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Cloning Algorithms:
from Large Deviations to Population Dynamics

Abstract: Population dynamics provides a numerical tool allowing for the study of rare events
by means of simulating a large number of copies of the system, supplemented with a selection
rule that favours the rare trajectories of interest. The cloning algorithm allows the estimation
of a large deviation function (LDF) of additive observables in Markov processes. However, such
algorithms are plagued by finite simulation time t and finite population size Nc effects that can
render their use delicate. First, using a non-constant population approach, we analyze the small-
Nc effects in the initial transient regime. These effects play an important role in the numerical
determination of LDF. We show how to overcome these effects by introducing a time delay in
the evolution of populations, additional to the discarding of the initial regime of the population
growth where these discreteness effects are strong. Then, the study of the finite-t and finite-Nc

scalings in the LDF evaluation is done using two different versions of the algorithm, in discrete
and continuous-time. We show that these scalings behave as 1/Nc and 1/t in the large-Nc and
large-t asymptotics respectively. Moreover, we show that one can make use of this convergence
speed in order to extract the asymptotic behavior in the infinite-t and infinite-Nc limits resulting
in a better LDF estimation. These scalings are later generalized and evidence of a breakdown
for large-size systems is presented.

Keywords : Rare Events, Large Deviations, Population Dynamics Algorithms

Algorithmes de Clonage:
des Grandes Déviations à la Dynamique des Populations

Résumé: La dynamique des populations fournit un outil numérique qui permet l’étude des événe-
ments rares grâce à la simulation d’un grand nombre de copies du système. Le processus est muni
d’une règle qui favorise les trajectoires rares d’intérêt. La méthode de l’algorithme de clonage
permet l’estimation de la fonction de grandes déviations (en anglais, LDF) pour les observables
additives pour les processus de Markov. Cependant, cette méthode doit être soigneusement util-
isée car il existe des effets de temps de simulation t finie et de taille de population Nc finie.
Premièrement, nous analysons les effets de petit Nc dans un régime transitoire initial en utilisant
une approche de population non constante. Ces effets jouent un rôle important dans la déter-
mination numérique de la LDF. Pour surmonter ces effets, nous avons introduit un délai dans
l’évolution des populations, en plus de l’exclusion du régime initial de la croissance de la popula-
tion où ces effets sont forts. Ensuite, l’étude des lois d’échelle de t et Nc finie dans l’évaluation de
LDF est faite en utilisant deux versions différentes de l’algorithme, en temps discret et en temps
continu. Nous montrons que ces échelles se comportent comme 1/Nc et 1/t dans le régimes asymp-
totiques de grand Nc et de grand-t respectivement. En outre, nous montrons qu’il est possible
d’utiliser cette vitesse de convergence pour extraire le comportement asymptotique des limites
de t et Nc infinis, fournissant ainsi une meilleure estimation de la LDF. Enfin, ces lois d’échelles
sont généralisées et les indications de leurs limites dans les systèmes de grandes dimensions sont
présentées.

Mots clés : Evénements Rares, Grandes Deviations, Dynamique des Populations
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Résumé

L’occurrence d’événements rares peut grandement contribuer à l’évolution des systèmes
physiques en raison de leur effets dramatiques. La théorie des grandes déviations fournit un
ensemble d’outils qui permettent leur traitment [1–3]. Ces probabilités et fluctuations ont
la propriété de décroître exponentiellement en fonction d’un paramètre (comme le temps ou
la température). Cela signifie que lorsque le paramètre se devient plus grand, l’événement
dévient moins probable [4]. D’un point de vue pratique, la théorie des grandes déviations peut
être vue comme une collection de méthodes qui permettent de déterminer si un principe de
grandes déviations existe pour une variable aléatoire donnée et pour déterminer sa fonction
de taux ou “fonction des grandes déviations” (en anglais, LDF).

Seulement dans quelques cas simples, il est possible d’obtenir des expressions exactes et
expressions explicites pour la fonction de taux [5, 6]. Pour la plupart des processus stochas-
tiques, l’évaluation de ces fonctions est faite en utilisant des approches analytiques et des
méthodes numériques [1–3, 7, 8]. Ils vont de “importance sampling method” [9], “adaptive
multilevel splitting” [10] à “transition path sampling” [11–14] et des algorithmes “go with
the winner” [15, 16] aux méthodes de dynamique des populations [7, 17] en temps discret [18]
ou temps continu [19]. Ces méthodes ont été généralisées à de nombreux contextes [20–24].
En physique, ceux-ci sont de plus en plus utilisés dans l’étude des systèmes complexes, par
exemple dans l’étude des fluctuations réelles des modèles de transport [25–27], glasses [12],
du repliement de protéines [28] et des réseaux de signalisation [29, 30]. Mathématiquement,
la procédure revient à determiner la fonction des grandes déviations associée à la distribu-
tion d’une observable dépendant de la trajectoire, qui peut être reformulée à son tour en la
détermination de l’état fondamental d’un opérateur linéaire [31], une question commune à
la physique statistique et à la physique quantique [32].

Dans cette thèse, nous accordons une attention particulière à algorithmes basés sur dy-
namique des populations [7, 17–19, 33] afin d’étudier les trajectoires rares en biaisant
exponentiellement leur probabilité. Dans ce contexte, la procédure numérique introduite
par Giardinà, Kurchan et Peliti [18] surmonte la difficulté d’observer les fluctuations d’une
observable (dont la probabilité diminue exponentiellement dans le temps) pour les chaînes
de Markov à temps discret. La fonction des grandes déviations peut être obtenue comme la
plus grande valeur propre d’une matrice d’évolution d’une dynamique modifiée [17, 18] qui
peut être calculé numériquement [5, 6, 34] seulement pour les petits systèmes car la matrice
d’évolution est exponentiellement grande dans la taille du système. Ensuite, une modifica-
tion de cette procédure a été proposée [19, 35] pour lequel les problèmes de discrétisation lié
à l’approche originale [18] sont contournés avec une approache directe en temps continu.
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L’évolution du système a été représentée par une dynamique de population du type de dif-
fusion Monte Carlo [32]. Cet algorithme a été appliqué pour calculer avec succès les grandes
déviations du courant total dans le processus d’exclusion symetrique et asymétrique [36, 37],
et de l’activité dans le processus de contact [38]. Aussi, pour analyser la dynamique [39, 40]
des modèles cinètiquement contraints (KCM) [41–55], des “glassy systems” [56–58] à travers
les statistiques de trajectoires de la dynamique montrant que ces modèles présentent une
transition dynamique de premier ordre entre les phases dynamiques active et inactive. Il a
également été utilisé pour étudier les symétries dans les fluctuations loin de l’équilibre [59] et
dans les modèles de transport [21, 22, 60]. Ces études permettent non seulement de tester
les prédictions de l’hydrodynamique fluctuante [21, 61], mais aussi les limites de la méthode
elle-même [22]. Il a été également suggéré [7] que la méthode pourrait être appliquée pour
étudier en détail de possible future et l’évolution passée des systèmes planétaires, et aussi
l’auto-organisation de la stabilité de notre système solaire.

L’idée de la dynamique de populations est de traduire l’étude d’une classe de trajectoires
rares (par rapport à une contrainte globale déterminée) dans l’évolution de plusieurs copies de
la dynamique originale, avec un processus de sélection local-dans-temps rendant l’occurrence
des trajectoires rares typiques dans la population évoluée. La distribution de la classe des
trajectoires rares dans la dynamique originale est liée à la croissance (ou décroissance) ex-
ponentielle de la population des clones du système et la LDF peut être estimée à partir
de leur taux de croissance. Les procédures numériques visant à simuler efficacement des
événements rares, en utilisant un schéma de dynamique de population sont communément
appelées algorithmes de clonage. Dans de tels algorithmes, les copies du système sont
évoluées en parallèle et celles qui montrant le comportement rare d’intérêt sont multipliées
itérativement [7, 16–19, 23, 32, 33, 62–70].

Les différentes versions de l’algorithme de clonage utilisées dans cette thèse sont détail-
lées dans le Introduction. Là, nous partons de la construction de l’équation maîtresse, de sa
solution et de son interprétation. Nous définissons le principe des grandes déviations pour
certains observables O ce qui peut être interprété comme la probabilité d’observer une valeur
atypique de celle observables après une longue échelle de temps. La fonction de taux de ce
principe des grandes déviations correspond à la LDF et c’est un équivalent dynamique de
l’entropie intensive dans l’ensemble microcanonique [1]. Il code non seulement les fluctu-
ations gaussiennes mais aussi les fluctuations non-gaussiennes (ou les grandes déviations)
de l’observable O/t qui peut être obtenu par son expansion au-delà de l’ordre quadratique.
Dans la limite du temps infini, le LDF peut ne pas être analytique, ce qui peut être interprété
comme une signature d’hétérogénéités dynamiques (transition de phase dynamique) [71, 72].

