1 Introduction 1

Comisión de Pedagogía - Abass Sagna Recurrence and transience of Markov chains.

UCE, verano 2014

1 Introduction

Our aim in this short lecture is to introduce the Markov chains and to study the Recurrence and transience properties of a Markov chain.

2 Definition of a Markov chain

To introduce a Markov chain let us consider the following example. Let $(X_n)_{n\geq 0}$ be a stochastic process taking values in the set $E=\{1,2,3\}$. Suppose that at the initial time $n=0,X_0$ is a random variable valued in $\{1,2,3\}$ with the following corresponding probabilities:

$$\mathbb{P}(X_0 = 1) = \frac{1}{2}, \ \mathbb{P}(X_0 = 2) = \frac{1}{6}, \ \mathbb{P}(X_0 = 3) = \frac{1}{3}.$$

We may then define the probability distribution μ of X_0 as:

$$\mu(1) = \mathbb{P}(X_0 = 1) = \frac{1}{2}, \quad \mu(2) = \mathbb{P}(X_0 = 2) = \frac{1}{6}, \quad \mu(3) = \mathbb{P}(X_0 = 3) = \frac{1}{3}.$$

For $n \ge 1$, the process (X_n) evolves according to the principle described by the following diagram:

The diagram is read as follows: if the process is at the state 1 at time n, then, at time n+1, it moves to the state 2 with a probability $\frac{1}{2}$ and to the state 3 with a probability $\frac{1}{2}$. If the process is at the state 2 at time n, then, at time n+1, it moves to the state 1 with a probability $\frac{1}{4}$, to the state 3 with a probability $\frac{1}{2}$ or stays at the state 2 with a probability $\frac{1}{4}$. Finally, if the process is at the state 3 at time n, at time n+1, it moves to the state 1 with a probability $\frac{1}{3}$ and to the state 2 with a probability $\frac{2}{3}$.

This diagram is determined by the knowledge of probability of transitions $\mathbb{P}(X_{n+1}=j|X_n=i), i,j\in\{1,2,3\}$, and conversely. Let $(P(i,j))_{i,j\in E}$ be the matrix of transition probabilities where the rows correspond to the transition probabilities starting from the state $i:P(i,j)=\mathbb{P}(X_{n+1}=j|X_n=i), j\in E=\{1,2,3\}$. We therefore have

$$\forall i \in E, \quad \sum_{j \in E} P(i, j) = 1.$$

The process $(X_n)_{n\geq 0}$ describe previously is a Markov chain. The probability distribution μ is called the initial probability distribution of the Markov chain and the set E is called the state space. The elements of E are called the states of the Markov chain.

DEFINITION 2.1. A matrix $P = (P(i, j))_{i,j \in E}$ is a transition matrix if

$$\forall i, j \in E, \quad P(i, j) \ge 0$$

 $\forall i \in E, \quad \sum_{j \in E} P(i, j) = 1.$

EXAMPLE 2.1. The transition matrix related to the process defined previously is given by

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 1/2 & 1/4 \\ 1/3 & 2/3 & 0 \end{pmatrix}.$$

REMARK 2.1. If P is a transition matrix then for every integer $n \ge 0$, P^n is a transition matrix.

DEFINITION 2.2. Let E be a countable (finite or infinite) state space. Let μ be a probability on E and let P be a transition matrix on E. A process $(X_n)_{n\geq 0}$ is a (homogeneous) Markov chain on E, with initial probability distribution μ and transition matrix P if

- **1.** $\mathbb{P}(X_0 = i) = \mu(i)$, for all $i \in E$,
- **2.** For all $i_0, i_1, \ldots, i_{n+1} \in E$,

$$\mathbb{P}(X_{n+1} = i_{n+1} | X_0 = i_0, \dots, X_n = i_n) = \mathbb{P}(X_{n+1} = i_{n+1} | X_n = i_n).$$

EXAMPLE 2.2. Let the process $(X_n)_{n\geq 0}$ be defined by $X_0=0$ and $X_n=\sum_{i=1}^n Y_i$, where $(Y_i)_{i\geq 1}$ is a iid sequence of random variables defined as

$$Y_i = \left\{ \begin{array}{ll} +1 & \text{with probability } p \\ -1 & \text{with probability } 1-p. \end{array} \right.$$

