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1 Introduction

Our aim in this short lecture is to introduce the Markov chains and to study the Recurrence and transience
properties of a Markov chain.

2 Definition of a Markov chain

To introduce a Markov chain let us consider the following example. Let (X,,),>0 be a stochastic process
taking values in the set £ = {1, 2, 3}. Suppose that at the initial time n = 0, X is a random variable valued
in {1, 2, 3} with the following corresponding probabilities:

1 1 1
PXo=1)==,P(Xo=2)==, P(Xp=3)=-.
2 6 3
We may then define the probability distribution p of X as:
1 1 1
W) =P(Xo=1)= =, @) =P(Xo=2)==, u(3)=P(Xo=3) = .

2 )
For n > 1, the process (X,) evolves according to the principle described by the following diagram:

172

2/3

The diagram is read as follows: if the process is at the state 1 at time n, then, at time n + 1, it moves to the
state 2 with a probability % and to the state 3 with a probability % If the process is at the state 2 at time n,
then, at time n + 1, it moves to the state 1 with a probability i, to the state 3 with a probability % or stays at
the state 2 with a probability %. Finally, if the process is at the state 3 at time n, at time n + 1, it moves to
the state 1 with a probability % and to the state 2 with a probability %
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This diagram is determined by the knowledge of probability of transitions P(X,,+1 = j|X,, = i), 4,j €
{1, 2,3}, and conversely. Let (P(%,j))ijcr be the matrix of transition probabilities where the rows cor-
respond to the transition probabilities starting from the state i : P(i,j) = P(X,41 = j| X, = 1),
j € E={1,2,3}. We therefore have

VieE, Y P(i,j)=1
jeE

The process (X,,)n>0 describe previously is a Markov chain. The probability distribution (i is called the
initial probability distribution of the Markov chain and the set E is called the state space. The elements of
FE are called the states of the Markov chain.

DEFINITION 2.1. A matrix P = (P(i, j))i jer is a transition matrix if

Vi,jeE, P(i,j)>0

Vie E, Y P(i,j) =1
JjEE

EXAMPLE 2.1. The transition matrix related to the process defined previously is given by

0 1/2 1/2
P=1{1/4 1/2 1/4
1/3 2/3 0

REMARK 2.1. If P is a transition matrix then for every integer n > 0, P™ is a transition matrix.

DEFINITION 2.2. Let E be a countable (finite or infinite) state space. Let |1 be a probability on E and let
P be a transition matrix on E. A process (Xp,)n>0 is a (homogeneous) Markov chain on E, with initial
probability distribution p and transition matrix P if

1. P(Xo =1i) = (i), foralli € E,

2. Forallig,iq,... yintl € FE,

P(Xpt1 = int1|Xo =0y, Xnn = in) = P(Xpt1 = int1| Xn = in).

n
EXAMPLE 2.2. Let the process (X,,)n>0 be defined by Xo = 0 and X, = Y | ¥;, where (¥;);>1 is a iid
i=1
sequence of random variables defined as

{ +1 with probability p
Y; =

—1 with probability 1 — p.

Prove that (X, ),>0 is a Markov chain with initial distribution « = ¢ and transition matrix P = (P(i, 7)) jez.
whith components are defined for every i, j € Z as
P ifj=i+1
Pi,j)=P(Xpp1=j|Xn=9)=¢ 1—p ifj=i—-1
0 otherwise.
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Answer. We have X,,+1 = X, + Y,41. Then, for every ig, %1, ..., %n4+1 € Z, we have

IP(Xn+1 == in+1|X0 == ’io, ey Xn == Zn) == IP(Yn+1 == ’in+1 - Xn|X0 == 2.07 e ,Xn == Zn)
== IP(Yn+1 :’in+1 —Zn|X0 :ig,...,Xn :Zn)

Remind that Y}, ;1 is independent from (X, ..., X,,). Then,
P(Ynt1 = int1 — in]Xo =d0,. .., Xn = in) = P(Yn41 = ins1 — in).
It remains to remark that P(Y,, 11 = int1 — in) = P(Xpt1 = int1| X0 = in). In fact,