Le problème de la détermination de la fonction de taux est en général une tâche difficile
dans l’ensemble microcanonique, on préfère donc aller à l’ensemble dynamique canonique
(ou espace de Laplace). Au lieu de fixer la valeur de l’observable O afin de déterminer la
LDF on introduit un paramètre s (intensif dans le temps) qui biaise le poids statistique des
histoires et fixe la valeur moyenne de O, de sorte que s 6= 0 favorise ses valeurs non-typiques.
Le paramètre s involves une modification (exponentielle) du poids statistique des histoires
du système. Valeurs pour s = 0 correspondent aux moyennes de l’état stable de O. Pendant
ce temps, les valeurs des s 6= 0 favorisent les histoires avec des valeurs non-typiques de
l’observable O.
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Pour des raisons pratiques, il est convenient de calculer la fonction génératrice des cumu-
lants (par ses sigles en anglais CGF) au lieu de LDF (qui sont reliées par une transformée de
Legendre), ce que nous calculons en pratique tout au long de la thèse. Nous montrons com-
ment estimer le CGF à partir de l’interprétation de la dynamique des populations modifiée ou
à partir de la plus grande valeur propre de l’opérateur d’évolution modifiée. Dans le premier
cas, l’équation d’évolution temporelle qui décrit la dynamique modifiée peut être interprétée
pas comme l’évolution d’un système unique, mais comme une dynamique des populations sur
un grand nombre Nc des copies du système qui évolue de manière couplée [18, 33]. C’est-à-
dire, comme un processus stochastique avec des taux de transition fourni par un mécanisme
de sélection où un clone du système est copié s’il est rare ou tué sinon.

Nous détaillons également les approches avec population totale non-constante et con-
stante de l’algorithme de clonage et les estimateurs CGF obtenus à partir de ceux-ci. Nous
expliquons comment pour l’approche de la population totale constante, un uniforme éla-
gage/clonage est appliqué au-dessus de la dynamique de clonage afin d’éviter l’explosion ou
la disparition exponentielle de la population. Alors que la dernière version est évidemment
plus “computer-friendly”, l’ancienne version présente des caractéristiques intéressantes: Pre-
mièrement, il est directement lié à l’évolution des systèmes biologiques (sauts stochastiques
représentant des mutations, les règles de sélection étant interprétées comme une pression
darwinienne); Seconde, le uniforme élagage/clonage de la population, bien que non biaisé,
induit des corrélations dans la dynamique que l’on pourrait vouloir éviter; Enfin, dans cer-
taines situations où les taux de sélection sont très fluctuants, l’algorithme de population
constante ne peut pas être utilisé dans la pratique en raison des effets de population finie
(la population étant éliminée par un seul clone), et on doit recourir à la non-constante. Un
exemple de la mise en ouvre de cette version peut être trouvé dans Ref. [73].

À la fin de l’introduction, nous présentons les exemples de modèles utilisés pour notre
analyse: une simple dynamique d’annihilation-création à deux états, et un processus de
contact sur un treillis périodique unidimensionnel. Le premier système (chapitres: II, III, IV
et V) a été choisi pour sa simplicité et la possibilité de comparer les prédictions numériques
avec les valeurs exactes de CGF. D’autre part, le processus de contact (chapitres: IV, V et VI)
est utilisé pour étendre l’analyse et vérifier les résultats sur a (plus complexe) système de
“many body” où la dépendance avec la taille du système peut également être analysée. Dans
les deux cas, nous considérons l’activité dynamique K [12, 39, 40, 74–82] comme l’additif
observable O (I.19) d’intérêt. L’expression analytique du CGF est obtenue (lorsque cela est
possible) en résolvant la plus grande eigenvalue de l’opérateur modifié comme discuté dans
la Sec. I.6.1.

Dans le chapitre II: Discreteness Effects in Population Dynamics [P1], nous ap-
pliquons l’algorithme de population non-constante afin d’analyser numériquement les effets
dus à la petite taille de population dans le régime transitoire initial sur un modèle sim-
ple d’annihilation-création (Sec. I.8.1) où sa mise en ouvre et ses propriétés peuvent être
examinées dans les moindres détails. Au cours du régime transitoire initial de l’évolution
des populations, il y a une grande distribution des temps où la première série de sauts se
produisent. Cela signifie que les fluctuations au moment initial produisent que certaines pop-
ulations restent dans leur état initial beaucoup plus longtemps que d’autres, produisant un
écart dans leur évolution individuelle. Cela induit un décalage relatif qui dure pour toujours.
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Ces effets jouent un rôle important en particulier pour la détermination de la fonction de
grandes déviations. L’estimation de CGF provient de la détermination du taux de croissance
d’une log-population moyenne (Sec. I.7.1.1) sur de nombreuses réalisations de la dynamique.

Afin de réaliser cette moyenne de manière systématique, nous définissons une procédure
que nous avons appelée merging. Toutefois, cette moyenne est fortement dépendante non
seulement du nombre de réalisations, et sur la taille de la population initiale mais aussi sur
le temps (ou population) de coupure considéré pour arrêter leur évolution. C’est-à-dire, en
limitant l’évolution de nos populations jusqu’à un maximum de temps Tmax (ou population
Nmax) ce qui n’est pas “assez grand”, la population moyenne (et la détermination du CGF)
peut être influencée par effets de discrétion aux temps initiaux, causés par une petite
taille de la population. Nous avons proposé comme alternative afin de surmonter l’influence
des effets de discrétisation se débarrasser des régions des populations où ces effets sont
présents. Autrement dit, couper le régime transitoire initial des populations. Dans ce cas,
nous voyons que la moyenne des populations est limitée à un intervalle qui peut être très
petit et cela peut induire une mauvaise estimation de CGF.

En complément, nous avons trouvé un moyen de souligner les effets du régime de crois-
sance exponentielle dans la détermination du CGF en utilisant le fait que les log-populations
après un temps assez long deviennent parallèles (Fig. II.2(a)) et qu’une fois que les popu-
lations ont surmonté le régime des effets de discrétion, la distance entre elles devient con-
stante (Fig. II.2(b)) et ces effets ne sont plus forts (Sec. II.3). D’autre part, nous soutenons
en Sec. II.4.1 que ces effets de discrétion initiale ou le décalage initiale entre les popula-
tions pourrait être compensée en effectuant sur les populations un déplacement du temps
(Eq. (II.2)). Cette procédure est choisie de façon à chevaucher les évolutions de la population
dans leur régime de grande durée large-time régime (Fig. II.4(b)). Ceci avec un rejet des
régimes initiaux dans l’évolution de la population surpasse l’influence des effets de discrétion
améliorant l’estimation de CGF.

Nous montrons que c’est vrai, indépendamment de la méthode utilisée pour calculer le
taux de croissance de la population moyenne, comme le Fig. II.7. En outre, il est montré
que si en plus, nous effectuons la transformation temporaire, l’estimation de CGF est encore
améliorée et plus proche de la valeur théorique (Sec. II.5.2). Ce résultat est confirmé plus
tard en Sec. II.5.3 en calculant la distance relative des estimateurs numériques à la valeur
théorique et leurs erreurs. Comme peut être observé dans Fig. II.8, l’écart de la valeur
théorique est plus élevé pour les valeurs de s proches de 0, mais est plus petit après la
“correction du temps” pour presque chaque valeur de s. De même pour l’estimateur d’erreur
(Fig. II.9). De plus, nous étudions les propriétés de ces retards. Nos résultats numériques
supportent également un comportement “loi de puissance” dans le temps de la variance
de retard. Par ailleurs, la distribution des délais prend une forme universelle, après avoir
rééchelonné la variance à 1.

Le chapitre II [P1] est structuré comme suit: en Sec. II.2 nous décrivons les problèmes
liés à la moyenne des réalisation distincts, que nous quantifions en Sec. II.3. En Sec. II.4
nous proposons la méthode pour augmenter l’efficacité de l’algorithme de dynamique de la
population en appliquant un temps de retarde dépendant de la réalisation, et nous présentons
les résultats de son application en Sec. II.5. Nous caractérisons numériquement la distribution
de ces temps de retarde en Sec. II.6. Nos conclusions et perspectives sont réunis en Sec. II.7.
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En dehors des approches de population constante, les mécanismes de sélection dans
l’algorithme de clonage peuvent être mis en ouvre de différentes manières. L’un d’eux,
avec chaque évolution des copies des copies (Continuous-Time) [7, 17, 19] ou bien, pour
chaque intervalle de temps pré-fixé (Discrete-Time) [18]. Les différences importantes entre
les deux techniques sont discutées dans Secs. III.2.4.2 et IV.5.

L’algorithme proposé par Giardinà et al. [7, 17–19, 33, 70] (un technique à temps dis-
crete ) est utilisé pour évaluer numériquement le CGF d’additif (ou extensif dans le temps)
observables dans les processus de Markov [1, 83]. Le CGF est obtenu comme le taux de
croissance exponentiel que la population présenterait si elle n’était pas maintenue constante.
Il a été appliqué à de nombreux systèmes physiques, y compris les systèmes chaotiques,
la dynamique vitreuse et les modèles de gaz en treillis sans équilibre, a permis l’étude de
nouvelles propriétés, telles que le comportement des respirateurs dans la chaîne de Fermi-
Pasta-Ulam-Tsingou [33], transitions de phase dynamiques dans des modèles cinétiquement
contraints [39], et un principe d’additivité pour les processus d’exclusion simples [60, 84].
Sous cette approche, le correspondant estimateur CGF n’est valide que dans les limites du
temps de simulation infinie t et taille de la population infinie Nc. La stratégie habituelle
suivie pour obtenir ces limites est d’augmenter le temps de simulation et la taille de la pop-
ulation jusqu’à ce que la moyenne de l’estimateur sur plusieurs réalisations ne dépende pas
de ces deux paramètres, jusqu’à des incertitudes numériques.

