UCE, verano 2014

1 Introduction

Our aim in this short lecture is to introduce the Markov chains and to study the Recurrence and transience properties of a Markov chain.

2 Definition of a Markov chain

To introduce a Markov chain let us consider the following example. Let $\left(X_{n}\right)_{n \geq 0}$ be a stochastic process taking values in the set $E=\{1,2,3\}$. Suppose that at the initial time $n=0, X_{0}$ is a random variable valued in $\{1,2,3\}$ with the following corresponding probabilities:

$$
\mathbb{P}\left(X_{0}=1\right)=\frac{1}{2}, \mathbb{P}\left(X_{0}=2\right)=\frac{1}{6}, \mathbb{P}\left(X_{0}=3\right)=\frac{1}{3}
$$

We may then define the probability distribution μ of X_{0} as:

$$
\mu(1)=\mathbb{P}\left(X_{0}=1\right)=\frac{1}{2}, \quad \mu(2)=\mathbb{P}\left(X_{0}=2\right)=\frac{1}{6}, \quad \mu(3)=\mathbb{P}\left(X_{0}=3\right)=\frac{1}{3}
$$

For $n \geq 1$, the process $\left(X_{n}\right)$ evolves according to the principle described by the following diagram:

The diagram is read as follows: if the process is at the state 1 at time n, then, at time $n+1$, it moves to the state 2 with a probability $\frac{1}{2}$ and to the state 3 with a probability $\frac{1}{2}$. If the process is at the state 2 at time n, then, at time $n+1$, it moves to the state 1 with a probability $\frac{1}{4}$, to the state 3 with a probability $\frac{1}{2}$ or stays at the state 2 with a probability $\frac{1}{4}$. Finally, if the process is at the state 3 at time n, at time $n+1$, it moves to the state 1 with a probability $\frac{1}{3}$ and to the state 2 with a probability $\frac{2}{3}$.

This diagram is determined by the knowledge of probability of transitions $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right), i, j \in$ $\{1,2,3\}$, and conversely. Let $(P(i, j))_{i, j \in E}$ be the matrix of transition probabilities where the rows correspond to the transition probabilities starting from the state i : $P(i, j)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)$, $j \in E=\{1,2,3\}$. We therefore have

$$
\forall i \in E, \quad \sum_{j \in E} P(i, j)=1
$$

The process $\left(X_{n}\right)_{n \geq 0}$ describe previously is a Markov chain. The probability distribution μ is called the initial probability distribution of the Markov chain and the set E is called the state space. The elements of E are called the states of the Markov chain.

DEFINITION 2.1. A matrix $P=(P(i, j))_{i, j \in E}$ is a transition matrix if

$$
\begin{aligned}
& \forall i, j \in E, \quad P(i, j) \geq 0 \\
& \forall i \in E, \quad \sum_{j \in E} P(i, j)=1
\end{aligned}
$$

Example 2.1. The transition matrix related to the process defined previously is given by

$$
P=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 3 & 2 / 3 & 0
\end{array}\right)
$$

REMARK 2.1. If P is a transition matrix then for every integer $n \geq 0, P^{n}$ is a transition matrix.

DEFINITION 2.2. Let E be a countable (finite or infinite) state space. Let μ be a probability on E and let P be a transition matrix on E. A process $\left(X_{n}\right)_{n \geq 0}$ is a (homogeneous) Markov chain on E, with initial probability distribution μ and transition matrix P if

1. $\mathbb{P}\left(X_{0}=i\right)=\mu(i)$, for all $i \in E$,
2. For all $i_{0}, i_{1}, \ldots, i_{n+1} \in E$,

$$
\mathbb{P}\left(X_{n+1}=i_{n+1} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=\mathbb{P}\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right)
$$

Example 2.2. Let the process $\left(X_{n}\right)_{n \geq 0}$ be defined by $X_{0}=0$ and $X_{n}=\sum_{i=1}^{n} Y_{i}$, where $\left(Y_{i}\right)_{i \geq 1}$ is a iid sequence of random variables defined as

$$
Y_{i}= \begin{cases}+1 & \text { with probability } p \\ -1 & \text { with probability } 1-p\end{cases}
$$

Prove that $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain with initial distribution $\mu=\delta_{0}$ and transition matrix $P=(P(i, j))_{i, j \in \mathbb{Z}}$, whith components are defined for every $i, j \in \mathbb{Z}$ as

$$
P(i, j)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)= \begin{cases}p & \text { if } j=i+1 \\ 1-p & \text { if } j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