Prove that $(X_n)_{n\geq 0}$ is a Markov chain with initial distribution $\mu=\delta_0$ and transition matrix $P=(P(i,j))_{i,j\in\mathbb{Z}}$, whith components are defined for every $i,j\in\mathbb{Z}$ as

$$P(i,j) = \mathbb{P}(X_{n+1} = j | X_n = i) = \begin{cases} p & \text{if } j = i+1\\ 1-p & \text{if } j = i-1\\ 0 & \text{otherwise.} \end{cases}$$

Answer. We have $X_{n+1} = X_n + Y_{n+1}$. Then, for every $i_0, i_1, \dots, i_{n+1} \in \mathbb{Z}$, we have

$$\mathbb{P}(X_{n+1} = i_{n+1} | X_0 = i_0, \dots, X_n = i_n) = \mathbb{P}(Y_{n+1} = i_{n+1} - X_n | X_0 = i_0, \dots, X_n = i_n) \\
= \mathbb{P}(Y_{n+1} = i_{n+1} - i_n | X_0 = i_0, \dots, X_n = i_n).$$

Remind that Y_{n+1} is independent from (X_0, \ldots, X_n) . Then,

$$\mathbb{P}(Y_{n+1} = i_{n+1} - i_n | X_0 = i_0, \dots, X_n = i_n) = \mathbb{P}(Y_{n+1} = i_{n+1} - i_n).$$

It remains to remark that $\mathbb{P}(Y_{n+1}=i_{n+1}-i_n)=\mathbb{P}(X_{n+1}=i_{n+1}|X_n=i_n)$. In fact,

$$\begin{split} \mathbb{P}(X_{n+1} = i_{n+1} | X_n = i_n) &= \mathbb{P}(Y_{n+1} = i_{n+1} - X_n | X_n = i_n) \\ &= \frac{\mathbb{P}(Y_{n+1} = i_{n+1} - i_n; X_n = i_n)}{\mathbb{P}(X_n = i_n)} \\ &= \frac{\mathbb{P}(Y_{n+1} = i_{n+1} - i_n) \mathbb{P}(X_n = i_n)}{\mathbb{P}(X_n = i_n)} \quad (Y_{n+1} \text{ and } X_n \text{ are independent}) \\ &= \mathbb{P}(Y_{n+1} = i_{n+1} - i_n). \end{split}$$

Consider a Heads-Tails game by tossing a coin which has a probability p of getting a Heads and a probability 1-p of getting a Tails. We gain 1\$ if Heads appears and we lose 1\$ when Tails appears. Let our initial stake be $X_0=0$ and let X_n be our wealth at the step n of the game. The process $(X_n)_{n\geq 0}$ may be defined as in the previous example. The fact that it is a Markov chain with initial probability distribution $\mu=\delta_0$ and transition matrix P is expected. In fact, our initial wealth $X_0=0$ ($\mu=\delta_0$), and, when X_n , our wealth at step n, is worth i, then X_{n+1} is worth i+1 with probability p (when the result of the n+1-th toss is Heads) and it is worth i-1 with probability 1-p (when the result of the n+1-th toss is Tails). In other words, if our wealth at step n is worth i, at step n+1, our wealth moves from i to i+1 with probability p, and, from i to i-1 with probability 1-p.

3 Some properties of Markov chains

The following result gives an other characterization of a Markov chain. It shows that the probability that a Markov chain follows a given trajectory is completely determined by its initial probability distribution and its transition matrix.

PROPOSITION 3.1. Let $(X_n)_{n\geq 0}$ be a Markov chain with a state space E, an initial distribution μ and a transition matrix P. Then, for every $i_0, i_1, \ldots, i_n \in E$,

$$\mathbb{P}(X_0 = i_0, \dots, X_n = i_n) = \mu(i_0)P(i_0, i_1)\dots P(i_{n-1}, i_n). \tag{3.1}$$

PROOF. We have

$$\mathbb{P}(X_0 = i_0, \dots, X_n = i_n) = \mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1}) \mathbb{P}(X_n = i_n | X_0 = i_0, \dots, X_{n-1} = i_{n-1})
= \mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1}) \mathbb{P}(X_n = i_n | X_{n-1} = i_{n-1})
= \mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1}) P(i_{n-1}, i_n).$$

The second equality follows from the definition of a Markov chain. Repeating the previous procedure with $\mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1})$ leads to

$$\mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1}) = \mathbb{P}(X_0 = i_0, \dots, X_{n-2} = i_{n-2})P(i_{n-2}, i_{n-1}).$$

We then may show by induction that

$$\mathbb{P}(X_0 = i_0, \dots, X_n = i_n) = \mathbb{P}(X_0 = i_0) P(i_0, i_1) \dots P(i_{n-1}, i_n).$$

Hence the result. \Box

EXAMPLE 3.1. Considering the Example 2.1, we have:

1.
$$\mathbb{P}(X_0 = 2, X_1 = 1, X_3 = 2, X_4 = 3) = \mu(2)P(2, 1)P(1, 2)P(2, 3) = \frac{1}{6} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{192}$$
.