Bien que la méthode a été largement utilisée, il y a eu moins d’études axées sur la justifi-
cation analytique de l’algorithme. De plus, il introduit deux paramètres supplémentaires en
considération: la taille de la population Nc et le temps de simulation t, tous le deux affectent
considérablement la précision de l’estimation de CGF. Même si l’on croit heuristiquement
que l’estimateur LDF converge vers le résultat correct à mesure que le nombre de copies Nc

augmente, il n’y a pas de preuve de sa convergence. Relatif à ce manque de preuve, bien
que nous utilisions l’algorithme en supposant sa validité, nous n’avons aucune idée de la
vitesse à laquelle l’estimateur converge en Nc → ∞. Nous discutons de cette convergence
en effectuant une étude analytique en temps discret dans le chapitre III et en utilisant une
approche numérique en temps continu dans le chapitre IV. Il est important de remarquer
que les deux versions de l’algorithme (temps discret et continu) diffèrent sur un point cru-
cial qui fait qu’une extension de l’analyse développée au chapitre III ne peut pas être faite
directement pour comprendre le cas de temps continu dans chapitre IV.

Dans le chapitre III: Finite-Time and -Size Scalings in the Evaluation of Large
Deviation Functions: I. Analytical Study using a Birth-Death Process [P2], nous
discutons de cette convergence en définissant deux types d’erreurs numériques. Première-
ment, pour un nombre fini et fixe de clones Nc, en faisant la moyenne sur un grand nombre
de réalisations, l’estimateur CGF converge vers une valeur incorrecte, qui est différente du
résultat de grande déviation souhaité. Nous appelons cette déviation de la valeur correcte,
erreurs systématiques. Par rapport à ces erreurs, nous considérons également les fluctua-
tions de la valeur estimée. Plus précisément, pour une valeur fixe de Nc, les résultats obtenus
dans différentes réalisations sont répartis autour de cette valeur incorrecte. Nous appelons
les erreurs associées à ces fluctuations erreurs stochastiques. Bien que les deux erreurs
soient importantes dans les simulations numériques, le derniere peut conduire cet algorithme
à produire de mauvais résultats. Par exemple, l’erreur systématique croît exponentiellement
à mesure que la température diminue [85].
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Pour étudier ces erreurs, nous avons utilisé une description de processus de naissance-
mort [86, 87] por l’algorithme de dynamique de population comme il est expliqué ci-dessous:
Nous nous concentrons sur les systèmes physiques décrits par une dynamique de Markov [7,
18, 19] avec un nombre fini d’états M . Nous dénotons par i (i = 0, 1, · · ·M − 1) les états du
système. Ce processus de Markov a sa propre dynamique stochastique, décrite par les taux
de transition w(i→ j). Dans les algorithmes de dynamique de population, afin d’étudier ses
trajectoires rares, on prépare Nc copies du système, et simule ces copies en fonction de (i)
la dynamique de w(i→ j) (suivi indépendamment pour toutes les copies) et (ii) la étape de
“clonage” dans laquelle l’ensemble des copies est directement manipulé, i.e., certaines copies
sont éliminées pendant que d’autres sont multipliées (See Table III.1). Formellement, la
dynamique des populations représente pour une unique copie du système, un processus qui
ne préserve pas la probabilité, comme mentionné dans Sec. I.6.2. Ce fait a motivé l’étude des
processus auxiliaires [88], des processus efficaces [89] et driven processes [90] pour construire
une dynamique modifiée (et leurs approximations [91]) qui préserve la probabilité.

Au chapitre III, nous formulons explicitement la méta-dynamique des copies elles-
mêmes en utilisant un processus stochastique de naissance-mort qui préserve la probabilité,
et il nous permet d’étudier les erreurs numériques de l’algorithme lors de l’évaluation CGF.
Nous considérons la dynamique des copies comme un processus stochastique de naissance-
mort dont l’état est noté par n = (n0, n1, n2, . . . , nM−1), où 0 ≤ ni ≤ Nc représente le
nombre de copies qui sont dans l’état i dans l’ensemble des copies. Nous introduisons ex-
plicitement les taux de transition décrivant les dynamiques de n, que nous désignons par
σ(n → ñ). Nous montrons que la dynamique décrite par ces taux de transition conduit en
général à l’estimation CGF correcte du système original w(i → j) dans la limit Nc → ∞.
Nous montrons aussi que les erreurs systématiques sont de l’ordre O(1/Nc), alors que les
erreurs numériques sont de l’ordre O(1/(τNc)) (où τ is an averaging duration). Ce résultat
contraste nettement avec les méthodes Monte-Carlo standard, où les erreurs systématiques
sont toujours 0. La formulation développée au chapitre III [P2] nous donne la possibilité de
calculer exactement les expressions des coefficients de convergence, comme nous le faisons
en Sec. III.4 sur un exemple simple.

Chapitre III [P2] est structuré comme suit. Nous définissons d’abord le problème CGF au
début de Sec. III.2, ensuite, nous formulons le processus de naissance-mort utilisé pour décrire
l’algorithme en Sec. III.2.1. En utilisant ce processus de naissance-mort, nous démontrons
que l’estimateur de l’algorithme converge vers la correct fonction des grandes desviations
en Sec. III.2.2. À la fin de cette section, en Sec. III.2.3, nous discutons de la vitesse de
convergence de cet estimateur (les erreurs systématiques) et nous dérivons son échelle ∼
1/Nc. In Sec. III.3, nous passons aux erreurs stochastiques. Pour discuter de cela, nous
introduisons la LDF de l’estimateur, à partir de laquelle nous dérivons que la vitesse de
convergence des erreurs stochastiques est proportionnelle à 1/(τNc). Dans la section suivante,
Sec. III.4, nous introduisons un modèle simple à deux états, auquel nous appliquons les
formulations développées dans les sections précédentes. Nous dérivons les expressions exactes
des erreurs systématiques en Sec. III.4.1 et des erreurs stochastiques en Sec. III.4.2. Ensuite,
en Sec. III.4.3, nous proposons un autre grand estimateur de déviation et enfin, en Sec. III.5,
nous résumons les résultats obtenus.
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À partir de cette formulation, nous avons déduit les scalings finies en Nc et t des erreurs
systématiques de l’estimateur CGF, montrant que ceux-ci se comportent comme 1/Nc et 1/t
dans le grand-Nc et grand-t asymptotiques respectivement. En principe, connaissant l’échelle
a priori signifie que la limite asymptotique de l’estimateur dans le t→∞ et Nc →∞ limites
peuvent être interpolées à partir des données à fini t et Nc. Toutefois, si cette idée est
réellement utile ou non est une question non triviale, comme il y a toujours une possibilité
que les valeurs de début des N−1

c - et t−1-scalings sont trop volumineux pour les utiliser.

Dans le chapitre IV: Finite-Time and -Size Scalings in the Evaluation of Large
Deviation Functions: II. Numerical Approach in Continuous Time [P3], nous
considérons une version continue dans le temps des algorithmes de dynamique des popula-
tions [17, 19]. Nous montrons numériquement que on peut en effet faire usage de ces pro-
priétés afin de concevoir une méthode originale et simple qui prenne en compte les échelles
exactes du corrections de t et Nc finies afin de fournir des estimateurs CGF significative-
ment meilleurs (scaling method) dans l’application à un système avec des interactions
à plusieurs corps (un processus de contact). Nous soulignons que les deux versions de
l’algorithme diffèrent sur un point crucial qui fait qu’une extension de l’analyse dévelop-
pée au chapitre III [P2] ne peut pas être fait directement afin de comprendre le cas en temps
continu (Sec. IV.5). Nous soulignons donc que l’observation de ces échelles eux-mêmes est
également non triviale.

Nous notons que les scalings qui régissent la convergence aux limites des temps temps
et de taille infinies (avec corrections en 1/Nc et en 1/t) doivent être pris en compte cor-
rectement: en effet, en tant que lois de puissance, elles ne présentent pas de taille et de
temps caractéristiques au-delà desquelles les corrections seraient négligeables. La situation
est très similaire à l’étude de la force de dépinçage critique dans les driven random man-
ifolds: la force critique présente une correction de 1 sur la taille du système [92] qui doit
être considéré correctement afin d’extraire sa valeur réelle. Génériquement, de telles échelles
fournissent également un critère de convergence aux régimes asymptotiques de l’algorithme:
il faut confirmer que l’estimateur CGF présente des corrections (premièrement) 1/t et (en
second lieu) dans 1/Nc par rapport à une valeur asymptotique afin de s’assurer que cette
valeur représente une évaluation correcte de la CGF.