Answer. We have $X_{n+1}=X_{n}+Y_{n+1}$. Then, for every $i_{0}, i_{1}, \ldots, i_{n+1} \in \mathbb{Z}$, we have

$$
\begin{aligned}
\mathbb{P}\left(X_{n+1}=i_{n+1} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) & =\mathbb{P}\left(Y_{n+1}=i_{n+1}-X_{n} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
& =\mathbb{P}\left(Y_{n+1}=i_{n+1}-i_{n} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)
\end{aligned}
$$

Remind that Y_{n+1} is independent from $\left(X_{0}, \ldots, X_{n}\right)$. Then,

$$
\mathbb{P}\left(Y_{n+1}=i_{n+1}-i_{n} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=\mathbb{P}\left(Y_{n+1}=i_{n+1}-i_{n}\right)
$$

It remains to remark that $\mathbb{P}\left(Y_{n+1}=i_{n+1}-i_{n}\right)=\mathbb{P}\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right)$. In fact,

$$
\begin{aligned}
\mathbb{P}\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right) & =\mathbb{P}\left(Y_{n+1}=i_{n+1}-X_{n} \mid X_{n}=i_{n}\right) \\
& =\frac{\mathbb{P}\left(Y_{n+1}=i_{n+1}-i_{n} ; X_{n}=i_{n}\right)}{\mathbb{P}\left(X_{n}=i_{n}\right)} \\
& =\frac{\mathbb{P}\left(Y_{n+1}=i_{n+1}-i_{n}\right) \mathbb{P}\left(X_{n}=i_{n}\right)}{\mathbb{P}\left(X_{n}=i_{n}\right)} \quad\left(Y_{n+1} \text { and } X_{n} \text { are independent }\right) \\
& =\mathbb{P}\left(Y_{n+1}=i_{n+1}-i_{n}\right)
\end{aligned}
$$

Consider a Heads-Tails game by tossing a coin which has a probability p of getting a Heads and a probability $1-p$ of getting a Tails. We gain $1 \$$ if Heads appears and we lose $1 \$$ when Tails appears. Let our initial stake be $X_{0}=0$ and let X_{n} be our wealth at the step n of the game. The process $\left(X_{n}\right)_{n \geq 0}$ may be defined as in the previous example. The fact that it is a Markov chain with initial probability distribution $\mu=\delta_{0}$ and transition matrix P is expected. In fact, our initial wealth $X_{0}=0\left(\mu=\delta_{0}\right)$, and, when X_{n}, our wealth at step n, is worth i, then X_{n+1} is worth $i+1$ with probability p (when the result of the $n+1$-th toss is Heads) and it is worth $i-1$ with probability $1-p$ (when the result of the $n+1$-th toss is Tails). In other words, if our wealth at step n is worth i, at step $n+1$, our wealth moves from i to $i+1$ with probability p, and, from i to $i-1$ with probability $1-p$.

3 Some properties of Markov chains

The following result gives an other characterization of a Markov chain. It shows that the probability that a Markov chain follows a given trajectory is completely determined by its initial probability distribution and its transition matrix.

Proposition 3.1. Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with a state space E, an initial distribution μ and a transition matrix P. Then, for every $i_{0}, i_{1}, \ldots, i_{n} \in E$,

$$
\begin{equation*}
\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=\mu\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \ldots P\left(i_{n-1}, i_{n}\right) \tag{3.1}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) & =\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right) \mathbb{P}\left(X_{n}=i_{n} \mid X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right) \\
& =\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right) \mathbb{P}\left(X_{n}=i_{n} \mid X_{n-1}=i_{n-1}\right) \\
& =\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right) P\left(i_{n-1}, i_{n}\right)
\end{aligned}
$$

The second equality follows from the definition of a Markov chain. Repeating the previous procedure with $\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right)$ leads to

$$
\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right)=\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n-2}=i_{n-2}\right) P\left(i_{n-2}, i_{n-1}\right)
$$

We then may show by induction that

$$
\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=\mathbb{P}\left(X_{0}=i_{0}\right) P\left(i_{0}, i_{1}\right) \ldots P\left(i_{n-1}, i_{n}\right)
$$

Hence the result.
Example 3.1. Considering the Example 2.1, we have:

1. $\mathbb{P}\left(X_{0}=2, X_{1}=1, X_{3}=2, X_{4}=3\right)=\mu(2) P(2,1) P(1,2) P(2,3)=\frac{1}{6} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4}=\frac{1}{192}$.
2. $\mathbb{P}\left(X_{0}=1, X_{1}=1, X_{2}=2\right)=0$, because $P(1,1)=0$.

