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1 Introduction

Our aim in this short lecture is to introduce the Markov chains and to study the Recurrence and transience
properties of a Markov chain.

2 Definition of a Markov chain

To introduce a Markov chain let us consider the following example. Let (Xn)n≥0 be a stochastic process
taking values in the setE = {1, 2, 3}. Suppose that at the initial time n = 0, X0 is a random variable valued
in {1, 2, 3} with the following corresponding probabilities:

P(X0 = 1) =
1

2
, P(X0 = 2) =

1

6
, P(X0 = 3) =

1

3
.

We may then define the probability distribution µ of X0 as:

µ(1) = P(X0 = 1) =
1

2
, µ(2) = P(X0 = 2) =

1

6
, µ(3) = P(X0 = 3) =

1

3
.

For n ≥ 1, the process (Xn) evolves according to the principle described by the following diagram:

The diagram is read as follows: if the process is at the state 1 at time n, then, at time n+ 1, it moves to the
state 2 with a probability 1

2 and to the state 3 with a probability 1
2 . If the process is at the state 2 at time n,

then, at time n+ 1, it moves to the state 1 with a probability 1
4 , to the state 3 with a probability 1

2 or stays at
the state 2 with a probability 1

4 . Finally, if the process is at the state 3 at time n, at time n + 1, it moves to
the state 1 with a probability 1

3 and to the state 2 with a probability 2
3 .
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This diagram is determined by the knowledge of probability of transitions P(Xn+1 = j|Xn = i), i, j ∈
{1, 2, 3}, and conversely. Let (P (i, j))i,j∈E be the matrix of transition probabilities where the rows cor-
respond to the transition probabilities starting from the state i : P (i, j) = P(Xn+1 = j|Xn = i),
j ∈ E = {1, 2, 3}. We therefore have

∀i ∈ E,
∑
j∈E

P (i, j) = 1.

The process (Xn)n≥0 describe previously is a Markov chain. The probability distribution µ is called the
initial probability distribution of the Markov chain and the set E is called the state space. The elements of
E are called the states of the Markov chain.

DEFINITION 2.1. A matrix P = (P (i, j))i,j∈E is a transition matrix if

∀i, j ∈ E, P (i, j) ≥ 0

∀i ∈ E,
∑
j∈E

P (i, j) = 1.

EXAMPLE 2.1. The transition matrix related to the process defined previously is given by

P =

 0 1/2 1/2
1/4 1/2 1/4
1/3 2/3 0

 .

REMARK 2.1. If P is a transition matrix then for every integer n ≥ 0, Pn is a transition matrix.

DEFINITION 2.2. LetE be a countable (finite or infinite) state space. Let µ be a probability onE and let
P be a transition matrix on E. A process (Xn)n≥0 is a (homogeneous) Markov chain on E, with initial
probability distribution µ and transition matrix P if

1. P(X0 = i) = µ(i), for all i ∈ E,

2. For all i0, i1, . . . , in+1 ∈ E,

P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P(Xn+1 = in+1|Xn = in).

EXAMPLE 2.2. Let the process (Xn)n≥0 be defined by X0 = 0 and Xn =
n∑
i=1

Yi, where (Yi)i≥1 is a iid

sequence of random variables defined as

Yi =

{
+1 with probability p
−1 with probability 1− p.

Prove that (Xn)n≥0 is a Markov chain with initial distribution µ = δ0 and transition matrixP = (P (i, j))i,j∈Z,
whith components are defined for every i, j ∈ Z as

P (i, j) = P(Xn+1 = j|Xn = i) =


p if j = i+ 1
1− p if j = i− 1
0 otherwise.
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Answer. We have Xn+1 = Xn + Yn+1. Then, for every i0, i1, . . . , in+1 ∈ Z, we have

P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P(Yn+1 = in+1 −Xn|X0 = i0, . . . , Xn = in)

= P(Yn+1 = in+1 − in|X0 = i0, . . . , Xn = in).

Remind that Yn+1 is independent from (X0, . . . , Xn). Then,

P(Yn+1 = in+1 − in|X0 = i0, . . . , Xn = in) = P(Yn+1 = in+1 − in).

It remains to remark that P(Yn+1 = in+1 − in) = P(Xn+1 = in+1|Xn = in). In fact,

P(Xn+1 = in+1|Xn = in) = P(Yn+1 = in+1 −Xn|Xn = in)

=
P(Yn+1 = in+1 − in;Xn = in)

P(Xn = in)

=
P(Yn+1 = in+1 − in)P(Xn = in)

P(Xn = in)
(Yn+1 and Xn are independent)

= P(Yn+1 = in+1 − in).