Le chapitre IV [P3] est organisé comme suit. En Sec. IV.3.1 nous étudions le comporte-
ment de l’estimateur CGF en fonction du temps d’observation (pour une population fixe Nc)
et nous voyons comment sa limite de temps infinie peut être extraite à partir des données
numériques. En Sec. IV.3.2 nous analysons le comportement de l’estimateur en augmentant
le nombre de clones (pour un temps de simulation final donné) et la limite de taille infinie de
l’estimateur CGF. Sur la base de ces résultats, nous présentons en Sec. IV.4 a une méthode
qui nous permet d’extraire les limit infinies de temps et taille de l’estimator de la fonction
des grandes déviations à partir d’une analyse d’échelle à taille finie et à temps fini. En
Sec. IV.5, nous discutons la difficulté d’une approche analytique de l’algorithme en temps
continu. Enfin, nos conclusions sont faites en Sec. IV.6.

Afin de compléter la discussion principale effectuée au chapitre IV [P3], en chapitre V [P3]
nous étudions les fluctuations de l’estimateur CGF (défini dans la version continue dans le
temps). Ceci est fait en étudiant sa distribution et sa dépendance avec le temps de simulation
et le nombre de clones. Compatible avec le théorème de la limite centrale, nous montrons
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comment un redimensionnement approprié de l’estimateur CGF produit un effondrement
des distributions dans une distribution standard normale pour différentes valeurs de Nc et
des temps de simulation. De plus, nous discutons dans Sec. V.3 une autre façon de le définir,
qui a déjà été introduit dans Sec. III.4.3 pour la version à temps discret.

L’analyse d’échelle de t et Nc finies dans l’évaluation de CGF a été réalisée suivant
deux approches différentes: un analytique, au chapitre III [P2], en utilisant une version
à temps discret de l’algorithme de dynamique des populations [18], et numérique, dans le
chapitre IV [P3], en utilisant une version à temps continu [17, 19]. Dans les deux cas, les
erreurs systématiques de ces échelles ont été trouvés à se comporter comme 1/t et 1/Nc dans
les asymptotiques de t et Nc grandes respectivement. De plus, il a été montré comment ces
propriétés d’échelle peuvent être utilisées pour améliorer l’estimation CGF par la mise en
ouvre d’une scaling method (Sec. IV.4.1). Ceci a été fait en considérant que le comportement
asymptotique de l’estimateur dans t→∞ et Nc →∞ limits peut être interpolé à partir des
données obtenues à partir de simulations à temps de simulation et nombre de clones finies
et relativement petites. Cependant, la validité de ces échelles et l’efficacité de la méthode
n’ont été prouvées que dans les cas où le nombre de sites L (où la dynamique se produit)
était petit: une simple dynamique d’annihilation-création à deux états (Sec. I.8.1) (dans un
site) et un processus de contact unidimensionnel (Sec. I.8.2) (avec L = 6 sites).

En chapitre VI: Breakdown of the Finite-Time and Finite-Nc Scalings in the
Large-L Limit [P4], nous complétons les résultats présentés dans les chapitres III [P2]
et IV [P3] en étendant l’analyse à un processus de contact de grand-L Afin de le faire, nous
redéfinissons ces échelles de manière plus générale. Nous supposons le comportement de
l’estimateur CGF décrit par un t−γt-scaling (Eq. (VI.1)) et un N−γNcc -scaling (Eq. (VI.2)).
Cette redéfinition nous permet de vérifier dans les systèmes de grand-L si effectivement
γt ≈ 1, γNc ≈ 1 et si les termes χ(Nc)

∞ et χ∞∞ représentent les limites en t → ∞ et Nc → ∞
de l’estimateur CGF.

Ceci est fait d’abord en Sec. VI.3.1 où nous avons considéré un processus de contact avec
L = 100 sites et deux valeurs représentatives du paramètre s (s = −0.1 et s = 0.2). Bien
que le t−1-scaling et le N−1

c -scaling ont été prouvés à tenir pour s = 0.1, ce n’était pas le
cas pour s = 0.2. Comment ce changement d’échelle est-il produit en fonction du paramètre
s est présenté en détail dans Sec. VI.3.2 où les exposants γt(s) et γNc(s) sont caractérisés.
En particulier, pour γNc(s), nous avons été en mesure de distinguer trois étapes dans son
comportement, où, le N−1

c -scaling était valide jusqu’à s = s∗, puis γNc diminue à 0 at
s = s∗∗ et enfin, il devient négatif pour s > s∗∗. En Sec. VI.3.3 nous montrons comment ces
échelles affectent la détermination de la limite infini en t et Nc de l’estimateur CGF. Cela se
produit parce que le scaling method reposait sur la validité du t−1- et N−1

c -scalings. Comme
pour L = 100 ce n’est pas le cas, il est possible de voir comment les différents estimateurs
correspondaient les uns aux autres jusqu’à s = s∗ à partir de laquelle ils divergent jusqu’à
s = s∗∗ où il y a une discontinuité. Cette analyse est étendue au plan s− L en Sec. VI.4 où
les exposants γt et γNc ont été calculé pour une grille de valeurs des paramètres (s, L). Leur
caractérisation est faite en introduisant une dépendance du s′, s∗ et s∗∗ avec le nombre de
sites précédemment défini en Sec. VI.3 ainsi que l’utilisation du nombre de zéros de l’exposant
γ

(L)
Nc

(s) afin de caractériser les différents groupes de L.
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Le chapitre VI [P4] est organisé comme suit: La généralisation du scalings du t et
Nc fini du CGF pour systèmes avec grand L est fait en Sec. VI.2.2. Nous utilisons ces
résultats dans Sec. VI.3 où nous vérifions la validité du t−1- et N−1

c -scalings (Sec. VI.3.1),
leur comportement dans la dynamique modifié par s (Sec. VI.3.2) ainsi que l’applicabilité du
scaling method (Sec. VI.3.3) pour un processus de contact avec L = 100 sites. Cette analyse
est généralisée en Sec. VI.4 où nous caractérisons les échelles de t et Nc fini de la CGF dans
le plan s− L. Avant de présenter nos conclusions en Sec. VI.6, nous discutons des effets de
la transition de phase dynamique sur les scalings en Sec. VI.5.

Alternativement aux méthodes mentionnées au début de cette thèse, on peut faire us-
age d’une approche complètement différente afin d’étudier des événements rares. Ceci est
l’étude empirique des modèles qui se cachent derrière les données correspondant à certains
phénomènes naturels ou sociaux (e.g., tremblements de terre, marchés boursiers, météo,
épidémies, etc). Dans un contexte de séries temporelles financières, ces modèles sont connus
comme stylized facts ou seasonalities [93–99] et les rares événements d’intérêt pourraient
correspondre, par exemple, à des chutes de marché ou à des bulles financières [100, 101]. Ces
stylized facts ont la caractéristique d’être communs et persistants sur différents marchés,
périodes de temps et actifs, éventuellement [99] parce que les marchés fonctionnent en syn-
chronisation avec les activités humaines qui laissent une trace dans les séries temporelles
financières.

Cependant, l’utilisation de la “bonne horloge” pourrait être d’une importance primordiale
lorsqu’il s’agit de propriétés statistiques et les modèles pourraient varier en fonction si nous
utilisons des données quotidiennes ou “intra-day data” et “event time”, temps commercial
ou des intervalles de temps arbitraires (e.g., T = 1, 5, 15 minutes, etc). Par exemple, il est
un fait bien connu que les distributions empiriques des rendements financiers et log-returns
sont “fat tailed” [102, 103]. Cependant, comme on augmente l’échelle de temps du fat-tail
la propriété devient moins prononcée et la distribution approche la forme gaussienne [104].
Commel’a indiqué dans Ref. [96], le fait que la forme de la distribution change avec le temps
indique clairement que le processus aléatoire sous-jacent aux prix doit avoir une structure
temporelle non triviale.