REMARKS AND Notations. Remark that the product of two transition matrix is a transition matrix and, if P is a transition matrix and μ is a probability, then μP is a probability. A probability distribution μ will be identified as a row vector so that μP will be a row vector defined for every $j \in E$ by $(\mu P)(j)=\sum_{i \in E} \mu(i) P(i, j)$.
A function $f: E \rightarrow \overline{\mathbb{R}}^{+}$will be identified as a column vector and $P f$ will be the column vector defined for every $i \in E$ by $(P f)(i)=\sum_{j \in E} P(i, j) f(j)$.
The N-th powers of the matrix $P: P^{2}, \ldots, P^{N}$ will be the usual matrix products:

$$
P^{2}(i, k)=\sum_{j \in E} P(i, j) P(j, k), \ldots, \quad \text { with } P^{0}=I \quad(I)_{i, j}=\delta_{i, j}=\left\{\begin{array}{cc}
1 & \text { si } \quad i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

We denote by P_{μ} the probability with respect to the initial distribution μ : for every event $A, \mathbb{P}_{\mu}(A)=$ $\mathbb{P}\left(A \mid X_{0}\right)$ with $X_{0} \sim \mu$. If $\mu=\delta_{i}$ we simply denote \mathbb{P}_{i} instead of $\mathbb{P}_{\delta_{i}}$: then, $\mathbb{P}_{i}(A)=\mathbb{P}\left(A \mid X_{0}=i\right)$.

THEOREM 3.1. Let $\left(X_{n}\right)_{n} \geq 0$ be a Markov chain with initial law μ and transition matrix P on a state space E. Then,

1. $\forall n \geq 0, \forall j \in E$,

$$
\begin{equation*}
\mathbb{P}\left(X_{n}=j\right)=\left(\mu P^{n}\right)(j) \tag{3.2}
\end{equation*}
$$

where $\left(\mu P^{n}\right)(j)$ is the j-th coordinate of the row vector μP^{n}.
2. $\forall k, n \geq 0, \forall i, j \in E$,

$$
\begin{align*}
\mathbb{P}_{i}\left(X_{n}=j\right) & =\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right) \\
& =\mathbb{P}\left(X_{n+k}=j \mid X_{k}=i\right) \\
& =P^{n}(i, j) \tag{3.3}
\end{align*}
$$

where $P^{n}(i, j)$ is the component (i, j) of the matrix P^{n}.

Proof. 1. We have : $\forall n \geq 0, \forall j \in E$,

$$
\begin{aligned}
\mathbb{P}\left(X_{n}=j\right) & =\sum_{i_{0} \in E} \cdots \sum_{i_{n-1} \in E} \mathbb{P}\left(X_{n}=j, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right) \\
& =\sum_{i_{0} \in E} \cdots \sum_{i_{n-1} \in E} \mu\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{n-1}, j\right) \\
& =\sum_{i_{0} \in E} \cdots \sum_{i_{n-2} \in E} \mu\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{n-3}, i_{n-2}\right) \underbrace{}_{P_{i_{n-1} \in E} P\left(i_{n-2}, j\right)} P\left(i_{n-2}, i_{n-1}\right) P\left(i_{n-1}, j\right) \\
& =\sum_{i_{0} \in E} \cdots \sum_{i_{n-2} \in E} \mu\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{n-3}, i_{n-2}\right) P^{2}\left(i_{n-2}, j\right) \\
& \vdots \\
& =\sum_{i_{0} \in E} \mu\left(i_{0}\right) P^{n}\left(i_{0}, j\right) \\
& =\left(\mu P^{n}\right)(j) .
\end{aligned}
$$

2. Starting from $X_{0}=i,\left(X_{n}\right)_{n \geq 0}$ is a Markov chain with initial probability distribution $\mu=\delta_{i}$. We apply the item 1 . above to $\mu=\delta_{i}$ to get the announced result.

EXAMPLE 3.2. Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with transition matrix

$$
P=\left(\begin{array}{cc}
p & 1-p \\
1-q & q
\end{array}\right)
$$

Compute $P^{n}(1,1)=\mathbb{P}\left(X_{n}=1 \mid X_{0}=1\right)$, means, the probability that, starting from the state 1 at time 0 , the chain be at the state 1 at time n.
Answer. Let $p_{i, j}^{(n)}=P^{n}(i, j)$. On one hand, using the equality $P^{n}=P^{n-1} P$, we may express $p_{1,1}^{(n)}$ in terms of the $p_{1, j}^{(n-1)}$,s, $j=1,2$, as follows:

$$
\begin{equation*}
p_{1,1}^{(n)}=p p_{1,1}^{(n-1)}+(1-q) p_{1,2}^{(n-1)} \tag{3.4}
\end{equation*}
$$

On the other hand, since P^{n} is a transition matrix, we have:

$$
\begin{equation*}
p_{1,1}^{(n-1)}+p_{1,2}^{(n-1)}=1 \tag{3.5}
\end{equation*}
$$