Consider a Heads-Tails game by tossing a coin which has a probability p of getting a Heads and a probability
1 − p of getting a Tails. We gain 1$ if Heads appears and we lose 1$ when Tails appears. Let our initial
stake be X0 = 0 and let Xn be our wealth at the step n of the game. The process (Xn)n≥0 may be defined
as in the previous example. The fact that it is a Markov chain with initial probability distribution µ = δ0 and
transition matrix P is expected. In fact, our initial wealth X0 = 0 (µ = δ0), and, when Xn, our wealth at
step n, is worth i, then Xn+1 is worth i+ 1 with probability p (when the result of the n+ 1-th toss is Heads)
and it is worth i− 1 with probability 1− p (when the result of the n+ 1-th toss is Tails). In other words, if
our wealth at step n is worth i, at step n+ 1, our wealth moves from i to i+ 1 with probability p, and, from
i to i− 1 with probability 1− p.

3 Some properties of Markov chains

The following result gives an other characterization of a Markov chain. It shows that the probability that a
Markov chain follows a given trajectory is completely determined by its initial probability distribution and
its transition matrix.

PROPOSITION 3.1. Let (Xn)n≥0 be a Markov chain with a state space E, an initial distribution µ and a
transition matrix P . Then, for every i0, i1, . . . , in ∈ E,

P(X0 = i0, . . . , Xn = in) = µ(i0)P (i0, i1) . . . P (in−1, in). (3.1)

PROOF. We have

P(X0 = i0, . . . , Xn = in) = P(X0 = i0, . . . , Xn−1 = in−1)P(Xn = in|X0 = i0, . . . , Xn−1 = in−1)

= P(X0 = i0, . . . , Xn−1 = in−1)P(Xn = in|Xn−1 = in−1)

= P(X0 = i0, . . . , Xn−1 = in−1)P (in−1, in).
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The second equality follows from the definition of a Markov chain. Repeating the previous procedure with
P(X0 = i0, . . . , Xn−1 = in−1) leads to

P(X0 = i0, . . . , Xn−1 = in−1) = P(X0 = i0, . . . , Xn−2 = in−2)P (in−2, in−1).

We then may show by induction that

P(X0 = i0, . . . , Xn = in) = P(X0 = i0)P (i0, i1) . . . P (in−1, in).

Hence the result.

EXAMPLE 3.1. Considering the Example 2.1, we have:

1. P(X0 = 2, X1 = 1, X3 = 2, X4 = 3) = µ(2)P (2, 1)P (1, 2)P (2, 3) =
1

6
· 1

4
· 1

2
· 1

4
=

1

192
.

2. P(X0 = 1, X1 = 1, X2 = 2) = 0, because P (1, 1) = 0.

REMARKS AND NOTATIONS. Remark that the product of two transition matrix is a transition matrix
and, if P is a transition matrix and µ is a probability, then µP is a probability. A probability distribu-
tion µ will be identified as a row vector so that µP will be a row vector defined for every j ∈ E by
(µP )(j) =

∑
i∈E

µ(i)P (i, j).

A function f : E → R̄+ will be identified as a column vector and Pf will be the column vector defined for
every i ∈ E by (Pf)(i) =

∑
j∈E

P (i, j)f(j).

The N -th powers of the matrix P : P 2,. . . , PN will be the usual matrix products:

P 2(i, k) =
∑
j∈E

P (i, j)P (j, k), . . . , with P 0 = I (I)i,j = δi,j =

{
1 si i = j
0 otherwise.

We denote by Pµ the probability with respect to the initial distribution µ: for every event A, Pµ(A) =
P(A|X0) with X0 ∼ µ. If µ = δi we simply denote Pi instead of Pδi : then, Pi(A) = P(A|X0 = i).

THEOREM 3.1. Let (Xn)n ≥ 0 be a Markov chain with initial law µ and transition matrix P on a state
space E. Then,

1. ∀n ≥ 0,∀j ∈ E,
P(Xn = j) = (µPn)(j) (3.2)

where (µPn)(j) is the j-th coordinate of the row vector µPn.