2.
$$\mathbb{P}(X_0 = 1, X_1 = 1, X_2 = 2) = 0$$
, because $P(1, 1) = 0$.

REMARKS AND NOTATIONS. Remark that the product of two transition matrix is a transition matrix and, if P is a transition matrix and μ is a probability, then μP is a probability. A probability distribution μ will be identified as a row vector so that μP will be a row vector defined for every $j \in E$ by $(\mu P)(j) = \sum_{i=0}^{n} \mu(i) P(i,j)$.

A function $f: E \to \bar{\mathbb{R}}^+$ will be identified as a column vector and Pf will be the column vector defined for every $i \in E$ by $(Pf)(i) = \sum_{j \in E} P(i,j)f(j)$.

The N-th powers of the matrix $P: P^2, \dots, P^N$ will be the usual matrix products:

$$P^{2}(i,k) = \sum_{j \in E} P(i,j)P(j,k), \dots, \quad \text{with } P^{0} = I \qquad (I)_{i,j} = \delta_{i,j} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{otherwise.} \end{cases}$$

We denote by P_{μ} the probability with respect to the initial distribution μ : for every event A, $\mathbb{P}_{\mu}(A) = \mathbb{P}(A|X_0)$ with $X_0 \sim \mu$. If $\mu = \delta_i$ we simply denote \mathbb{P}_i instead of \mathbb{P}_{δ_i} : then, $\mathbb{P}_i(A) = \mathbb{P}(A|X_0 = i)$.

THEOREM 3.1. Let $(X_n)_n \ge 0$ be a Markov chain with initial law μ and transition matrix P on a state space E. Then,

1.
$$\forall n \ge 0, \forall j \in E,$$

$$\mathbb{P}(X_n = j) = (\mu P^n)(j) \tag{3.2}$$

where $(\mu P^n)(j)$ is the j-th coordinate of the row vector μP^n .

2. $\forall k, n \geq 0, \forall i, j \in E$,

$$\mathbb{P}_{i}(X_{n}=j) = \mathbb{P}(X_{n}=j \mid X_{0}=i)$$

$$= \mathbb{P}(X_{n+k}=j \mid X_{k}=i)$$

$$= P^{n}(i,j). \tag{3.3}$$

where $P^n(i,j)$ is the component (i,j) of the matrix P^n .

PROOF. 1. We have : $\forall n \geq 0, \forall j \in E$,

$$\begin{split} \mathbb{P}(X_n = j) &= \sum_{i_0 \in E} \cdots \sum_{i_{n-1} \in E} \mathbb{P}(X_n = j, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) \\ &= \sum_{i_0 \in E} \cdots \sum_{i_{n-1} \in E} \mu(i_0) P(i_0, i_1) \cdots P(i_{n-1}, j) \\ &= \sum_{i_0 \in E} \cdots \sum_{i_{n-2} \in E} \mu(i_0) P(i_0, i_1) \cdots P(i_{n-3}, i_{n-2}) \underbrace{\sum_{i_{n-1} \in E} P(i_{n-2}, i_{n-1}) P(i_{n-1}, j)}_{= P^2(i_{n-2}, j)} \\ &= \sum_{i_0 \in E} \cdots \sum_{i_{n-2} \in E} \mu(i_0) P(i_0, i_1) \cdots P(i_{n-3}, i_{n-2}) P^2(i_{n-2}, j) \\ &\vdots \\ &= \sum_{i_0 \in E} \mu(i_0) P^n(i_0, j) \\ &= (\mu P^n)(j). \end{split}$$

2. Starting from $X_0 = i$, $(X_n)_{n \ge 0}$ is a Markov chain with initial probability distribution $\mu = \delta_i$. We apply the item 1. above to $\mu = \delta_i$ to get the announced result.

EXAMPLE 3.2. Let $(X_n)_{n\geq 0}$ be a Markov chain with transition matrix

$$P = \begin{pmatrix} p & 1-p \\ 1-q & q \end{pmatrix}.$$

Compute $P^n(1,1) = \mathbb{P}(X_n = 1 | X_0 = 1)$, means, the probability that, starting from the state 1 at time 0, the chain be at the state 1 at time n.