Dans un travail précédent, Allez et al. [99] a établi plusieurs nouveaux stylized facts
concernant les intra-day seasonalities de la dynamique des stocks individuels et transversaux.
Cette dynamique est caractérisée par l’évolution des moments de ses retours au cours d’une
journée type. Basé sur les travaux de Allez et al. [99] et Kaisoji [100], au chapitre VII,
nous effectuons une analyse statistique sur les rendements et les prix relatifs des CAC 40 et
S&P 500. Nous analysons les intra-day seasonalities de la dynamique du individuels et
transversal stocks en le caractérisant par l’évolution des moments des retours (et des prix
relatifs) au cours d’une journée typique. Pour “single stock intra-day seasonalities” nous
nous référons au comportement moyen des moments des retours (et prix relatifs) d’un stock
moyen dans une journée moyenne. De même, la cross-sectional intra-day seasonality n’est pas
plus que le comportement moyen d’un moment d’index. Nous présentons ces saisonnalités
pour les retours (Figs. VII.2 et VII.3) et prix relatifs (Figs. VII.7 et VII.8) et comparé la
moyenne des stocks de la volatilité des stocks individuels [σα(k)], la moyenne temporelle de
la cross-sectional volatility 〈σd(k, t)〉 et la valeur absolue moyenne du equi-weighted index
〈|µd|〉 (Figs. VII.4 et VII.9).
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Notamment, dans le cas des retours, ces modèles dépendent réellement de la taille de la
boîte. This fact is well illustrated with 5 différentes valeurs de la taille de la boîte à travers
de Fig. VII.11 pour les volatilités et Fig. VII.12 pour le kurtosis dans lequel son inversé U-
pattern est évident au moment nous considérons petites tailles de boîte. Dans le cas des prix
relatifs, les volatilités présentent également le même type de intra-day pattern (Fig. VII.9),
mais contrairement aux retours, il est indépendant de la taille de la boîte, et l’indice que
nous considérons, mais caractéristique pour chaque indice. Nous suggérons dans Sec. VII.6
comment cette indépendance de taille de boîte le intra-day patterns en prix relatif pourrait
être utilisé pour caractériser atypical days pour les index et anomalous behaviors en
stocks. Ceci est présenté dans Figs. VII.13 et VII.14 où nous avons présenté nos intra-day
seasonalites pour le (a) moyenne et (b) la volatilité en bleu et les respectifs les cross-sectional
moments pour 3 jours (et les moments de stock unique pour 3 stocks) pris au hasard en bleu
clair et nous avons vu comment le comportement moyen de leurs moments se déplacent avec
nos intra-day patterns ce qui n’était pas le cas pour la journée 11 et le stock 228. Comme
cette thèse est axée sur l’algorithme de clonage, nous avons préféré laisser cette étude dans
le dernier chapitre VII: Intra-day Seasonalities in High Frequency Financial Time
Series [P0].

Comme déjà suggéré par le placement de citations à côté des chapitres, séparé de Intro-
duction, où nous établissons nos définitions, le reste de cette thèse est basée sur les résultats
qui sont apparus dans Publications produit pendant ce programme de doctorat. La recherche
actuelle et prospective, ainsi que quelques questions ouvertes, sont présentées dans le Per-
spectives après le Conclusion.
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Preface

The occurrence of rare events can vastly contribute to the evolution of physical systems be-
cause of their potential dramatic effects. Their understanding has gathered a strong interest
and, focusing on stochastic dynamics, a large variety of numerical methods have been devel-
oped to study their properties [1, 7, 8]. They range from importance sampling [9], adaptive
multilevel splitting [10] to transition path sampling [11–14] and from “go with the winner”
algorithms [15, 16] to discrete-time [18] or continuous-time [19] population dynamics [7, 17].
These methods have been generalized to many contexts [20–24]. In Physics, those are be-
ing increasingly used in the study of complex systems, for instance in the study of current
fluctuations in models of transport [25–27], glasses [12], protein folding [28] and signalling
networks [29, 30]. Mathematically, the procedure amounts to determining a large deviation
function (LDF) associated to the distribution of a given trajectory-dependent observable,
which in turns can be reformulated in finding the ground state of a linear operator [31], a
question common to both statistical and quantum physics [32].

In this thesis, we will give particular attention to population dynamics algorithms [7,
17–19, 33] which aim at studying rare trajectories by exponentially biasing their probability.
The idea of population dynamics is to translate the study of a class of rare trajectories
(with respect to a determined global constraint) into the evolution of several copies of the
original dynamics, with a local-in-time selection process rendering the occurrence of the rare
trajectories typical in the evolved population. The distribution of the class of rare trajectories
in the original dynamics is related with the exponential growth (or decay) of the population
of clones of the system and LDF can be estimated from its growth rate.

The numerical procedures aimed at simulating rare events efficiently, using a population
dynamics scheme are commonly refereed as cloning algorithms. In such algorithms, copies
of the system are evolved in parallel and the ones showing the rare behavior of interest are
multiplied iteratively [7, 16–19, 23, 32, 33, 62–70]. Some of the limitations and associated
improvements of the population dynamics algorithms have been studied in [22, 85, 105, 106].

Two versions of such algorithms exist: the non-constant and the constant total pop-
ulation approaches. For the last one, a uniform pruning/cloning is applied on top of the
cloning dynamics so as to avoid the exponential explosion or disappearance of the population.
While the later version is obviously more computer-friendly, the former version presents in-
teresting features: First, it is directly related to the evolution of biological systems (stochastic
jumps representing mutations, selection rules being interpreted as Darwinian pressure); sec-
ond, the uniform pruning/cloning of the population, although unbiased, induces correlations
in the dynamics that one might want to avoid; last, in some situations where the selection

xxi
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rates are very fluctuating, the constant-population algorithm cannot be used in practice be-
cause of finite-population effects (population being wiped out by a single clone), and one has
to resort to the non-constant one. An example of the implementation of this version can be
found in Ref. [73].

In chapter II: Discreteness Effects in Population Dynamics [P1], we apply the
non-constant population algorithm in order to analyze numerically the small population-size
effects in the initial transient regime. These effects play an important role for the numerical
determination of large deviation functions of additive observables for stochastic processes.
The LDF estimation, in this case, reduces to the determination of the growth rate of a
population, averaged over many realizations of the dynamics. However, this averaging is
highly dependent not only on the number of realizations, and on the initial population size
but also on the cut-off time (or population) considered to stop their numerical evolution.
This may result in an over-influence of discreteness effects at initial times, caused by
small population size. We show how to overcome these effects by introducing a (realization-
dependent) time delay in the evolution of populations, additional to the discarding of the
initial transient regime of the population growth where these discreteness effects are strong.
We show that the improvement in the estimation of the large deviation function comes
precisely from these two main contributions.

Apart from the population-constraint approaches we just mentioned, the selection mech-
anisms within the cloning algorithm can be implemented in different ways. One of them,
along with each evolution of the copies (Continuous-Time) [7, 17, 19] or alternatively, for
each pre-fixed time-interval (Discrete-Time) [18]. The important differences between both
techniques are discussed in Secs. III.2.4.2 and IV.5.

The algorithm proposed by Giardinà et al. [7, 17–19, 33, 70] (a discrete-time approach) is
used to evaluate numerically the LDF of additive (or “time-extensive”) observables in Markov
processes [1, 83]. The LDF is obtained as the exponential growth rate that the population
would present if it was not kept constant. It has been applied to many physical systems,
including chaotic systems, glassy dynamics and non-equilibrium lattice gas models, and it has
allowed the study of novel properties, such as the behavior of breathers in the Fermi-Pasta-
Ulam-Tsingou chain [33], dynamical phase transitions in kinetically constrained models [39],
and an additivity principle for simple exclusion processes [60, 84]. Under this approach,
the corresponding LDF estimator is in fact valid only in the limits of infinite simulation
time t and infinite population size Nc. The usual strategy that is followed in order to obtain
those limits is to increase the simulation time and the population size until the average of the
estimator over several realizations does not depend on those two parameters, up to numerical
uncertainties.

While the method has been used widely, there have been less studies focusing on the
analytical justification of the algorithm. Moreover, it introduces two additional parameters
into consideration: the population size Nc and the simulation time t, both of which affect
considerably the accuracy of the LDF estimation. Even though it is heuristically believed
that the LDF estimator converges to the correct result as the number of copies Nc increases,
there is no proof of this convergence. Related to this lack of proof, although we use the
algorithm by assuming its validity, we do not have any clue how fast the estimator converges
as Nc →∞. We discuss this convergence performing an analytical study in discrete time in
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chapter III and using a numerical approach in continuous time in chapter IV. It is important
to remark that the two versions of the algorithm (discrete- and continuous-time) differ on a
crucial point which implies that an extension of the analysis developed in chapter III cannot
be done straightforwardly in order to comprehend the continuous-time case in chapter IV.

In chapter III: Finite-Time and -Size Scalings in the Evaluation of Large Devi-
ation Functions: I. Analytical Study using a Birth-Death Process [P2], in order to
to study the numerical errors of this algorithm, we explicitly devise a stochastic birth-death
process that describes the time evolution of the population probability. From this formu-
lation, we derived the finite-Nc and finite-t scalings of the systematic errors of the LDF
estimator, showing that these behave as 1/Nc and 1/t in the large-Nc and large-t asymp-
totics respectively. In principle, knowing the scaling a priori means that the asymptotic limit
of the estimator in the t → ∞ and Nc → ∞ limits may be interpolated from the data at
finite t and Nc. However, whether this idea is actually useful or not is a non-trivial question,
as there is always a possibility that onset values of the N−1

c - and t−1-scalings are too large
to use these scalings.

In chapter IV: Finite-Time and -Size Scalings in the Evaluation of Large De-
viation Functions: II. Numerical Approach in Continuous Time [P3], we consider
a continuous-time version of the population dynamics algorithms [17, 19]. We show numer-
ically that one can indeed make use of these properties in order to devise an original and
simple method that takes into account the exact scalings of the finite-t and finite-Nc correc-
tions in order to provide significantly better LDF estimators (scaling method). We study
the fluctuations of the standard estimator in chapter V [P3] and additionally, we discuss an
alternative way of defining the LDF estimator. However, the validity of these scalings and
the method efficiency is proved in chapter IV only in cases for which the number of sites L
(where the dynamics occurs) was small: a simple two-states annihilation-creation dynamics
(in one site) and a one-dimensional contact process [38, 107, 108] (with L = 6 sites).

