Bs>0}ds

]
dt =

2

ωλ

(
φ+(0)

∫ 0

−∞
φ−(y)dy + φ−(0)

∫ +∞

0
φ+(y)dy

)
where φ+ and φ− are the appropriate solutions of the equation

1

2
φ′′(x) =

(
a1{x>0} + λ

)
φ(x).

It is easily seen that we may choose{
φ+(x) = exp

(
−x
√

2a+ 2λ
)

x ≥ 0

φ−(x) = exp
(
x
√

2λ
)

x ≤ 0

so that ∫ +∞

0
e−λtE0

[
e−a

∫ t
0 1{Bs>0}ds

]
dt =

2
√

2a+ 2λ+
√

2λ

(∫ 0

−∞
ey
√

2λdy +

∫ +∞

0
e−y
√

2a+2λdy

)
=

2
√

2a+ 2λ+
√

2λ

(
1√
2λ

+
1√

2a+ 2λ

)
=

1√
λ
√
λ+ a

=

(∫ +∞

0
e−λt

dt√
πt

)(∫ +∞

0
e−λte−at

dt√
πt

)
=

∫ +∞

0
e−λt

∫ t

0
e−as

ds

π
√
s
√
t− s

,

and the injectiveness of the Laplace transforms finally yields

E0

[
e−a

∫ t
0 1{Bs>0}ds

]
=

∫ +∞

0
e−as

1

π
√
s
√
t− s

1{0<s<t} ds.

5 Simulations

Choose a fixed horizon T > 0 and, for b : R −→ R and σ : R −→ R+, consider the stochastic differential equation

dXt = σ(Xt)dBt + b(Xt)dt (3)

where B is a standard Brownian motion. Let n ∈ N∗ and set ∆t = T
n as discretization step.

Definition 29 (Discrete Euler Scheme). The discrete Euler scheme associated with the SDE (3) is given,
for 0 ≤ k ≤ n− 1, by :{

X
(n)
0 = X0

X
(n)
(k+1)∆t = X

(n)
k∆t + σ

(
X

(n)
k∆t

)
(B(k+1)∆t −Bk∆t) + b

(
X

(n)
k∆t

)
∆t

Remark 30. The second relation may be written

X
(n)
(k+1)∆t = X

(n)
k∆t + σ

(
X

(n)
k∆t

)√
∆tG+ b

(
X

(n)
k∆t

)
∆t

where G is a standard Gaussian random variable. Therefore, to simulate the discrete Euler scheme associated
with the SDE (3) we only need to simulate n independent standard Gaussian random variables.
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It is then natural to extend this discrete scheme to a continuous one by interpolation.

Definition 31 (Continuous Euler Scheme). The continuous Euler scheme associated with the SDE (3) is
given by :{

X
(n)
0 = X0

X
(n)
t = X

(n)
k∆t + σ

(
X

(n)
k∆t

)
(Bt −Bk∆t) + b

(
X

(n)
k∆t

)
(t− k∆t) for t ∈ [k∆t, (k + 1)∆t[

The following result states that the continuous Euler scheme converges towards the solution of (3) in any Lp.

Theorem 32. Assume that b and σ are globally Lipschitz continuous and that E[|X0|2p] < +∞ for some
p ∈ N∗. Then, there exists a constant CT such that

E

[
sup

0≤t≤T

∣∣∣Xt −X(n)
t

∣∣∣2p] ≤ CT
np
.
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