Answer. Let $p_{i,j}^{(n)} = P^n(i,j)$. On one hand, using the equality $P^n = P^{n-1}P$, we may express $p_{1,1}^{(n)}$ in terms of the $p_{1,j}^{(n-1)}$'s, j = 1, 2, as follows:

$$p_{1,1}^{(n)} = p p_{1,1}^{(n-1)} + (1-q) p_{1,2}^{(n-1)}.$$
 (3.4)

On the other hand, since P^n is a transition matrix, we have:

$$p_{1,1}^{(n-1)} + p_{1,2}^{(n-1)} = 1. (3.5)$$

Then, il follows from equations (3.4) and (3.5) that $p_{1,1}^{(n)}=(p+q-1)p_{1,1}^{(n-1)}+(1-q)$, with $p_{1,1}^{(0)}=1$ (since $P^0=I$). Then $p_{1,1}^{(n)}$ is an arithmetico-geometric sequence of the form $u_n=au_{n-1}+b$, which n-th term reads

$$u_n = \begin{cases} u_0 + nb & \text{if } a = 1\\ a^n \left(u_0 - \frac{b}{1-a}\right) + \frac{b}{1-a} & \text{if } a \neq 1. \end{cases}$$

Hence,

$$p_{1,1}^{(n)} = \begin{cases} \left(p+q-1\right)^n \left(1 - \frac{1-q}{2-p-q}\right) + \frac{1-q}{2-p-q} & \text{if } p+q < 2\\ 1 & \text{if } p+q = 2. \end{cases}$$

We see in particular that if p=q=0 then $p_{1,1}^{(n)}=\frac{1+(-1)^n}{2}$. This is expected in fact.

4 States classification: recurrence and transience

4.1 The expected number of visits of a state

Let P be a transition matrix induced by a Markov chain $(X_n)_{n\geq 0}$. Let U be the potential operator associated to P, defined as

$$U = \sum_{k=0}^{\infty} P^k = I + P + P^2 + \dots + P^n + \dots$$

Let $j \in E$ and let $N_j = \sum_{k=0}^{\infty} \mathbf{1}_{\{X_k = j\}}$ be the number of times that the chain visits the state j. We have

$$\begin{split} U(i,j) &= \sum_{k=0}^{+\infty} P^k(i,j) &= \sum_{k=0}^{+\infty} P_i(X_k = j) \\ &= \sum_{k=0}^{+\infty} \mathbb{E}_i \big(\mathbf{1}_{\{X_k = j\}} \big) \\ &= \mathbb{E}_i \Big(\sum_{k=0}^{+\infty} \mathbf{1}_{\{X_k = j\}} \Big) \qquad \text{(using Fubini theorem)} \\ &= \mathbb{E}_i(N_j). \end{split}$$

So, we have the following result.

PROPOSITION 4.1. Leaving at the state $i \in E$, the expected number of visits of the state j by the Markov chain, that is $\mathbb{E}_i(N_j)$, is given by

$$\mathbb{E}_i(N_i) = U(i,j).$$

The following result gives a way to compute U(i, j), $i, j \in E$. It is a solution to the so-called Dirichlet problem.

PROPOSITION 4.2. $\forall j \in E, U(i,j) = \mathbb{E}_i(N_j)$ is the smallest nonnegative solution of the system of equations:

$$u(i) = \begin{cases} 1 + (Pu)(i) & \text{if } i = j\\ (Pu)(i) & \text{if } i \neq j. \end{cases}$$

$$(4.1)$$

REMARK 4.1. The smallest solution means: for any other solution v of the system of equations (4.1), it holds $v(i) \ge u(i), \forall i \in E$. A nonnegative solution is a one satisfying : $u(i) \in [0, +\infty], \forall i \in E$.

EXAMPLE 4.1. Consider Example 2.1 with $E = \{1, 2, 3\}$ and

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 1/4 & 1/2 \\ 1/3 & 2/3 & 0 \end{pmatrix}.$$

Compute $\mathbb{E}_1(N_2)$.