In chapter VI: Breakdown of the Finite-Time and Finite-Nc Scalings in the
Large-L Limit [P4], we complement the results presented in chapter IV by extending the
analysis of the finite-scalings of the LDF to a large-L contact process. The dependence of
these scalings with the number of sites is analyzed by introducing the exponents γt and γNc .
The generalized t−γt- and N−γNcc -scalings allow to characterize the behavior in the large-L
limit where we verify that t−1 and N−1

c -scalings are no longer valid.

Alternatively to the methods mentioned at the beginning of this introduction, one can
make use of a completely different approach in order to study rare events. This is the
empirical study of the patterns that hide behind the data corresponding to some natural or
social phenomena (e.g., earthquakes, stock markets, weather, epidemics, etc). In a financial
time series context, these patterns are known as stylized facts or seasonalities [93–99]
and the rare events of interest could correspond, for example, to market crashes or financial
bubbles [100, 101]. These properties have the characteristic of being common and persistent
across different markets, time periods and assets possibly [99] because markets operate in
synchronization with human activities which leave a trace in the financial time series.
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Following specially the works by Allez et al. [99] and Kaisoji [100], in chapter VII we
perform a statistical analysis over the returns and relative prices of the CAC 40 and the
S&P 500. We analyze the intra-day seasonalities of single and cross-sectional stock dy-
namics by characterizing it by the evolution of the moments of the stock returns (and relative
prices) during a typical day. We show the bin-size and index independence for the case of
the relative prices but not for the returns. However, we suggest how this fact could be used
in order to characterize atypical days for indexes and anomalous behaviours of stocks.
As this thesis is focused on the cloning algorithm, we have preferred to leave this study
in the last chapter VII: Intra-day Seasonalities in High Frequency Financial Time
Series [P0].

As already suggested by the placement of citations next to the chapters, apart from
the Introduction, where we establish our definitions, the rest of this thesis is based on results
that have appeared in Publications produced during this PhD program. The current and
prospective research, as well as some open questions, are presented in the Perspectives after
the Conclusion.



«Le secret de la liberté est d’éclairer les hommes,
comme celui de la tyrannie est de les retenir dans l’ignorance»

Maximilien Robespierre
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I – Introduction

I.1 Large Deviation Theory: From Boltzmann to Cloning Algorithms

The theory of large deviations deals with probabilities of rare events [1–3]. These prob-
abilities or fluctuations have the characteristic of decaying exponentially as a function of
some parameter (like the time or the temperature) meaning that, as the parameter becomes
larger, the event becomes less probable [4]. They are of important interest in many fields
like statistics, queuing theory, finance, engineering and in equilibrium and non-equilibrium
statistical physics. From a practical point of view, large deviation theory can be seen as a
collection of methods which allow to determine if a large deviation principle exists for a given
random variable and to determine its respective rate (or large deviation) function (LDF).

The first large deviation result is due to Boltzmann in 1877 [109, 110]. He showed
how the relative entropy expresses the asymptotic behavior of multinomial probabilities
presenting the entropy as a bridge between the microscopic level, of physical interactions, and
a macroscopic one, where the physics laws are formulated. This constituted a probabilistic
interpretation of the Second Law of Thermodynamics [109] and the basis which led to the
development of the classical equilibrium statistical mechanics [111]. Ellis [110] describes this
interpretation as “a revolutionary moment in human culture during which both statistical
mechanics and the theory of large deviations were born”.

Some large deviation results like Cramér’s theorem [112] (who initiated a mathematical
theory of large deviations in the 30’s), Chebyshev’s inequality [83] and the Sanov’s theo-
rem [113], were also anticipated by Boltzmann [109, 110]. However, there was not a unified
or general framework that dealt with them until the 60’s and 70’s when this theory was
developed by Donsker and Varadhan [114–118] and by Freidlin and Wentzell [119].

In some cases, the large deviation principle can be determined directly from the proba-
bility distribution of a random variable. This is done by deriving a large deviation approx-
imation using Stirling’s or other asymptotic formulae. However, a more general result was
provided by the Gärtner-Ellis theorem [120, 121] which is the product of a result proved
by Gärtner [120] and later generalized by Ellis [110, 121–124] which explicitly refers to the
construction of the currently adopted large deviation principle. This was inspired from the
work of Varadhan [118]. However, meanwhile the Gärtner-Ellis theorem is used to prove the
existence of a large deviation principle and the determination of the corresponding rate func-
tion from the knowledge of the scaled cumulant generating function (CGF), the Varadhan’s
theorem is used to calculate the CGF knowing the rate function. Moreover, the contraction
principle [117] introduced by Donsker and Varadhan allows to compute a rate function from
the knowledge of another rate function. A direct application of the Gärtner-Ellis theorem

1
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or of the contraction principle allows to formulate a large deviation principle for many prob-
lems like sums of (binary, symmetric Levy, totally skewed Levy, etc) i.i.d. random variables
(Cramér theorem [112]), random vectors (Sanov’s theorem [113]), Markov processes [114–
118], among others.

Donsker and Varadhan defined three levels of large deviation results [124]. Level-1 is the
level of sample means, Level-2 is the level of empirical distributions and Level-3 is the level
of the empirical processes. The latter distributions can be derived from the former using the
contraction principle [117]. For example, the Level-2 rate function of Markov chains can be
derived by contracting the large deviations of the pair empirical matrix [1].

Large deviation theory has been suggested to be a generalization of the Central Limit
Theorem [125, 126] because it provides information not only about the small but also its large
fluctuations of a random variable far away from its typical values. It is also considered that it
extends the Law of Large Numbers [127] providing information of how fast a random variable
converges in probability to its mean. In fact, the existence of a Law of Large Numbers for a
random variable is a good sign that there also holds a large deviation principle and also it
can be used as a departure point [128, 129].

Some physicists consider large deviation theory as a natural generalization of the entropy-
probability relation fully exploited by Einstein in his theory of thermodynamic fluctua-
tions [130, 131]. According to this theory, the probabilities can be expressed in terms of
entropy functions. This fact allows to use large deviation theory to understand the founda-
tions of statistical mechanics. In this way, large deviation theory explains for example why
the entropy and free energy are related through a Legendre transform and why equilibrium
states can be calculated via extremum principles (maximum entropy for the microcanon-
ical ensemble and minimum free energy for the canonical ensemble) generalizing them to
arbitrary macrostates and arbitrary many-particle systems [1]. On the other hand, the well-
known maximum entropy principle of Jaynes [132–134] can be obtained by considering the
Level-2 large deviations of systems of independent particles. Einstein fluctuation formula
was used by Varadhan and Donsker [114–118] as the basis of the standard theory for static
equilibrium fluctuations. Additionally, Onsager and Machlup [135–138] used it in order to
propose a reformulation of linear fluctuation theory about equilibrium.

The implementation of large deviation techniques for studying the equilibrium properties
of many-particle systems described at a probabilistic level by statistical mechanical ensembles
has its roots in the work of Ruelle [139], Lanford [127], and especially Ellis [110, 122, 124].
Ellis is considered to provide (in Ref. [124]) the most complete framework in which the large
deviation theory is introduced to physics stressing in the connections between probability,
large deviations and equilibrium statistical mechanics. The first work on large deviations and
statistical mechanics is attributed to Lanford [127] which uses concepts from large deviation
theory to explain the fact that while matter is extremely complicated at microscopic level, it
can be described at the macroscopic level by a small number of parameters. Moreover, using
a large deviation approach on the ensembles in statistical mechanics, the study of equilibrium
states and their fluctuations can be reduced to the study of properly defined rate functions
(entropy functions) [1, 124, 140–145]. Many other links between statistical mechanics and
large deviations also has been discussed by Lewis, Pfister, and Sullivan [140–145], as well as
Oono [146], Amann [147] and in several reviews [1–3, 110, 122].



I.1 LDT: From Boltzmann to Cloning Algorithms 3

Behind the application of large deviation theory to equilibrium statistical physics lies the
idea that outcomes of a macrostate involving n particles should concentrate in probability
around certain stable or equilibrium values even though the state of the particles is described
by a random variable. In many cases the outcomes satisfy a large deviation principle due to
the probability of observing a departure from these equilibrium values is exponentially small
with n. Thus, in order to describe the macrostate of a large many-particle system it is only
necessary to know its equilibrium values [1, 2, 124, 140–147].

Additionally to the equivalences already mentioned, we have that the thermodynamic
limit is a large deviation limit, and the free energy is the equivalent of a scaled cumulant
generating function [1–3]. Moreover, the Legendre transform which connects the entropy and
free energy in thermodynamics is nothing but the Legendre-Fenchel transform connecting
the rate function and the scaled cumulant generating function in the Gärtner-Ellis theo-
rem [120, 121] and in Varadhan’s theorem [124]. The equilibrium properties of mean field
models can be studied as Level-2 or directly at the Level-1 of large deviations. Maximum
entropy principles have been applied successfully to these models which consider all-to-all
coupling between particles like the Curie-Weiss model [122, 124, 148] and its parent model,
the Potts model [122, 149–151], the Blume-Emery-Griffiths model [152–154], the mean-field
Hamiltonian model [155], as well as mean-field versions of the spherical model [156, 157],
and the φ4 model [158–160].