2. ∀k, n ≥ 0,∀i, j ∈ E,

Pi(Xn = j) = P(Xn = j | X0 = i)

= P(Xn+k = j|Xk = i)

= Pn(i, j). (3.3)

where Pn(i, j) is the component (i, j) of the matrix Pn.
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PROOF. 1. We have : ∀n ≥ 0, ∀j ∈ E,

P(Xn = j) =
∑
i0∈E
· · ·

∑
in−1∈E

P(Xn = j,Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈E
· · ·

∑
in−1∈E

µ(i0)P (i0, i1) · · ·P (in−1, j)

=
∑
i0∈E
· · ·

∑
in−2∈E

µ(i0)P (i0, i1) · · ·P (in−3, in−2)
∑

in−1∈E
P (in−2, in−1)P (in−1, j)︸ ︷︷ ︸

=P 2(in−2,j)

=
∑
i0∈E
· · ·

∑
in−2∈E

µ(i0)P (i0, i1) · · ·P (in−3, in−2)P
2(in−2, j)

...

=
∑
i0∈E

µ(i0)P
n(i0, j)

= (µPn)(j).

2. Starting from X0 = i, (Xn)n≥0 is a Markov chain with initial probability distribution µ = δi. We apply
the item 1. above to µ = δi to get the announced result.

EXAMPLE 3.2. Let (Xn)n≥0 be a Markov chain with transition matrix

P =

(
p 1− p

1− q q

)
.

Compute Pn(1, 1) = P(Xn = 1|X0 = 1), means, the probability that, starting from the state 1 at time 0,
the chain be at the state 1 at time n.

Answer. Let p(n)i,j = Pn(i, j). On one hand, using the equality Pn = Pn−1P , we may express p(n)1,1 in terms

of the p(n−1)1,j ’s, j = 1, 2, as follows:

p
(n)
1,1 = p p

(n−1)
1,1 + (1− q) p(n−1)1,2 . (3.4)

On the other hand, since Pn is a transition matrix, we have:

p
(n−1)
1,1 + p

(n−1)
1,2 = 1. (3.5)

Then, il follows from equations (3.4) and (3.5) that p(n)1,1 = (p+ q− 1)p
(n−1)
1,1 + (1− q), with p(0)1,1 = 1 (since

P 0 = I). Then p(n)1,1 is an arithmetico-geometric sequence of the form un = aun−1 + b, which n-th term
reads

un =

{
u0 + nb if a = 1

an
(
u0 − b

1−a
)

+ b
1−a if a 6= 1.

Hence,

p
(n)
1,1 =


(
p+ q − 1

)n(
1− 1− q

2− p− q

)
+

1− q
2− p− q

if p+ q < 2

1 if p+ q = 2.

We see in particular that if p = q = 0 then p(n)1,1 = 1+(−1)n
2 . This is expected in fact.
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4 States classification: recurrence and transience

4.1 The expected number of visits of a state

Let P be a transition matrix induced by a Markov chain (Xn)n≥0. Let U be the potential operator associated
to P , defined as

U =
∞∑
k=0

P k = I + P + P 2 + · · ·+ Pn + · · ·

Let j ∈ E and let Nj =
∑∞

k=0 1{Xk=j} be the number of times that the chain visits the state j. We have

U(i, j) =
+∞∑
k=0

P k(i, j) =
+∞∑
k=0

Pi(Xk = j)

=
+∞∑
k=0

Ei
(
1{Xk=j}

)
= Ei

( +∞∑
k=0

1{Xk=j}

)
(using Fubini theorem)

= Ei(Nj).

So, we have the following result.

PROPOSITION 4.1. Leaving at the state i ∈ E, the expected number of visits of the state j by the Markov
chain, that is Ei(Nj), is given by

Ei(Nj) = U(i, j).

The following result gives a way to compute U(i, j), i, j ∈ E. It is a solution to the so-called Dirichlet
problem.

PROPOSITION 4.2. ∀j ∈ E, U(i, j) = Ei(Nj) is the smallest nonnegative solution of the system of
equations:

u(i) =

{
1 + (Pu)(i) if i = j
(Pu)(i) if i 6= j.

(4.1)

REMARK 4.1. The smallest solution means: for any other solution v of the system of equations (4.1), it
holds v(i) ≥ u(i),∀i ∈ E. A nonnegative solution is a one satisfying : u(i) ∈ [0,+∞], ∀i ∈ E.

EXAMPLE 4.1. Consider Example 2.1 with E = {1, 2, 3} and

P =

 0 1/2 1/2
1/4 1/4 1/2
1/3 2/3 0

 .

Compute E1(N2).