Then, il follows from equations (3.4) and (3.5) that $p_{1,1}^{(n)}=(p+q-1) p_{1,1}^{(n-1)}+(1-q)$, with $p_{1,1}^{(0)}=1$ (since $P^{0}=I$). Then $p_{1,1}^{(n)}$ is an arithmetico-geometric sequence of the form $u_{n}=a u_{n-1}+b$, which n-th term reads

$$
u_{n}= \begin{cases}u_{0}+n b & \text { if } a=1 \\ a^{n}\left(u_{0}-\frac{b}{1-a}\right)+\frac{b}{1-a} & \text { if } a \neq 1\end{cases}
$$

Hence,

$$
p_{1,1}^{(n)}= \begin{cases}(p+q-1)^{n}\left(1-\frac{1-q}{2-p-q}\right)+\frac{1-q}{2-p-q} & \text { if } p+q<2 \\ 1 & \text { if } p+q=2\end{cases}
$$

We see in particular that if $p=q=0$ then $p_{1,1}^{(n)}=\frac{1+(-1)^{n}}{2}$. This is expected in fact.

4 States classification: recurrence and transience

4.1 The expected number of visits of a state

Let P be a transition matrix induced by a Markov chain $\left(X_{n}\right)_{n \geq 0}$. Let U be the potential operator associated to P, defined as

$$
U=\sum_{k=0}^{\infty} P^{k}=I+P+P^{2}+\cdots+P^{n}+\cdots
$$

Let $j \in E$ and let $N_{j}=\sum_{k=0}^{\infty} \mathbf{1}_{\left\{X_{k}=j\right\}}$ be the number of times that the chain visits the state j. We have

$$
\begin{aligned}
U(i, j)=\sum_{k=0}^{+\infty} P^{k}(i, j) & =\sum_{k=0}^{+\infty} P_{i}\left(X_{k}=j\right) \\
& =\sum_{k=0}^{+\infty} \mathbb{E}_{i}\left(\mathbf{1}_{\left\{X_{k}=j\right\}}\right) \\
& =\mathbb{E}_{i}\left(\sum_{k=0}^{+\infty} \mathbf{1}_{\left\{X_{k}=j\right\}}\right) \quad \text { (using Fubini theorem) } \\
& =\mathbb{E}_{i}\left(N_{j}\right)
\end{aligned}
$$

So, we have the following result.
Proposition 4.1. Leaving at the state $i \in E$, the expected number of visits of the state j by the Markov chain, that is $\mathbb{E}_{i}\left(N_{j}\right)$, is given by

$$
\mathbb{E}_{i}\left(N_{j}\right)=U(i, j)
$$

The following result gives a way to compute $U(i, j), i, j \in E$. It is a solution to the so-called Dirichlet problem.

Proposition 4.2. $\forall j \in E, U(i, j)=\mathbb{E}_{i}\left(N_{j}\right)$ is the smallest nonnegative solution of the system of equations:

$$
u(i)= \begin{cases}1+(P u)(i) & \text { if } i=j \tag{4.1}\\ (P u)(i) & \text { if } i \neq j\end{cases}
$$

REMARK 4.1. The smallest solution means: for any other solution v of the system of equations (4.1), it holds $v(i) \geq u(i), \forall i \in E$. A nonnegative solution is a one satisfying : $u(i) \in[0,+\infty], \forall i \in E$.

Example 4.1. Consider Example 2.1 with $E=\{1,2,3\}$ and

$$
P=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 3 & 2 / 3 & 0
\end{array}\right)
$$

Compute $\mathbb{E}_{1}\left(N_{2}\right)$.
Answer. Let $u=(u(1), u(2), u(3))^{\prime}$. Then $P u$ is the column vector

$$
\left(\frac{1}{2} u(2)+\frac{1}{2} u(3), \frac{1}{4} u(1)+\frac{1}{2} u(2)+\frac{1}{2} u(3), \frac{1}{3} u(1)+\frac{2}{3} u(2)\right)^{\prime},
$$

so that the system of equations (4.1) reads

$$
\left\{\begin{array}{l}
u(1)=\frac{1}{2} u(2)+\frac{1}{2} u(3) \tag{1}\\
u(2)=\frac{1}{4} u(1)+\frac{1}{4} u(2)+\frac{1}{2} u(3)+1 \\
u(3)=\frac{1}{3} u(1)+\frac{2}{3} u(2)
\end{array}\right.
$$

Making the transformation $(2 \times(1)+(3)$ puis $(1)+3 \times(3))$ of the first and the second equalities above, we may write $u(1)$ and $u(3)$ in terms of $u(2)$:

$$
\left\{\begin{array}{l}
u(1)=u(2) \\
u(2)=\frac{1}{4} u(1)+\frac{1}{4} u(2)+\frac{1}{2} u(3)+1 \\
u(3)=u(2)
\end{array}\right.
$$