The microcanonical and canonical ensembles differ from each other in the way their re-
spective microstates are weighted. In the microcanonical ensemble, the control parameter is
the energy (or the mean energy), and the microstates are distributed with the same prob-
abilistic weight if they have the same value of control parameter. On the other hand, in
the canonical ensemble, the control parameter is the inverse temperature, the probability
measure is the Gibbs measure and the rate functions are the macrostate free energies (which
are the basis of the Ginzburg–Landau theory of phase transitions [161]). Some examples of
results derived in the canonical ensemble can be found in Refs. [110, 122, 124, 152]. The
thermodynamic equivalence (or non-equivalence) between the microcanonical and canoni-
cal ensembles is related to the concavity of the entropy. This comes from the fact that
the free energy can always be obtained as the Legendre–Fenchel transform of the entropy,
but the entropy can be obtained as the Legendre–Fenchel transform of the free energy only
when the entropy is concave. Moreover, the Gärtner-Ellis theorem can be reformulated (in
a physical way) as : “If there is no first-order phase transition in the canonical ensemble,
then the microcanonical entropy is the Legendre transform of the canonical free energy” [1].
Examples of models with non-concave entropies are the mean-field Blume-Emery-Griffiths
model [152–154], the mean-field Potts model [151, 162], some models of plasmas [163] and
2D turbulence [164–166], as well as models of gravitational systems [167, 168]. This ther-
modynamic equivalence is translated in terms of Gibbs’s entropy and Boltzmann’s entropy
in the thermodynamic limit, where the Gibbs entropy is equal (up to a constant) to the
Boltzmann entropy evaluated at the equilibrium mean energy value [1, 169].

Large deviation theory is becoming the standard formalism to study non-equilibrium
systems [1, 170], modelled in general by stochastic differential equations or Markov pro-
cesses [171]. They have the characteristic of evolving dynamically in time or to be main-
tained in out-of-equilibrium steady states under the application of an external force. It has
been suggested that large deviation theory provides the proper basis for building a theory
of non-equilibrium systems [146, 172]. This requires, of course the inclusion of the time
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in the large deviation analysis and the consideration that we do not know the underlying
probability distribution states as the concept of ensemble is not defined for non-equilibrium
systems. In spite of this, many large deviation principles have been derived for example for
Markovian models of interacting particles [36, 108, 170, 173] such as the exclusion process,
the zero-range process and their different variants [5, 25, 84, 174–178] in some cases at the
level of density field [176, 179–182] or at the level of current [5, 84, 177].

The so called fluctuation theorem [183] and other non-equilibrium work relations [184]
concern the large deviations of work [185]. It states that the probability of observing an en-
tropy production opposite to that dictated by the second law of thermodynamics decreases
exponentially. It was first proposed and tested numerically in 1993 [186], the first mathemat-
ical proof was in 1994 [187] and it was verified experimentally in 2002 [188]. Gallavotti and
Cohen [189, 190] used these results as a basis to proof a fluctuation theorem for the entropy
rate of chaotic deterministic systems. This was extended later to general Markov processes
by Kurchan [191], Lebowitz and Spohn [192], and Maes [193]. These results have inspired
several experimental studies of fluctuation relations that appear for example, particles im-
mersed in fluids [188, 194], electrical circuit [195, 196], granular media [197–201], turbulent
fluids [202, 203], and the effusion of ideal gases [204], among other systems.

Other applications of large deviation theory are related to multifractals [205–208], chaotic
systems [209–212], disordered systems, and quantum systems. Multifractal analysis can
be seen as a large deviation theory of self-similar measures [213–215]. Dynamical systems
often give rise to large deviation principles without a perturbing noise. Their study in the
context of chaotic systems and ergodic theory is the subject of the so-called thermodynamic
formalism [205, 216] developed by Ruelle [217, 218] and Sinai [219, 220]. This formalism
introduces the topological pressure and the structure function which play the role of the CGF
implying a direct connection between dynamical systems and large deviation theory [216,
221–224]. Additionally, large deviation principles can be obtained when studying disordered
and quantum systems, for example, in random walks in random environments [225–228],
spin glasses [229–231], boson gases [232–234], quantum gases [235, 236], and quantum spin
systems [237–239].

In this point, it is important to remark that only in few simple cases is it possible to obtain
exact and explicit expressions for the rate functions [5, 6]. For most stochastic processes,
the evaluation of these functions is done by using analytical approximations and numerical
methods [1–3]. They range from importance sampling [9], adaptive multilevel splitting [10] to
transition path sampling [11–14] and “go with the winner” algorithms [15, 16]. Kurchan and
his collaborators generalized a procedure used previously to study rare events in chemical
reactions [240–242] in order to compute large deviation functions in dynamical systems [33],
discrete-time [17, 18] and continuous-time [17, 19] population dynamics [7], being generalized
then to many contexts [20–24].

The numerical procedure introduced by Giardinà, Kurchan and Peliti [18] overcomes the
difficulty of observing the fluctuations of an observable (whose probability decreases expo-
nentially in time) for discrete-time Markov chains. It was known that the large deviation
function can be obtained as the largest eigenvalue of a evolution matrix of a modified dy-
namics [17, 18] which can be computed numerically [5, 6, 34] specially for small systems
as the evolution matrix is exponentially large in the system size. Later, a modification of
the procedure was proposed [19, 35] for which the time discretization issues of the original
approach [18] are bypassed with a direct continuous-time approach. The evolution of the sys-
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tem was represented by a population dynamics of the type of the diffusion Monte Carlo [32].
This cloning algorithm was applied to successfully compute the large deviations of the
total current in the symmetric and asymmetric exclusion process [36, 37], and of the activity
in the contact process [38].

Among its applications, Garrahan et al. [39, 40] analyzed the dynamics of kinetically
constrained models [41–55] of glassy systems [56–58] by analyzing the statistics of trajectories
of the dynamics. They showed that these models exhibit a first-order dynamical transition
between active and inactive dynamical phases. It also has been used to study symmetries in
fluctuations far from equilibrium [59] and in transport models [21, 22, 60]. These studies
allow not only to test the predictions of fluctuating hydrodynamics [21, 61], but also the
limits of the method itself [22]. It also has been suggested [7] that the method could be
applied to study in detail the possible future and past evolution of planetary systems, and
also the self-organization of the stability of our solar system.

In this chapter, we introduce the cloning algorithm. This method will be used through
the thesis in order to analyze the issues previously mentioned in the Preface. We start from
the construction of the master equation, its solution and interpretation. Then, we introduce
the large deviations of additive observables and the s-modified dynamics. We show how to
estimate these large deviations from the population dynamics interpretation of the modified
dynamics or from the largest eigenvalue of the modified evolution equation. Finally, we
present the example models used for this analysis: a simple two-state annihilation-creation
dynamics, and a contact process on a one-dimensional periodic lattice.

I.2 Discrete and Continuous Master Equation
Consider a system whose dynamics occurs in jumps between configurations. We denote
the set of available configurations {C} and the transition rates between them W (C → C ′),
setting W (C → C) = 0. We are interested in describing the probability for the system to
be in configuration C at time t, that we denote P (C, t). In order to do that, we start from
the following considerations: During the time interval dt the system either stays in the same
configuration C or changes configuration to C ′. Thus, the transition probability p between
configurations can be expressed in terms of dt and W as

p(C → C ′) = dt W (C → C ′) ∀C ′ 6= C, (I.1)
p(C → C) = 1− dt

∑
C′

W (C → C ′). (I.2)

The tendency of the dynamics to leave from a configuration C to any other is captured in
the escape rate r(C), defined as

r(C) =
∑
C′

W (C → C ′) (I.3)

which appears in the second term of Eq. (I.2). The probability of being in configuration
C at time t + dt is none other that the probability of being at configuration C given that
the system was at configuration C ′ at time t, plus the probability of having remained at
configuration C between time t and t+ dt, which can be expressed as

P (C, t+ dt) = P (C, t+ dt | C ′, t) + P (C, t+ dt | C, t), (I.4)
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where each term in Eq. (I.4) is given by

P (C, t+ dt | C ′, t) =
(∑
C′

dt W (C ′ → C)
)
P (C ′, t), (I.5)

P (C, t+ dt | C, t) =
(
1− dt

∑
C′

W (C → C ′)
)
P (C, t). (I.6)

The transition rules (I.1) and (I.2) are equivalent to the discrete evolution equation (I.4)
which after replacing Eqs. (I.5) and (I.6) reads

P (C, t+ dt) =
∑
C′

[
dt W (C ′ → C)P (C ′, t) +

(
1− dt W (C → C ′)

)
P (C, t)

]
. (I.7)

Equation (I.7) is also known as the discrete master equation. The second right term of
Eq. (I.7) ensures probability conservation as