Answer. Let u = (u(1), u(2), u(3))′. Then Pu is the column vector(1

2
u(2) +

1

2
u(3),

1

4
u(1) +

1

2
u(2) +

1

2
u(3),

1

3
u(1) +

2

3
u(2)

)′
,
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so that the system of equations (4.1) reads
u(1) = 1

2u(2) + 1
2u(3) (1)

u(2) = 1
4u(1) + 1

4u(2) +
1

2
u(3) + 1 (2)

u(3) = 1
3u(1) + 2

3u(2) (3)

Making the transformation
(
2 × (1) + (3) puis (1) + 3 × (3)

)
of the first and the second equalities above,

we may write u(1) and u(3) in terms of u(2):
u(1) = u(2)
u(2) = 1

4u(1) + 1
4u(2) + 1

2u(3) + 1
u(3) = u(2).

Now, putting back u(1) and u(3) in (2) lead to
u(1) = u(2)
u(2) = u(2) + 1
u(3) = u(2).

This is possible only if u(1) = u(2) = u(3) = +∞.

EXAMPLE 4.2. Let (Xn)n≥0 be a Markov chain on E = {1, 2, 3} with transition matrix

P =

 0 1/2 1/2
1/4 1/4 1/2
0 0 1

 .

Compute Ei(N1), for i ∈ E.

Answer. Let u(i) = Ei(N1), i ∈ E = {1, 2, 3}. The system of equations reads:
u(1) = 1

2u(2) + 1
2u(3) + 1

u(2) = 1
4u(1) + 1

4u(2) + 1
2u(3)

u(3) = u(3)

which leads to {
u(1) = 6

5 + u(3)
u(2) = 2

5 + u(3).

As a consequence, any triplet (65 +u(3), 25 +u(3), u(3)) is a solution to the Dirichlet equation. The smallest
non negative solution u = (u(1), u(2), u(3)) is obtained by putting u(3) = 0, so that, u = (65 ,

2
5 , 0). Finally,

E1(N1) = 6
5 , E2(N1) = 2

5 and E3(N1) = 0.

Then starting for example from the state 2 at time 0, the chain makes a visit of the state 1 on average 6/5
time. Once the chain reaches the state 3, it stays there for ever. We say that the state 3 is a absorbent state.
We see at the same time that the chain makes a visit of the state 3 a infinite number of times and stays at the
states 1 and 2 a finite number of times. The state 3 is said to be a recurrent state and the states 1 and 2 are
said transient. This leads as, in a general setting, to the problem of classifying the states of a Markov chain,
by saying which states are recurrent and which one are transient.
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4.2 The first passage problem

Let (Xn)n≥0 be a Markov chain on a state space E, with transition matrix P and let i, j ∈ E. One of the
questions of interest is to determine the distribution of the first passage time of the chain at a given state. We
will mainly tray to determine the probability that, leaving the state i, the chain makes a visit of the state j:
Pi(τj < +∞), where τj is the hitting time of the state j, defined by

τj = inf{n ≥ 0, Xn = j}.

The computation of the distribution of Xτj may also be of interest.

Let f : E −→ R̄+, and let σj = inf{n ≥ 1, Xn = j} be the first time the chain is back (the first time of
return) at the state j. We notice that τj and σj are both stopping times and that:

• si i = j, alors Pi(τj = 0) = 1

• si i 6= j, alors Pi(τj = σj) = 1.

The following result shows how to compute explicitly Pi(τj < +∞).

THEOREM 4.1. 1. Let u(i) = Pi(τj < +∞), i ∈ E. Then, u is the smallest nonnegative solution of
the following system of equations

u(i) =

{
1 if i = j
(Pu)(i) if i 6= j.

2. Let v(i) = Ei(τj) be the expected time of returning at the state j, leaving the state i. Then v is the
smallest nonnegative solution of the following system of equations:

v(i) =

{
0 if i = j
1 + (Pv)(i) if i 6= j.

EXAMPLE 4.3. Let (Xn)n≥0 be a Markov chain with transition matrix P given for every i = 0, · · · , n− 1,
by

P (i, j) =


p si j = i+ 1
q si j = 0
0 sinon.

with 0 < p, q < 1, p+ q = 1 and where we suppose that the state n is absorbent. Let

τ = inf{k ≥ 0, Xk = n}.

Compute Ei(τ), for i = 0, · · · , n.