Now, putting back $u(1)$ and $u(3)$ in (2) lead to

$$
\left\{\begin{array}{l}
u(1)=u(2) \\
u(2)=u(2)+1 \\
u(3)=u(2)
\end{array}\right.
$$

This is possible only if $u(1)=u(2)=u(3)=+\infty$.
Example 4.2. Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain on $E=\{1,2,3\}$ with transition matrix

$$
P=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2 \\
0 & 0 & 1
\end{array}\right)
$$

Compute $\mathbb{E}_{i}\left(N_{1}\right)$, for $i \in E$.
Answer. Let $u(i)=\mathbb{E}_{i}\left(N_{1}\right), i \in E=\{1,2,3\}$. The system of equations reads:

$$
\left\{\begin{array}{l}
u(1)=\frac{1}{2} u(2)+\frac{1}{2} u(3)+1 \\
u(2)=\frac{1}{4} u(1)+\frac{1}{4} u(2)+\frac{1}{2} u(3) \\
u(3)=u(3)
\end{array}\right.
$$

which leads to

$$
\left\{\begin{array}{l}
u(1)=\frac{6}{5}+u(3) \\
u(2)=\frac{2}{5}+u(3)
\end{array}\right.
$$

As a consequence, any triplet $\left(\frac{6}{5}+u(3), \frac{2}{5}+u(3), u(3)\right)$ is a solution to the Dirichlet equation. The smallest non negative solution $u=(u(1), u(2), u(3))$ is obtained by putting $u(3)=0$, so that, $u=\left(\frac{6}{5}, \frac{2}{5}, 0\right)$. Finally, $\mathbb{E}_{1}\left(N_{1}\right)=\frac{6}{5}, \mathbb{E}_{2}\left(N_{1}\right)=\frac{2}{5}$ and $\mathbb{E}_{3}\left(N_{1}\right)=0$.
Then starting for example from the state 2 at time 0 , the chain makes a visit of the state 1 on average $6 / 5$ time. Once the chain reaches the state 3 , it stays there for ever. We say that the state 3 is a absorbent state. We see at the same time that the chain makes a visit of the state 3 a infinite number of times and stays at the states 1 and 2 a finite number of times. The state 3 is said to be a recurrent state and the states 1 and 2 are said transient. This leads as, in a general setting, to the problem of classifying the states of a Markov chain, by saying which states are recurrent and which one are transient.

4.2 The first passage problem

Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain on a state space E, with transition matrix P and let $i, j \in E$. One of the questions of interest is to determine the distribution of the first passage time of the chain at a given state. We will mainly tray to determine the probability that, leaving the state i, the chain makes a visit of the state j : $\mathbb{P}_{i}\left(\tau_{j}<+\infty\right)$, where τ_{j} is the hitting time of the state j, defined by

$$
\tau_{j}=\inf \left\{n \geq 0, X_{n}=j\right\}
$$

The computation of the distribution of $X_{\tau_{j}}$ may also be of interest.
Let $f: E \longrightarrow \overline{\mathbb{R}}^{+}$, and let $\sigma_{j}=\inf \left\{n \geq 1, X_{n}=j\right\}$ be the first time the chain is back (the first time of return) at the state j. We notice that τ_{j} and σ_{j} are both stopping times and that:

- si $i=j$, alors $\mathbb{P}_{i}\left(\tau_{j}=0\right)=1$
- si $i \neq j$, alors $\mathbb{P}_{i}\left(\tau_{j}=\sigma_{j}\right)=1$.

The following result shows how to compute explicitly $\mathbb{P}_{i}\left(\tau_{j}<+\infty\right)$.
THEOREM 4.1. 1. Let $u(i)=\mathbb{P}_{i}\left(\tau_{j}<+\infty\right), i \in E$. Then, u is the smallest nonnegative solution of the following system of equations

$$
u(i)= \begin{cases}1 & \text { if } i=j \\ (P u)(i) & \text { if } i \neq j\end{cases}
$$

2. Let $v(i)=\mathbb{E}_{i}\left(\tau_{j}\right)$ be the expected time of returning at the state j, leaving the state i. Then v is the smallest nonnegative solution of the following system of equations:

$$
v(i)= \begin{cases}0 & \text { if } i=j \\ 1+(P v)(i) & \text { if } i \neq j\end{cases}
$$