Answer. Let u = (u(1), u(2), u(3))'. Then Pu is the column vector

$$\Big(\frac{1}{2}u(2)+\frac{1}{2}u(3),\frac{1}{4}u(1)+\frac{1}{2}u(2)+\frac{1}{2}u(3),\frac{1}{3}u(1)+\frac{2}{3}u(2)\Big)',$$

so that the system of equations (4.1) reads

$$\begin{cases} u(1) &= \frac{1}{2}u(2) + \frac{1}{2}u(3) \\ u(2) &= \frac{1}{4}u(1) + \frac{1}{4}u(2) + \frac{1}{2}u(3) + 1 \\ u(3) &= \frac{1}{3}u(1) + \frac{2}{3}u(2) \end{cases}$$
 (1)

Making the transformation $(2 \times (1) + (3) \text{ puis } (1) + 3 \times (3))$ of the first and the second equalities above, we may write u(1) and u(3) in terms of u(2):

$$\begin{cases} u(1) &= u(2) \\ u(2) &= \frac{1}{4}u(1) + \frac{1}{4}u(2) + \frac{1}{2}u(3) + 1 \\ u(3) &= u(2). \end{cases}$$

Now, putting back u(1) and u(3) in (2) lead to

$$\begin{cases} u(1) &= u(2) \\ u(2) &= u(2) + 1 \\ u(3) &= u(2). \end{cases}$$

This is possible only if $u(1) = u(2) = u(3) = +\infty$.

EXAMPLE 4.2. Let $(X_n)_{n\geq 0}$ be a Markov chain on $E=\{1,2,3\}$ with transition matrix

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 1/4 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Compute $\mathbb{E}_i(N_1)$, for $i \in E$.

Answer. Let $u(i) = \mathbb{E}_i(N_1), i \in E = \{1, 2, 3\}$. The system of equations reads:

$$\begin{cases} u(1) &= \frac{1}{2}u(2) + \frac{1}{2}u(3) + 1\\ u(2) &= \frac{1}{4}u(1) + \frac{1}{4}u(2) + \frac{1}{2}u(3)\\ u(3) &= u(3) \end{cases}$$

which leads to

$$\begin{cases} u(1) &= \frac{6}{5} + u(3) \\ u(2) &= \frac{2}{5} + u(3). \end{cases}$$

As a consequence, any triplet $(\frac{6}{5}+u(3),\frac{2}{5}+u(3),u(3))$ is a solution to the Dirichlet equation. The smallest non negative solution u=(u(1),u(2),u(3)) is obtained by putting u(3)=0, so that, $u=(\frac{6}{5},\frac{2}{5},0)$. Finally, $\mathbb{E}_1(N_1)=\frac{6}{5}$, $\mathbb{E}_2(N_1)=\frac{2}{5}$ and $\mathbb{E}_3(N_1)=0$.

Then starting for example from the state 2 at time 0, the chain makes a visit of the state 1 on average 6/5 time. Once the chain reaches the state 3, it stays there for ever. We say that the state 3 is a *absorbent state*. We see at the same time that the chain makes a visit of the state 3 a infinite number of times and stays at the states 1 and 2 a finite number of times. The state 3 is said to be a *recurrent* state and the states 1 and 2 are said *transient*. This leads as, in a general setting, to the problem of classifying the states of a Markov chain, by saying which states are recurrent and which one are transient.

4.2 The first passage problem

Let $(X_n)_{n\geq 0}$ be a Markov chain on a state space E, with transition matrix P and let $i,j\in E$. One of the questions of interest is to determine the distribution of the first passage time of the chain at a given state. We will mainly tray to determine the probability that, leaving the state i, the chain makes a visit of the state j: $\mathbb{P}_i(\tau_j<+\infty)$, where τ_j is the hitting time of the state j, defined by

$$\tau_i = \inf\{n \ge 0, X_n = j\}.$$

The computation of the distribution of X_{τ_i} may also be of interest.

Let $f: E \longrightarrow \mathbb{R}^+$, and let $\sigma_j = \inf\{n \geq 1, X_n = j\}$ be the first time the chain is back (the first time of return) at the state j. We notice that τ_j and σ_j are both stopping times and that:

- si i = j, alors $\mathbb{P}_i(\tau_j = 0) = 1$
- si $i \neq j$, alors $\mathbb{P}_i(\tau_i = \sigma_i) = 1$.

The following result shows how to compute explicitly $\mathbb{P}_i(\tau_i < +\infty)$.