IP(Xn-i-l = Z"rL—i—l’)( = in) = P(Yn—‘rl = Z.n—‘,-l - Xn|Xn = Zn)
IP(Yn+1 = in+1 — ip; Xn = Zn)

P(Yi1 = ipi1 —in)P(X,, =iy |
- e IZP(;n :Z Z)n) ( i) (Y541 and X, are independent)

= IP(Yn+1 = Z.n—‘,-l - Zn)

Consider a Heads-Tails game by tossing a coin which has a probability p of getting a Heads and a probability
1 — p of getting a Tails. We gain 1$ if Heads appears and we lose 1$ when Tails appears. Let our initial
stake be X = 0 and let X, be our wealth at the step n of the game. The process (X,,),>0 may be defined
as in the previous example. The fact that it is a Markov chain with initial probability distribution p = §p and
transition matrix P is expected. In fact, our initial wealth Xy = 0 (4 = Jg), and, when X,,, our wealth at
step n, is worth 7, then X,, 41 is worth 7 + 1 with probability p (when the result of the n 4 1-th toss is Heads)
and it is worth ¢ — 1 with probability 1 — p (when the result of the n + 1-th toss is Tails). In other words, if
our wealth at step n is worth 4, at step n + 1, our wealth moves from ¢ to 7 + 1 with probability p, and, from
1 to ¢ — 1 with probability 1 — p.

3 Some properties of Markov chains

The following result gives an other characterization of a Markov chain. It shows that the probability that a
Markov chain follows a given trajectory is completely determined by its initial probability distribution and
its transition matrix.

PROPOSITION 3.1. Let (Xy,)n>0 be a Markov chain with a state space E, an initial distribution p and a
transition matrix P. Then, for every 19,41, ...,1, € F,
P(Xo =io,...,Xn =1in) = u(io)P(io, 1) ... P(in—1,in). 3.1

PROOF. We have

P(Xo = i0,-+ s Xn =in) = P(Xo=1i0, s Xn_1 = in1)P(Xp = in|Xo = 0, ) Xn1 = in_1)
IP(XO =100,y Xp-1 = Zn—l)IP(Xn = Z‘n"X’n—l = Z.n—l)
= P(Xo=jd0,..., Xn-1=in1)P(in_1,in).
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The second equality follows from the definition of a Markov chain. Repeating the previous procedure with

P(Xo =1d0,...,Xpn—1 =1in—1) leads to
P(Xo=1d0,...,Xn-1 =1in—1) =P(Xo=140,...,Xn—2="1n—2)P(in—2,in-1)-
We then may show by induction that
P(Xo =io,...,Xn =1in) = P(Xo =i0)P(i0,71) ... P(in-1,in)-
Hence the result.

EXAMPLE 3.1. Considering the Example 2.1, we have:

1
LP(Xo=2X1=1X3=2X1=3) = uP2DPL2P23) = ;- ;5 =,

2. P(Xo=1,X; =1,X9 =2) =0, because P(1,1) = 0.

REMARKS AND NOTATIONS. Remark that the product of two transition matrix is a transition matrix
and, if P is a transition matrix and g is a probability, then uP is a probability. A probability distribu-
tion v will be identified as a row vector so that P will be a row vector defined for every ;7 € E by

(uP)(j) =Y u(i)P(i, ).

el

A function f : E — R* will be identified as a column vector and P f will be the column vector defined for

every i € Eby (Pf)(i) = ) P(i.5)f(5).
JEE
The N-th powers of the matrix P: P2,..., PV will be the usual matrix products:

1 si i=j

2/ _ . . . . 0 _ R .
P2(i,k) =Y P(i,))P(j,k),..., with PO=T  (I);;=36;; = { 0 otherwise.

jJEE

We denote by P, the probability with respect to the initial distribution p: for every event A, P, (A)
P(A|Xo) with Xo ~ p. If p = §; we simply denote PP; instead of Ps,: then, P;(A) = P(A| X, = i).

space E. Then,

1. ¥n>0,Vj € E,
P(Xy = j) = (uP")(5)
where (WP™)(j) is the j-th coordinate of the row vector i P"™.
2. Vk,n>0,Yi,j € E,
Pi(Xn=j) = P(Xn=j|Xo=1)
= P(Xnir =j|Xk =1)
= P"(i,7).

where P" (i, j) is the component (i, j) of the matrix P"™.