EXAMPLE 4.3. Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with transition matrix P given for every $i=0, \cdots, n-1$, by

$$
P(i, j)= \begin{cases}p & \text { si } j=i+1 \\ q & \text { si } j=0 \\ 0 & \text { sinon. }\end{cases}
$$

with $0<p, q<1, p+q=1$ and where we suppose that the state n is absorbent. Let

$$
\tau=\inf \left\{k \geq 0, X_{k}=n\right\}
$$

Compute $\mathbb{E}_{i}(\tau)$, for $i=0, \cdots, n$.
Answer. We know that the function $v(i)=\mathbb{E}_{i}(\tau)$ is the smallest nonnegative solution of:

$$
v(i)= \begin{cases}0 & \text { si } i=n \\ 1+(P v)(i) & \text { si } i \neq n\end{cases}
$$

with

$$
P=\left(\begin{array}{cccccc}
q & p & 0 & \cdots & \cdots & 0 \\
q & 0 & p & \ddots & & 0 \\
\vdots & \vdots & & \ddots & \ddots & \vdots \\
\vdots & \vdots & & & \ddots & 0 \\
q & 0 & \cdots & \cdots & \cdots & p \\
0 & 0 & \cdots & & \cdots & 1
\end{array}\right) .
$$

This leads to the following system of equations:

$$
\left\{\begin{aligned}
q v(0)+p v(1)= & v(0)-1 \\
q v(0)+p v(2)= & v(1)-1 \\
q v(0)+p v(3)= & v(2)-1 \\
\vdots & \vdots \\
q v(0)+p v(n)= & v(n-1)-1 .
\end{aligned}\right.
$$

First remark that $v(n)=0$. On the other hand, we may show, using a backward induction, that $\forall i=$ $0, \cdots, n-1$,

$$
v(i)=1+p+\cdots+p^{n-i-1}+q\left(1+p+\cdots+p^{n-i-1}\right) v(0) .
$$

Then we deduce that

$$
v(0)=\frac{1-p^{n}}{p^{n}(1-p)} \text { and } v(i)=\frac{1-p^{n-i}}{p^{n}(1-p)} .
$$

In this context, it is intuitive that when p goes to 1 , the expected time of reaching the state n, leaving 0 , is n. This is the case since $v(0)$ goes to n when p goes to 1 . In fact,

$$
v(0)=\frac{1-p^{n}}{p^{n}(1-p)}=\sum_{j=0}^{n-1} p^{j-n}
$$

and the term on the right hand side of the above equation tends towards n when p tends to 1 . We show likewise that, in accordance to the intuition, that $v(0)$ goes to $+\infty$ when p goes to 0 and that $v(i)$ goes to $n-i$ when p goes to 1 (and that for every $i=0, \ldots, n-1, v(i)$ goes to $+\infty$ when p goes to 0).
EXERCISE 4.1. Consider Exemple 2.1 where $P=\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 4 & 1 / 4 & 1 / 2 \\ 0 & 0 & 1\end{array}\right)$ and $E=\{1,2,3\}$ and determine for every $i \in E, \mathbb{P}_{i}\left(\tau_{2}<+\infty\right)$.

4.3 States classification

Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with transition probability P and potential operator U. Keep in mind that

$$
U=\sum_{k=0}^{\infty} P^{k} \quad \text { and } \quad U(i, j)=\mathbb{E}_{i}\left(N_{j}\right)
$$

with

$$
N_{j}=\sum_{n=0}^{\infty} \mathbf{1}_{\left\{X_{n}=j\right\}} .
$$

Now, let $\tau_{i}=\inf \left\{n \geq 0, X_{n}=i\right\}$ and $\sigma_{i}=\inf \left\{n \geq 1, X_{n}=i\right\}$ be the first hitting time of the state i and the first time of return at the state i, respectively. Let $\left(\sigma_{i}^{n}\right)_{n \geq 1}$ be the sequence of the successive times of returns at the state i, defined by :

$$
\sigma_{i}^{1}=\sigma_{i} \quad \text { and } \quad \begin{cases}\sigma_{i}^{n}=\inf \left\{k>\sigma_{i}^{n-1}, X_{k}=i\right\} & \text { if } \sigma_{i}^{n-1}<+\infty \\ \sigma_{i}^{n}=+\infty & \text { otherwise }\end{cases}
$$

We have the following result which derives from the Markov property of a Markov chain.
Proposition 4.3. We have, $\forall i \in E, \forall n \geq 1$,

$$
\begin{equation*}
\mathbb{P}_{i}\left(\sigma_{i}^{n}<+\infty\right)=\left(\mathbb{P}_{i}\left(\sigma_{i}<+\infty\right)\right)^{n} \tag{4.2}
\end{equation*}
$$

Remark that

$$
N_{i}=\sum_{n=0}^{\infty} \mathbf{1}_{\left\{X_{n}=i\right\}}=\mathbf{1}_{\left\{X_{0}=i\right\}}+\sum_{n=1}^{\infty} \mathbf{1}_{\left\{\sigma_{i}^{n}<+\infty\right\}} .
$$