Answer. We know that the function v(i) = Ei(τ) is the smallest nonnegative solution of:

v(i) =

{
0 si i = n
1 + (Pv)(i) si i 6= n
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with

P =



q p 0 · · · · · · 0

q 0 p
. . . 0

...
...

. . . . . .
...

...
...

. . . 0
q 0 · · · · · · · · · p
0 0 · · · · · · 1


.

This leads to the following system of equations:

qv(0) + pv(1) = v(0)− 1
qv(0) + pv(2) = v(1)− 1
qv(0) + pv(3) = v(2)− 1
...

...
qv(0) + pv(n) = v(n− 1)− 1.

First remark that v(n) = 0. On the other hand, we may show, using a backward induction, that ∀i =
0, · · · , n− 1,

v(i) = 1 + p+ · · ·+ pn−i−1 + q(1 + p+ · · ·+ pn−i−1)v(0).

Then we deduce that

v(0) =
1− pn

pn(1− p)
and v(i) =

1− pn−i

pn(1− p)
.

In this context, it is intuitive that when p goes to 1, the expected time of reaching the state n, leaving 0, is n.
This is the case since v(0) goes to n when p goes to 1. In fact,

v(0) =
1− pn

pn(1− p)
=

n−1∑
j=0

pj−n

and the term on the right hand side of the above equation tends towards n when p tends to 1. We show
likewise that, in accordance to the intuition, that v(0) goes to +∞ when p goes to 0 and that v(i) goes to
n− i when p goes to 1 (and that for every i = 0, . . . , n− 1, v(i) goes to +∞ when p goes to 0).

EXERCISE 4.1. Consider Exemple 2.1 where P =

 0 1/2 1/2
1/4 1/4 1/2
0 0 1

 and E = {1, 2, 3} and determine

for every i ∈ E, Pi(τ2 < +∞).

4.3 States classification

Let (Xn)n≥0 be a Markov chain with transition probability P and potential operator U . Keep in mind that

U =
∞∑
k=0

P k and U(i, j) = Ei(Nj),

with

Nj =

∞∑
n=0

1{Xn=j}.
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Now, let τi = inf{n ≥ 0, Xn = i} and σi = inf{n ≥ 1, Xn = i} be the first hitting time of the state i and
the first time of return at the state i, respectively. Let (σni )n≥1 be the sequence of the successive times of
returns at the state i, defined by :

σ1i = σi and
{
σni = inf{k > σn−1i , Xk = i} if σn−1i < +∞
σni = +∞ otherwise.

We have the following result which derives from the Markov property of a Markov chain.

PROPOSITION 4.3. We have, ∀i ∈ E,∀n ≥ 1,

Pi(σ
n
i < +∞) =

(
Pi(σi < +∞)

)n
. (4.2)

Remark that

Ni =

∞∑
n=0

1{Xn=i} = 1{X0=i} +

∞∑
n=1

1{σn
i <+∞}.

As a consequence (owing to the previous remark, to Proposition 4.3 and applying Fubini’s theorem) we get

Ei(Ni) = Pi(X0 = i) +
∞∑
n=1

Pi(σ
n
i < +∞)

= 1 +

∞∑
n=1

(Pi(σi < +∞))n.

Then

Ei(Ni) = U(i, i) =

{
= +∞ if Pi(σi < +∞) = 1
< +∞ if Pi(σi < +∞) = a < 1.

DEFINITION 4.1. Let (Xn)n≥0 be a Markov chain with state space E. A state i is recurrent if

Pi(σi < +∞) = 1

and it is transient if
Pi(σi < +∞) < 1.

The Markov chain is recurrent (transient) if every state is recurrent (transient).

In fact, we have the following result.

THEOREM 4.2. Let i ∈ E be a state of a Markov chain.

1. i is recurrent if and only if

Pi(Ni =∞) = 1 ⇐⇒ Ei(Ni) = +∞.

2. i is transient if and only if

Pi(Ni =∞) = 0 ⇐⇒ Ei(Ni) < +∞.
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EXERCISE 4.2. Consider the example where E = {0, · · · , n} and for every i = 0, · · · , n− 1,

P (i, j) =


p if j = i+ 1
q if j = 0
0 otherwise

and n is absorbent state. Classify the states of the chain.

EXERCISE 4.3. Consider 4.2 where (Xn)n≥0 is a Markov chain with transition matrix

P =

 0 1/2 1/2
1/4 1/4 1/2
0 0 1

 .

Compute Ei(Ni) for every i ∈ E = {1, 2, 3}. Deduce a classification of the states of the Markov chain.