THEOREM 3.1. Let (X;,)n > 0 be a Markov chain with initial law p and transition matrix P on a state

(3.2)

(3.3)
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PROOF. 1. Wehave: Vn > 0,Vj € E,

P(X,=j) = Y -+ > PX,=4Xy1=tn1,...,Xo=1o)
wEE in_1€EE

= > o > ulio)Pio,ir) -+ Plin-1,5)

iwER in_1€E

= > > ulio)Plio,ir) -+ Plin-s,in-2) > Plin-2,in-1)Plin-1,5)

i0ER in—2€E in_1€FE

~~

:PQ(in—Zvj)

= Z Z H(Z'O)P(ioﬂ.l) .- 'P('L'nf?nian)PQ(iﬂ*Q?j)

0EE in_o€E

= Y plio)P"(io, )

wEE
= (uP")(j).

2. Starting from X = 4, (X, )n>0 is @ Markov chain with initial probability distribution p = ;. We apply
the item 1. above to ;1 = 9; to get the announced result. O

EXAMPLE 3.2. Let (X;,),>0 be a Markov chain with transition matrix

P:(p 1_%.
1—-q ¢

Compute P"(1,1) = P(X,, = 1| X = 1), means, the probability that, starting from the state 1 at time 0,
the chain be at the state 1 at time n.

Answer. Let pgz-) = P"(i,7). On one hand, using the equality P" = P"~! P, we may express pgnl) in terms
of the prj_l)’s, j =1,2, as follows:
i o= oep - apy (3.4)
On the other hand, since P" is a transition matrix, we have:
iVl Y =1 (3.5)
Then, il follows from equations (3.4) and (3.5) that pgnl) =(p+qg— 1)p§?1_1) +(1—gq), with pg?% = 1 (since

P% = I). Then pgnl) is an arithmetico-geometric sequence of the form u,, = au,—1 + b, which n-th term
reads

{uo—i-nb ifa=1
Uy = .
" a”(uo—%)+% ifa # 1.
Hence,
n I—¢q l-q .
p+q—1)<1— )+ ifp+q<?2
P = ( 2-p—q/ 2-p—q
1 ifp+qg=2.

We see in particular that if p = ¢ = 0 then p§”1) = w This is expected in fact.



4 States classification: recurrence and transience 6

4 States classification: recurrence and transience

4.1 The expected number of visits of a state

Let P be a transition matrix induced by a Markov chain (X},),,>0. Let U be the potential operator associated
to P, defined as

o0
k=0

Letj € Eandlet N; = > 72 1;x,—;) be the number of times that the chain visits the state j. We have
+oo +oo
UGi,j) =Y P*i,j) = Y Pi(Xx=1j)
k=0 k=0
+oo
= D Ei(lx—p)
k=0

+oo

= I ( Z 1, Xk:j}) (using Fubini theorem)
k=0

= Ei(Nj).

So, we have the following result.

PROPOSITION 4.1. Leaving at the state i € I, the expected number of visits of the state j by the Markov
chain, that is I5;(Nj), is given by
Ei(N;) = U(i, j).

The following result gives a way to compute U (4, j), ¢,j € E. It is a solution to the so-called Dirichlet
problem.

PROPOSITION 4.2. Vj € E, U(i,j) = E;(N;) is the smallest nonnegative solution of the system of
equations:
. 1+ (Pu)(i) ifi=j
u(1) = . i . “4.1)
O={ (ruy " i)

REMARK 4.1. The smallest solution means: for any other solution v of the system of equations (4.1), it
holds v(i) > u(i),Vi € E. A nonnegative solution is a one satisfying : u(i) € [0, +o0],Vi € E.