As a consequence (owing to the previous remark, to Proposition 4.3 and applying Fubini's theorem) we get

$$
\begin{aligned}
\mathbb{E}_{i}\left(N_{i}\right) & =\mathbb{P}_{i}\left(X_{0}=i\right)+\sum_{n=1}^{\infty} \mathbb{P}_{i}\left(\sigma_{i}^{n}<+\infty\right) \\
& =1+\sum_{n=1}^{\infty}\left(\mathbb{P}_{i}\left(\sigma_{i}<+\infty\right)\right)^{n}
\end{aligned}
$$

Then

$$
\mathbb{E}_{i}\left(N_{i}\right)=U(i, i)= \begin{cases}=+\infty & \text { if } \mathbb{P}_{i}\left(\sigma_{i}<+\infty\right)=1 \\ <+\infty & \text { if } \mathbb{P}_{i}\left(\sigma_{i}<+\infty\right)=a<1\end{cases}
$$

Definition 4.1. Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space E. A state i is recurrent if

$$
\mathbb{P}_{i}\left(\sigma_{i}<+\infty\right)=1
$$

and it is transient if

$$
\mathbb{P}_{i}\left(\sigma_{i}<+\infty\right)<1
$$

The Markov chain is recurrent (transient) if every state is recurrent (transient).
In fact, we have the following result.
THEOREM 4.2. Let $i \in E$ be a state of a Markov chain.

1. i is recurrent if and only if

$$
\mathbb{P}_{i}\left(N_{i}=\infty\right)=1 \quad \Longleftrightarrow \quad \mathbb{E}_{i}\left(N_{i}\right)=+\infty
$$

2. i is transient if and only if

$$
\mathbb{P}_{i}\left(N_{i}=\infty\right)=0 \quad \Longleftrightarrow \quad \mathbb{E}_{i}\left(N_{i}\right)<+\infty
$$

EXERCISE 4.2. Consider the example where $E=\{0, \cdots, n\}$ and for every $i=0, \cdots, n-1$,

$$
P(i, j)= \begin{cases}p & \text { if } j=i+1 \\ q & \text { if } j=0 \\ 0 & \text { otherwise }\end{cases}
$$

and n is absorbent state. Classify the states of the chain.
Exercise 4.3. Consider 4.2 where $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain with transition matrix

$$
P=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2 \\
0 & 0 & 1
\end{array}\right) .
$$

Compute $\mathbb{E}_{i}\left(N_{i}\right)$ for every $i \in E=\{1,2,3\}$. Deduce a classification of the states of the Markov chain.
Example 4.4. (Symmetric random work on \mathbb{Z}) Consider a mobile moving randomly on \mathbb{Z} following a Markov chain with transition matrix P, which components are defined as

$$
P(i, j)=\left\{\begin{aligned}
p & \text { if } j=i+1 \\
1-p & \text { if } j=i-1 \\
0 & \text { otherwises }
\end{aligned}\right.
$$

with $0<p<1$. Let $\left(Z_{n}\right)_{n \geq 1}$ be a sequence of iid random variables such that $\mathbb{P}\left(Z_{n}=1\right)=p, \mathbb{P}\left(Z_{n}=\right.$ $-1)=1-p$ et let $X_{0}=0$ and $X_{n}=Z_{1}+\ldots+Z_{n}$. We have seen that $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain with transition matrix P. Now, let us show that the Markov chain $\left(X_{n}\right)_{n \geq 0}$ is transient if $p \neq 1 / 2$ and that it is recurrent if $p=1 / 2$.

1. Suppose that $p \neq 1 / 2$. Owing to the law of large numbers we have $\lim _{n \rightarrow+\infty} \frac{1}{n} X_{n}=2 p-1 \neq 0$. Then,

$$
\lim _{n \rightarrow+\infty} X_{n}= \begin{cases}+\infty & \text { if } p>1 / 2 \\ -\infty & \text { if } p<1 / 2\end{cases}
$$

so that in both cases the $\left(X_{n}\right)_{n \geq 0}$ will be transient.
2. Suppose now that $p=1 / 2$ and set $Y_{i}=\frac{1}{2}\left(Z_{i}+1\right)$. We know that $T_{n}=\frac{1}{2}\left(X_{n}+n\right)=\sum_{i=1}^{n} Y_{i}$ is binomial random variable with parameters n and $p=1 / 2$. So

$$
P^{(n)}(0,0)=\mathbb{P}\left(X_{n}=0\right)=\mathbb{P}\left(T_{n}=\frac{n}{2}\right)=\binom{\frac{n}{2}}{n} 2^{-n} .
$$