THEOREM 4.1. 1. Let $u(i) = \mathbb{P}_i(\tau_j < +\infty)$, $i \in E$. Then, u is the smallest nonnegative solution of the following system of equations

$$u(i) = \begin{cases} 1 & \text{if } i = j \\ (Pu)(i) & \text{if } i \neq j. \end{cases}$$

2. Let $v(i) = \mathbb{E}_i(\tau_j)$ be the expected time of returning at the state j, leaving the state i. Then v is the smallest nonnegative solution of the following system of equations:

$$v(i) = \begin{cases} 0 & \text{if } i = j \\ 1 + (Pv)(i) & \text{if } i \neq j. \end{cases}$$

EXAMPLE 4.3. Let $(X_n)_{n\geq 0}$ be a Markov chain with transition matrix P given for every $i=0,\cdots,n-1$, by

$$P(i,j) = \begin{cases} p & \text{si } j = i+1 \\ q & \text{si } j = 0 \\ 0 & \text{sinon.} \end{cases}$$

with 0 < p, q < 1, p + q = 1 and where we suppose that the state n is absorbent. Let

$$\tau = \inf\{k \ge 0, X_k = n\}.$$

Compute $\mathbb{E}_i(\tau)$, for $i = 0, \dots, n$.

Answer. We know that the function $v(i) = \mathbb{E}_i(\tau)$ is the smallest nonnegative solution of:

$$v(i) = \begin{cases} 0 & \text{si } i = n \\ 1 + (Pv)(i) & \text{si } i \neq n \end{cases}$$

with

$$P = \begin{pmatrix} q & p & 0 & \cdots & \cdots & 0 \\ q & 0 & p & \ddots & & 0 \\ \vdots & \vdots & & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & 0 \\ q & 0 & \cdots & \cdots & \cdots & p \\ 0 & 0 & \cdots & & \cdots & 1 \end{pmatrix}.$$

This leads to the following system of equations:

$$\begin{cases} qv(0) + pv(1) &= v(0) - 1 \\ qv(0) + pv(2) &= v(1) - 1 \\ qv(0) + pv(3) &= v(2) - 1 \\ \vdots &\vdots \\ qv(0) + pv(n) &= v(n-1) - 1. \end{cases}$$

First remark that v(n) = 0. On the other hand, we may show, using a backward induction, that $\forall i = 0, \dots, n-1$,

$$v(i) = 1 + p + \dots + p^{n-i-1} + q(1+p+\dots+p^{n-i-1})v(0).$$

Then we deduce that

$$v(0) = \frac{1 - p^n}{p^n(1 - p)}$$
 and $v(i) = \frac{1 - p^{n-i}}{p^n(1 - p)}$.

In this context, it is intuitive that when p goes to 1, the expected time of reaching the state n, leaving 0, is n. This is the case since v(0) goes to n when p goes to 1. In fact,

$$v(0) = \frac{1 - p^n}{p^n(1 - p)} = \sum_{j=0}^{n-1} p^{j-n}$$

and the term on the right hand side of the above equation tends towards n when p tends to 1. We show likewise that, in accordance to the intuition, that v(0) goes to $+\infty$ when p goes to 0 and that v(i) goes to n-i when p goes to 1 (and that for every $i=0,\ldots,n-1,v(i)$ goes to $+\infty$ when p goes to 0).

EXERCISE 4.1. Consider Exemple 2.1 where $P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 1/4 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}$ and $E = \{1, 2, 3\}$ and determine for every $i \in E$, $\mathbb{P}_i(\tau_2 < +\infty)$.

4.3 States classification

Let $(X_n)_{n\geq 0}$ be a Markov chain with transition probability P and potential operator U. Keep in mind that

$$U = \sum_{k=0}^{\infty} P^k$$
 and $U(i,j) = \mathbb{E}_i(N_j)$,

with

$$N_j = \sum_{n=0}^{\infty} \mathbf{1}_{\{X_n = j\}}.$$

Now, let $\tau_i = \inf\{n \geq 0, X_n = i\}$ and $\sigma_i = \inf\{n \geq 1, X_n = i\}$ be the first hitting time of the state i and the first time of return at the state i, respectively. Let $(\sigma_i^n)_{n \geq 1}$ be the sequence of the successive times of returns at the state i, defined by :

$$\sigma_i^1 = \sigma_i \quad \text{ and } \quad \left\{ \begin{array}{ll} \sigma_i^n &=& \inf\{k > \sigma_i^{n-1}, X_k = i\} & \text{if } \sigma_i^{n-1} < +\infty \\ \sigma_i^n &=& +\infty & \text{otherwise.} \end{array} \right.$$

We have the following result which derives from the Markov property of a Markov chain.