EXAMPLE 4.1. Consider Example 2.1 with £ = {1, 2,3} and
0 1/2 1/2
P=|1/4 1/4 1/2
1/3 2/3 0
Compute Eq (N2).
Answer. Let u = (u(1),u(2),u(3))". Then Pu is the column vector

(5u2) + 5u(3), Ju(l) + Ju(@) + su(3), éu(l) + %u(Q))/7
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so that the system of equations (4.1) reads

u(l) = Zu(2)+ 3u(3) 1 (1)
u(2) = iu(l)—l—iu(2)+§u(3)+1 (2)
u(3) = tu(l)+ 2u(2) (3)

Making the transformation (2 x (1) 4 (3) puis (1) 4+ 3 x (3)) of the first and the second equalities above,
we may write «(1) and u(3) in terms of u(2):

u(l) = u(2)
u(2) = Fu(l)+Fu(2)+ tu(3)+1
u3) = u(2).

Now, putting back u(1) and u(3) in (2) lead to

u(l) = u(2)
u(2) = wu(2)+1
u(3) = u(2)

This is possible only if u(1) = u(2) = u(3) = +o0.

EXAMPLE 4.2. Let (X;,),>0 be a Markov chain on E = {1, 2, 3} with transition matrix

0 1/2 1/2
P={1/4 1/4 1/2
0 0 1

Compute E;(Ny), fori € E.
Answer. Let u(i) = E;(N1), 7 € E = {1,2,3}. The system of equations reads:

u(l) = Fu(2)+u(3)+1
w2) = Tu(l)+ fu(2)+ u(3)
u(3) = u(3)

which leads to
{ u(l) = §+u(3)
u(2) = £+u3).

As a consequence, any triplet (g +u(3), % +u(3),u(3)) is a solution to the Dirichlet equation. The smallest
non negative solution u = (u(1), u(2), u(3)) is obtained by putting u(3) = 0, so that, u = (£, £, 0). Finally,
E1(Np) = &, Eo(Ny1) = 2 and E5(N;) = 0.

Then starting for example from the state 2 at time 0, the chain makes a visit of the state 1 on average 6/5
time. Once the chain reaches the state 3, it stays there for ever. We say that the state 3 is a absorbent state.
We see at the same time that the chain makes a visit of the state 3 a infinite number of times and stays at the
states 1 and 2 a finite number of times. The state 3 is said to be a recurrent state and the states 1 and 2 are
said transient. This leads as, in a general setting, to the problem of classifying the states of a Markov chain,
by saying which states are recurrent and which one are transient.
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4.2 The first passage problem

Let (X,,)n>0 be a Markov chain on a state space E, with transition matrix P and let i,j € E. One of the
questions of interest is to determine the distribution of the first passage time of the chain at a given state. We
will mainly tray to determine the probability that, leaving the state 7, the chain makes a visit of the state j:
P;(1; < +00), where 7; is the hitting time of the state j, defined by

7; = inf{n > 0, X,, = j}.

The computation of the distribution of X, may also be of interest.

Let f : E — R*, and let 0; = inf{n > 1, X,, = j} be the first time the chain is back (the first time of
return) at the state j. We notice that 7; and o are both stopping times and that:

e sii=jalorsPi(r; =0)=1

e sii # j,alors Pi(1; =0;) = 1.

The following result shows how to compute explicitly IP;(7; < +00).

THEOREM 4.1. 1. Let u(i) = P;(1j < 400), i € E. Then, u is the smallest nonnegative solution of
the following system of equations

(1 if i=j
“(Z){ (Pu)(i) if i # .

2. Letv(i) = E;(7}) be the expected time of returning at the state j, leaving the state i. Then v is the
smallest nonnegative solution of the following system of equations:

N ifi=j
”(Z)_{ L+ (Po)(i) if i # j.