If $n=2 k$ is an even number then $P^{(2 k)}(0,0)=\binom{k}{2 k} 4^{-k}=\frac{(2 k)!}{(k!)^{2}}$. On the other hand, using the Stirling formula we get

$$
k!\sim \sqrt{2 \pi k}\left(\frac{k}{e}\right)^{k} \quad \text { and } \quad(2 k)!\sim \sqrt{4 \pi k}\left(\frac{2 k}{e}\right)^{2 k} .
$$

This means that $P^{(2 k)}(0,0) \sim(\pi k)^{-1 / 2}$ as k goes to $+\infty$, so that $U(0,0)=\sum_{n \geq 1} P^{n}(0,0)=+\infty$ and the state 0 is recurrent. As a consequence the Markov chain is recurrent since every state is accessible from state 0 : for every $i \in \mathbb{Z}$, there exists an integer n such that $\mathbb{P}\left(X_{n}=i \mid X_{0}=0\right)>0$.

Example 4.5. (Symmetric random walk in \mathbb{Z}^{d}) Define the probability μ by

$$
\mu(x)= \begin{cases}(2 d)^{-1} & \text { if } x \in \mathcal{N}_{d}(0) \\ 0 & \text { otherwise }\end{cases}
$$

where $\mathcal{N}_{d}(0)=\left\{z \in \mathbb{Z}^{d}, z=(0, \ldots, 0, \pm 1,0, \ldots 0)\right\}$, means, the $2 d$ belonging to the neighborhood of $0 \in \mathbb{Z}^{d}$. For example, $\mathcal{N}_{2}(0)=\{(0,1),(0,-1),(1,0),(-1,0)\}$. Let Y_{1}, \ldots, Y_{n} be a sequence of iid and \mathbb{Z}^{d}-valued random variables with distributions μ. Set $X_{0}=0$ and $X_{n}=Y_{1}+\ldots+Y_{n}$. We have shown that $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain with initial distribution δ_{0} and transition matrix P, which components (i, j) are defined by $P(i, j)=\mu(j-i)$.

1. Let m be the counting measure on \mathbb{Z}^{d} and $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ a integrable function w.r.t. m : $\sum_{z \in \mathbb{Z}^{d}}|f(z)|<$ $+\infty$. Define the Fourier transform of f by

$$
\hat{f}(\theta)=\sum_{z \in \mathbb{Z}^{d}} f(z) e^{i(\theta, z)}, \quad \theta \in \mathbb{R}^{d}
$$

where (a, b) stands for the dot product between a and b.
(a) Show that if $f, g \in L^{1}(m)$ and the convolution product

$$
h(z)=\sum_{y \in \mathbb{Z}^{d}} f(y) g(z-y),
$$

then $\hat{h}(\theta)=\hat{f}(\theta) \hat{g}(\theta), \forall \theta \in \mathbb{R}^{d}$.
(b) Show that if $f \in L^{1}(m)$, then \hat{f} is bounded and

$$
f(z)=\frac{1}{(2 \pi)^{d}} \int_{]-\pi, \pi]^{d}} \hat{f}(\theta) e^{-i(\theta, z)} d \theta
$$

(c) $\operatorname{Set} \theta=\left(\theta_{1}, \ldots, \theta_{d}\right)$ Show that

$$
\hat{\mu}(\theta)=\frac{1}{d} \sum_{k=1}^{d} \cos \left(\theta_{k}\right) .
$$

Deduce that if $\theta \in]-\pi, \pi]^{d}, \theta \neq 0$, then $\hat{\mu}(\theta)<1$ and that, as $\theta \rightarrow 0$,

$$
1-\hat{\mu}(\theta) \sim \frac{|\theta|^{2}}{2 d}
$$

2. Set

$$
U_{\lambda}(x, y)=\sum_{n=0}^{+\infty} \lambda^{n} P^{n}(x, y), \quad|\lambda|<1
$$

(a) Show that $\lim _{\lambda \rightarrow 1} U_{\lambda}(x, y)=U(x, y)$, where U is the potential matrix associated to P.
(b) Set $u_{\lambda}=U_{\lambda}(0, y)$. Show that $u_{\lambda} \in L^{1}(m)$ and that

$$
\hat{\mu}_{\lambda}(\theta)=\frac{1}{1-\lambda \hat{\mu}(\theta)} .
$$

(c) Compute $U(0,0)$ and show that the Markov chain is recurrent if and only if $d \leq 2$.

References

[1] Baldi, P., Mazliak, L., Priouret, P. Martingales et chaînes de Markov, théorie élémentaire et exercices corrigés. Hermann, éditeurs des sciences et des arts.