Proposition 4.3. We have, $\forall i \in E, \forall n \geq 1$,

$$\mathbb{P}_i(\sigma_i^n < +\infty) = \left(\mathbb{P}_i(\sigma_i < +\infty)\right)^n. \tag{4.2}$$

Remark that

$$N_i = \sum_{n=0}^{\infty} \mathbf{1}_{\{X_n = i\}} = \mathbf{1}_{\{X_0 = i\}} + \sum_{n=1}^{\infty} \mathbf{1}_{\{\sigma_i^n < +\infty\}}.$$

As a consequence (owing to the previous remark, to Proposition 4.3 and applying Fubini's theorem) we get

$$\mathbb{E}_{i}(N_{i}) = \mathbb{P}_{i}(X_{0} = i) + \sum_{n=1}^{\infty} \mathbb{P}_{i}(\sigma_{i}^{n} < +\infty)$$
$$= 1 + \sum_{n=1}^{\infty} (\mathbb{P}_{i}(\sigma_{i} < +\infty))^{n}.$$

Then

$$\mathbb{E}_i(N_i) = U(i,i) = \begin{cases} = +\infty & \text{if } \mathbb{P}_i(\sigma_i < +\infty) = 1\\ < +\infty & \text{if } \mathbb{P}_i(\sigma_i < +\infty) = a < 1. \end{cases}$$

DEFINITION 4.1. Let $(X_n)_{n\geq 0}$ be a Markov chain with state space E. A state i is recurrent if

$$\mathbb{P}_i(\sigma_i < +\infty) = 1$$

and it is transient if

$$\mathbb{P}_i(\sigma_i < +\infty) < 1.$$

The Markov chain is recurrent (transient) if every state is recurrent (transient).

In fact, we have the following result.

THEOREM 4.2. Let $i \in E$ be a state of a Markov chain.

1. i is recurrent if and only if

$$\mathbb{P}_i(N_i = \infty) = 1 \iff \mathbb{E}_i(N_i) = +\infty.$$

2. *i* is transient if and only if

$$\mathbb{P}_i(N_i = \infty) = 0 \iff \mathbb{E}_i(N_i) < +\infty.$$

EXERCISE 4.2. Consider the example where $E = \{0, \dots, n\}$ and for every $i = 0, \dots, n-1$,

$$P(i,j) = \begin{cases} p & \text{if } j = i+1\\ q & \text{if } j = 0\\ 0 & \text{otherwise} \end{cases}$$

and n is absorbent state. Classify the states of the chain.

EXERCISE 4.3. Consider 4.2 where $(X_n)_{n\geq 0}$ is a Markov chain with transition matrix

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 1/4 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Compute $\mathbb{E}_i(N_i)$ for every $i \in E = \{1, 2, 3\}$. Deduce a classification of the states of the Markov chain.

EXAMPLE 4.4. (Symmetric random work on \mathbb{Z}) Consider a mobile moving randomly on \mathbb{Z} following a Markov chain with transition matrix P, which components are defined as

$$P(i,j) = \begin{cases} p & \text{if } j = i+1, \\ 1-p & \text{if } j = i-1, \\ 0 & \text{otherwises.} \end{cases}$$

with $0 . Let <math>(Z_n)_{n \ge 1}$ be a sequence of iid random variables such that $\mathbb{P}(Z_n = 1) = p$, $\mathbb{P}(Z_n = -1) = 1 - p$ et let $X_0 = 0$ and $X_n = Z_1 + \ldots + Z_n$. We have seen that $(X_n)_{n \ge 0}$ is a Markov chain with transition matrix P. Now, let us show that the Markov chain $(X_n)_{n \ge 0}$ is transient if $p \ne 1/2$ and that it is recurrent if p = 1/2.

1. Suppose that $p \neq 1/2$. Owing to the law of large numbers we have $\lim_{n \to +\infty} \frac{1}{n} X_n = 2p - 1 \neq 0$. Then,

$$\lim_{n \to +\infty} X_n = \left\{ \begin{array}{ll} +\infty & \text{if } p > 1/2 \\ -\infty & \text{if } p < 1/2, \end{array} \right.$$

so that in both cases the $(X_n)_{n\geq 0}$ will be transient.