EXAMPLE 4.3. Let (X,,),>0 be a Markov chain with transition matrix P given for every i = 0,--- ,n — 1,
by
p sij=1+1
P(i,j) = qg sij=0
0 sinon.

with 0 < p, ¢ < 1, p + ¢ = 1 and where we suppose that the state n is absorbent. Let
7 =1inf{k > 0, X}, = n}.

Compute E;(7), fori =0,--- ,n.

Answer. We know that the function v(i) = E;(7) is the smallest nonnegative solution of:

. 0 sit=n
v(@) :{ 14 (Pv)(i) sii#n
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with
g p 0O -+ o 0
q D 0
P =
P 0
q 0 .« o e “ . “ . p
0O 0 --- o1

This leads to the following system of equations:
qu(0) + pv(1) v(0) -1

qu(0)+pv(2) = o(l)-—1
qu(0) + pu(3) v(2) -1

;]U(O) +pv(n) = v(n —-1) -1

First remark that v(n) = 0. On the other hand, we may show, using a backward induction, that Vi =
0,---,n—1, ‘ A
v(i) =1+p+ -+ p" T (L p -+ p T 0(0).
Then we deduce that ‘
1— pn ' 1— pnfz
v(0) = ———— andv(i) = ——.

pM(1-p) p"(1-p)
In this context, it is intuitive that when p goes to 1, the expected time of reaching the state n, leaving 0, is n.
This is the case since v(0) goes to n when p goes to 1. In fact,

_ l_pn _”_1 i—n
v(0) = pr(l—p) ;p]

and the term on the right hand side of the above equation tends towards n when p tends to 1. We show
likewise that, in accordance to the intuition, that v(0) goes to 400 when p goes to 0 and that v (i) goes to

n — i when p goes to 1 (and that for every i = 0,...,n — 1, v(i) goes to +0o when p goes to 0).
0 1/2 1/2

EXERCISE 4.1. Consider Exemple 2.1 where P = [ 1/4 1/4 1/2 ] and E = {1,2,3} and determine
0 0 1

forevery i € E, P;(12 < +00).

4.3 States classification
Let (X, ),>0 be a Markov chain with transition probability P and potential operator U. Keep in mind that

U = Z P* and  U(i,j) = Ei(N;),
k=0

with
x
Nj =3 Lixi)-
n=0
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Now, let 7; = inf{n > 0, X,, =i} and 0; = inf{n > 1, X,, = i} be the first hitting time of the state 7 and

the first time of return at the state 7, respectively. Let (o7"),>1 be the sequence of the successive times of

7
returns at the state ¢, defined by :

Lo and o = inf{k> ol Xy =i} ifol !t < +oo
' T = 400 otherwise.

We have the following result which derives from the Markov property of a Markov chain.

PROPOSITION 4.3. We have, Vi € E,¥n > 1,

P;(0] < +00) = (P;(0; < 4+00))". 4.2)

Remark that
oo o0
N; = Z Lix,=iy = 1{xo=iy + Z 1{U{L<+oo}-
n=0 n=1

As a consequence (owing to the previous remark, to Proposition 4.3 and applying Fubini’s theorem) we get

Ei(N:) = ]Pi(oni)+i1Pi(U?<+OO)

n=1

= 1+ i(ﬂ)i(o’i < +00))".
n=1

Then
< 4o if Pi(o; < +o0) =a < 1.

Ei(N;) = U(i, i) = {

DEFINITION 4.1. Let (X;,)n>0 be a Markov chain with state space E. A state i is recurrent if
IPi(O'i < +OO) =1

and it is transient if
Pi(o; < +00) < 1.

The Markov chain is recurrent (transient) if every state is recurrent (transient).

In fact, we have the following result.

THEOREM 4.2. Lett € F be a state of a Markov chain.

1. i is recurrent if and only if

2. i is transient if and only if

Pi(N;=00) =0 <= E;(IV;) < 4o0.
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EXERCISE 4.2. Consider the example where £ = {0,--- ,n} and foreveryi =0, --- ,n — 1,
p ifj=i+1
P(i,j)=4q ¢ ifj=0

0 otherwise
and n is absorbent state. Classify the states of the chain.