EXAMPLE 4.4. (Symmetric random work on Z) Consider a mobile moving randomly on Z following a
Markov chain with transition matrix P , which components are defined as

P (i, j) =


p if j = i+ 1,

1− p if j = i− 1,
0 otherwises.

with 0 < p < 1. Let (Zn)n≥1 be a sequence of iid random variables such that P(Zn = 1) = p, P(Zn =
−1) = 1− p et let X0 = 0 and Xn = Z1 + . . . + Zn. We have seen that (Xn)n≥0 is a Markov chain with
transition matrix P . Now, let us show that the Markov chain (Xn)n≥0 is transient if p 6= 1/2 and that it is
recurrent if p = 1/2.

1. Suppose that p 6= 1/2. Owing to the law of large numbers we have lim
n→+∞

1
nXn = 2p− 1 6= 0. Then,

lim
n→+∞

Xn =

{
+∞ if p > 1/2
−∞ if p < 1/2,

so that in both cases the (Xn)n≥0 will be transient.

2. Suppose now that p = 1/2 and set Yi = 1
2(Zi + 1). We know that Tn = 1

2(Xn + n) =
∑n

i=1 Yi is
binomial random variable with parameters n and p = 1/2. So

P (n)(0, 0) = P(Xn = 0) = P
(
Tn =

n

2

)
=

(
n
2
n

)
2−n.

If n = 2k is an even number then P (2k)(0, 0) =

(
k
2k

)
4−k = (2k)!

(k!)2
. On the other hand, using the

Stirling formula we get

k! ∼
√

2πk

(
k

e

)k
and (2k)! ∼

√
4πk

(
2k

e

)2k

.

This means that P (2k)(0, 0) ∼ (πk)−1/2 as k goes to +∞, so that U(0, 0) =
∑

n≥1 P
n(0, 0) = +∞

and the state 0 is recurrent. As a consequence the Markov chain is recurrent since every state is
accessible from state 0: for every i ∈ Z, there exists an integer n such that P(Xn = i|X0 = 0) > 0.
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EXAMPLE 4.5. (Symmetric random walk in Zd) Define the probability µ by

µ(x) =

{
(2d)−1 if x ∈ Nd(0)
0 otherwise

where Nd(0) = {z ∈ Zd, z = (0, . . . , 0,±1, 0, . . . 0)}, means, the 2d belonging to the neighborhood of
0 ∈ Zd. For example, N2(0) = {(0, 1), (0,−1), (1, 0), (−1, 0)}. Let Y1, . . . , Yn be a sequence of iid and
Zd-valued random variables with distributions µ. Set X0 = 0 and Xn = Y1 + . . .+Yn. We have shown that
(Xn)n≥0 is a Markov chain with initial distribution δ0 and transition matrix P , which components (i, j) are
defined by P (i, j) = µ(j − i).

1. Letm be the counting measure onZd and f : Zd → R a integrable function w.r.t. m:
∑

z∈Zd |f(z)| <
+∞. Define the Fourier transform of f by

f̂(θ) =
∑
z∈Zd

f(z)ei(θ,z), θ ∈ Rd,

where (a, b) stands for the dot product between a and b.

(a) Show that if f, g ∈ L1(m) and the convolution product

h(z) =
∑
y∈Zd

f(y)g(z − y),

then ĥ(θ) = f̂(θ)ĝ(θ), ∀θ ∈ Rd.

(b) Show that if f ∈ L1(m), then f̂ is bounded and

f(z) =
1

(2π)d

∫
]−π,π]d

f̂(θ)e−i(θ,z)dθ.

(c) Set θ = (θ1, . . . , θd) Show that

µ̂(θ) =
1

d

d∑
k=1

cos(θk).

Deduce that if θ ∈]− π, π]d, θ 6= 0, then µ̂(θ) < 1 and that, as θ → 0,

1− µ̂(θ) ∼ |θ|
2

2d
.

2. Set

Uλ(x, y) =

+∞∑
n=0

λnPn(x, y), |λ| < 1.

(a) Show that lim
λ→1

Uλ(x, y) = U(x, y), where U is the potential matrix associated to P .

(b) Set uλ = Uλ(0, y). Show that uλ ∈ L1(m) and that

µ̂λ(θ) =
1

1− λµ̂(θ)
.

(c) Compute U(0, 0) and show that the Markov chain is recurrent if and only if d ≤ 2.
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