2. Suppose now that p=1/2 and set $Y_i=\frac{1}{2}(Z_i+1)$. We know that $T_n=\frac{1}{2}(X_n+n)=\sum_{i=1}^n Y_i$ is binomial random variable with parameters n and p=1/2. So

$$P^{(n)}(0,0) = \mathbb{P}(X_n = 0) = \mathbb{P}\left(T_n = \frac{n}{2}\right) = \binom{\frac{n}{2}}{n} 2^{-n}.$$

If n=2k is an even number then $P^{(2k)}(0,0)=\binom{k}{2k}4^{-k}=\frac{(2k)!}{(k!)^2}$. On the other hand, using the Stirling formula we get

$$k! \sim \sqrt{2\pi k} \left(\frac{k}{e}\right)^k$$
 and $(2k)! \sim \sqrt{4\pi k} \left(\frac{2k}{e}\right)^{2k}$.

This means that $P^{(2k)}(0,0) \sim (\pi k)^{-1/2}$ as k goes to $+\infty$, so that $U(0,0) = \sum_{n \geq 1} P^n(0,0) = +\infty$ and the state 0 is recurrent. As a consequence the Markov chain is recurrent since every state is accessible from state 0: for every $i \in \mathbb{Z}$, there exists an integer n such that $\mathbb{P}(X_n = i | X_0 = 0) > 0$.

EXAMPLE 4.5. (Symmetric random walk in \mathbb{Z}^d) Define the probability μ by

$$\mu(x) = \begin{cases} (2d)^{-1} & \text{if } x \in \mathcal{N}_d(0) \\ 0 & \text{otherwise} \end{cases}$$

where $\mathcal{N}_d(0)=\{z\in\mathbb{Z}^d,z=(0,\dots,0,\pm 1,0,\dots 0)\}$, means, the 2d belonging to the neighborhood of $0\in\mathbb{Z}^d$. For example, $\mathcal{N}_2(0)=\{(0,1),(0,-1),(1,0),(-1,0)\}$. Let Y_1,\dots,Y_n be a sequence of iid and \mathbb{Z}^d -valued random variables with distributions μ . Set $X_0=0$ and $X_n=Y_1+\dots+Y_n$. We have shown that $(X_n)_{n\geq 0}$ is a Markov chain with initial distribution δ_0 and transition matrix P, which components (i,j) are defined by $P(i,j)=\mu(j-i)$.

1. Let m be the counting measure on \mathbb{Z}^d and $f: \mathbb{Z}^d \to \mathbb{R}$ a integrable function w.r.t. $m: \sum_{z \in \mathbb{Z}^d} |f(z)| < +\infty$. Define the Fourier transform of f by

$$\hat{f}(\theta) = \sum_{z \in \mathbb{Z}^d} f(z)e^{i(\theta,z)}, \quad \theta \in \mathbb{R}^d,$$

where (a, b) stands for the dot product between a and b.

(a) Show that if $f, g \in L^1(m)$ and the convolution product

$$h(z) = \sum_{y \in \mathbb{Z}^d} f(y)g(z - y),$$

then $\hat{h}(\theta) = \hat{f}(\theta)\hat{g}(\theta), \forall \theta \in \mathbb{R}^d$.

(b) Show that if $f \in L^1(m)$, then \hat{f} is bounded and

$$f(z) = \frac{1}{(2\pi)^d} \int_{]-\pi,\pi]^d} \hat{f}(\theta) e^{-i(\theta,z)} d\theta.$$

(c) Set $\theta = (\theta_1, \dots, \theta_d)$ Show that

$$\hat{\mu}(\theta) = \frac{1}{d} \sum_{k=1}^{d} \cos(\theta_k).$$

Deduce that if $\theta \in]-\pi,\pi]^d$, $\theta \neq 0$, then $\hat{\mu}(\theta) < 1$ and that, as $\theta \to 0$,

$$1 - \hat{\mu}(\theta) \sim \frac{|\theta|^2}{2d}.$$

2. Set

$$U_{\lambda}(x,y) = \sum_{n=0}^{+\infty} \lambda^n P^n(x,y), \quad |\lambda| < 1.$$

- (a) Show that $\lim_{\lambda \to 1} U_{\lambda}(x,y) = U(x,y)$, where U is the potential matrix associated to P.
- (b) Set $u_{\lambda} = U_{\lambda}(0, y)$. Show that $u_{\lambda} \in L^{1}(m)$ and that

$$\hat{\mu}_{\lambda}(\theta) = \frac{1}{1 - \lambda \hat{\mu}(\theta)}.$$

(c) Compute U(0,0) and show that the Markov chain is recurrent if and only if $d \le 2$.

REFERENCES 13

References

[1] Baldi, P., Mazliak, L., Priouret, P. *Martingales et chaînes de Markov*, théorie élémentaire et exercices corrigés. Hermann, éditeurs des sciences et des arts.