EXERCISE 4.3. Consider 4.2 where (X,,),>0 is a Markov chain with transition matrix

0 1/2 1/2
P={1/4 1/4 1/2
0 0 1

Compute E;(N;) forevery i € E = {1,2,3}. Deduce a classification of the states of the Markov chain.

EXAMPLE 4.4. (Symmetric random work on 7Z.) Consider a mobile moving randomly on Z following a
Markov chain with transition matrix P, which components are defined as

p ifj=i+1,
P(i,j) = 1—p ifj=i—-1,
0 otherwises.

with 0 < p < 1. Let (Z,,),>1 be a sequence of iid random variables such that P(Z, = 1) = p, P(Z,, =
—1)=1—petlet Xo =0and X,, = Z; + ... + Z,. We have seen that (X,,),>0 is a Markov chain with
transition matrix P. Now, let us show that the Markov chain (X, ),>0 is transient if p # 1/2 and that it is
recurrent if p = 1/2.
1. Suppose that p # 1/2. Owing to the law of large numbers we have liI_’I_l %Xn = 2p — 1 # 0. Then,
n——+0oo
+oo ifp>1/2

lin X”:{ —co ifp<1/2,

n—-+00
so that in both cases the (X, ),>0 will be transient.
2. Suppose now that p = 1/2 and set Y; = %(ZZ + 1). We know that 7,, = %(Xn +n)=>",Yis

binomial random variable with parameters n and p = 1/2. So

PM(0,0) = P(X,, = 0) = ]P(Tn - g) - <3) 9 ",

—~

(ifc)); On the other hand, using the

If n = 2k is an even number then P(*%)(0,0) = <2kk> 4=k =

Stirling formula we get

e

k! ~ V2rk <]:>k and  (2k)! ~ Vark (2]“)%

This means that P(¥)(0,0) ~ (wk)~'/2 as k goes to 400, so that U (0,0) = > o> P7(0,0) = 400
and the state O is recurrent. As a consequence the Markov chain is recurrent since every state is
accessible from state 0: for every ¢ € Z, there exists an integer n such that P(X,, = i| X, = 0) > 0.
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EXAMPLE 4.5. (Symmetric random walk in Z¢) Define the probability . by

u(m)z{ 2d)~1 if z € Ny(0)

0 otherwise

where NV3(0) = {z € Z% 2 = (0,...,0,41,0,...0)}, means, the 2d belonging to the neighborhood of
0 € Z4. For example, N2(0) = {(0,1),(0,—1),(1,0),(—1,0)}. Let Y1,...,Y,, be a sequence of iid and
Z.%-valued random variables with distributions . Set Xg = 0and X,, = Y1 +...+Y,. We have shown that
(Xn)n>0 is @ Markov chain with initial distribution &y and transition matrix P, which components (7, j) are
defined by P(i,5) = p(j — ).

1. Let m be the counting measure on Z¢ and f : Z? — R a integrable function w.r.t. m: Y, 4 |f(2)| <
—+00. Define the Fourier transform of f by

0)= 3 5@ per?
2€74

where (a, b) stands for the dot product between a and b.

(a) Show thatif f, g € L'(m) and the convolution product

hz)= > fWglz—y),

yEZa
then h(0) = £(0)§(0), V0 € R<.
(b) Show that if f € L'(m), then f is bounded and
1 R ,
_ —i(0,2)
10 = G | JO 0
(c) Set® = (64, ...,04) Show that
d
. 1
o) =~ ; cos(0).

Deduce that if § €] — m, 719, § # 0, then /1(6) < 1 and that, as § — 0,

107

— O ~ S

2. Set

+oo
Ur(z,y) =D N'P(z,y), [A<1.
n=0

(a) Show that )l\mri Ux(z,y) = U(z,y), where U is the potential matrix associated to P.
—

(b) Set uy = Uy(0,y). Show that uy € L*(m) and that

1

ix(0) = T ai0)”

(c) Compute U(0,0) and show that the Markov chain is recurrent if and only if d < 2.
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