∑
C P (C, t + dt) =

∑
C P (C, t) = 1. Taking

the limit dt → 0 in Eq. (I.7) and replacing Eq. (I.3), we obtain its analogous version in
continuous time

∂tP (C, t) =
∑
C′

[
W (C ′ → C)P (C ′, t)− r(C)P (C, t)

]
. (I.8)

I.2.1 Conservation of Probability and Equilibrium States

The probability P (C, t) is conserved at all times, i.e.,

∂t
∑
C

P (C, t) = 0. (I.9)

The steady state solution Pst of Eq. (I.8), which is obtained from ∂tP (C, t) = 0, verifies the
global balance condition∑

C′

W (C → C ′)Pst(C) =
∑
C′

W (C ′ → C)Pst(C ′),

for all C. If the steady state also satisfies the detailed balance condition

W (C → C ′)Peq(C) = W (C ′ → C)Peq(C ′), (I.10)

for all C and C ′, then the steady steady is an equilibrium state of the system, i.e., Pst = Peq.
The last condition implies that there is no current of probability in the steady state, and
that the dynamics starting from Peq is reversible. This can be seen (using Eq. (I.10)) from

W (C0 → C1) . . .W (CK−1 → CK)Peq(C0) = W (CK → CK−1) . . .W (C1 → C0)Peq(CK),

where the probability density of the history C0 → · · · → CK is the same as its time-reversed
history CK → · · · → C0.
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I.3 Master Equation Matrix Form
In order to study the properties of the master equation it is convenient to introduce the
following vector and operator notations [243]: Consider an orthonormal vector space of basis
|C〉 with scalar product 〈C ′|C〉 = δCC′ where 〈C| is the transpose of |C〉. A vector is denoted
as |v〉 =

∑
C vC |C〉 with vC = 〈C|v〉. An operator A =

∑
CC′ ACC′ |C〉〈C ′| can be represented

in matrix form of elements ACC′ = 〈C|A|C ′〉. Using this notation, the master equation (I.8)
takes the linear form

∂t|P (t)〉 = W|P (t)〉 (I.11)

for the probability vector
|P (t)〉 =

∑
C

P (C, t)|C〉.

The master operator W is a matrix of elements

(W)CC′ = W (C ′ → C)− r(C) δCC′ , (I.12)

i.e.,

(W)CC′ =
{
W (C → C ′) if C 6= C ′

−r(C) if C = C ′.

The diagonal elements of matrix (I.12) correspond to waiting times between jumps when the
system stays in the same configuration.

I.3.1 Conservation of Probability and Equilibrium States Revisited
Using the vector notation introduced above, the conservation probability (I.9) reads as∑
C(W)CC′ = 0 which with 〈−| =

∑
C〈C| becomes

〈−|W = 0, (I.13)

meaning that the vector 〈−| is a left eigenvector of W (of eigenvalue 0). On the other hand,
the global balance condition reads

W|Pst〉 = 0,

where the vector |Pst〉 is the right eigenvector of W (also of eigenvalue 0). As W and WT

have the same spectrum, the conservation of probability ensures the existence of a steady
state. Moreover, all the eigenvalues of W are of real part negative. The detailed balance
condition (I.10) can be written in terms of a diagonal operator P̂eq of elements Peq(C) as

WP̂eq = P̂eqWT . (I.14)

By multiplying Eq. (I.14) by the left by 〈−| and using Eq. (I.13) we verify that |Peq〉 is indeed
a steady state through 〈−|P̂eq = 〈Peq|. Moreover from Eq. (I.14) we also have

P̂−1/2
eq W P̂ 1/2

eq = P̂ 1/2
eq WT P̂−1/2

eq ,

implying that Wsym = P̂
−1/2
eq WP̂

1/2
eq is a symmetric operator (self-adjoint in fact) and it can

be diagonalized in an orthonormal basis. Given that W and Wsym have the same spectrum,
the last equation also implies that W has real eigenvalues.
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I.4 Solution of the Master Equation

Given the initial condition |P0〉 = |P (t = 0)〉 =
∑
C P0(C)|C〉, Eq. (I.11) has as solution

|P (t)〉 = etW|P (0)〉 =
∑
n>0

tn

n!W
n|P (0)〉. (I.15)

However, as the matrixW (I.12) has diagonal elements different from zero, Eq. (I.15) does not
allow a description as a sum over trajectories of successively different visited configurations.
Thus, in order to get rid of the diagonal terms of matrix W (I.12), it is convenient to
transform the master equation (I.8) by defining

Q(C, t) = e−tr(C)P (C, t). (I.16)

Equation (I.16) verifies
∂t|Q(t)〉 = WQ(t)|Q(t)〉, (I.17)

where (
WQ(t)

)
CC′

= W (C ′ → C) et(r(C′)−r(C)).

The solution of Eq. (I.17) is given by

|Q(t)〉 = τexp

{∫ t

0
dt′ WQ(t′)

}
|Q(0)〉,

where τexp is the time-ordered exponential:

τexp

{∫ t

0
dt′ WQ(t′)

}
=
∑
K>0

∫ t

t0
dt1

∫ t

t1
dt2 . . .

∫ t

tK−1
dtK WQ(tK) . . .WQ(t1)

with K ∈ N . Finally, P (C, t) is obtained coming back to Eq. (I.16) as

P (C, t) =
∑
K>0

∑
C0...CK

∫ t

t0
dt1

∫ t

t1
dt2 . . .

∫ t

tK−1
dtK

× r(C0)e−(t1−t0) r(C0) . . . r(CK−1)e−(tK−tK−1) r(CK−1) × e−(t−tK) r(CK)

× W (C0 → C1)
r(C0) · · ·W (CK−1 → CK)

r(CK−1) × P (C0, t = 0)

(I.18)

with CK = C.

I.4.1 Interpretation

Equation (I.18) allows us to have a better visualization of the process described by the master
equation (I.8) [86]. The dynamics occurs in jumps between configurations with transition
rates W (C → C ′) on a time window [0, t]. The histories of the systems are described by

(~C,~t) = (C0, t0;C1, t1; . . . ;Ck, tk; . . . ;CK = C, tK),
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where K is the total number of actual jumps between successively distinct configurations
denoted by ~C = (C0, C1, . . . , Ck, . . . , CK = C) and ~t = (t0, t1, . . . , tk, . . . , tK) is the increas-
ing sequence of times at which the jumps occurs (e.g., at time tk, the system jumps from
configuration Ck−1 to Ck). The factors

W (Ck−1 → Ck)
r(Ck−1)

in Eq. (I.18) represent the probability of jumping from configuration Ck−1 to Ck. Hence, the
probability of a history of configurations ~C is given by

P (~C) =
K−1∏
k=0

W (Ck → Ck+1)
r(Ck)

.

The system rests in a configuration Ck during an interval ∆tk = tk+1−tk which is distributed
with a Poisson law of parameter r(Ck)

ρ(r(Ck)) = r(Ck) e−∆tk r(Ck).

Thus, the probability density of instants {tk}1≤k≤K of the change of configuration is

K−1∏
k=0

r(Ck) e−∆tk r(Ck).

Meanwhile the probability of not jumping betweens times tK and t is e−(t−tk) r(CK). Thus,
if we fix the initial configuration C0, the probability of the path is given by

P(C1, t1; . . . ;CK , tK | C0, t0; t) =
K−1∏
k=0

W (Ck → Ck+1)
r(Ck−1) ×

K−1∏
k=0

r(Ck)e−∆tkr(Ck) × e−(t−tk).

I.5 Large Deviations of Time-Extensive Observables
Once we have defined our system, we are now interested in the distribution of history-
dependent observables and its fluctuations. These dynamical observables are defined as a
sum along the history of small contributions for transitions between successive configurations
during a time interval [0, t]. In general, they are of the form

O =
K−1∑
k=0

a(Ck, Ck+1) +
∫ t

0
dt′ b(C(t′)), (I.19)

where C(t′) is the state of the system at time t′: when tk ≤ t′ < tk+1, C(t′) = Ck (k =
0, 1, 2, · · · ,K − 1) with t0 = 0. The functions a and b describe elementary increments:
a accounts for quantities associated with transitions (of state), whereas b does for static
quantities. We commonly refer to observables of the form (I.19) for b = 0 to ‘type-A’,
meanwhile to those for which a = 0 to ‘type-B’ observables [40]. A simple example of
observables of this form is the dynamical activity K [12, 39, 40, 74–82], which is the number
of configuration changes on the time interval [0, t] (in this case one has a(C,C ′) = 1 and
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b ≡ 0 in Eq. (I.19)). Another, is the current of particles Q [61, 244–250] in a one-dimensional
lattice gas, where the value of the observable Q is incremented or decremented at each time
a particle jumps to the left or right. This kind of observables contrasts from the static ones
which depend only on the configuration of the system at a given time.

The probability density of being in configuration C at time t having observed a value O
of observable is denoted by P (C,O, t) and is related through the probability distribution of
O at time t, P (O, t), by

P (O, t) =
∑
C

P (C,O, t).

This probability distribution scales as

P (O, t) ∼ etπ(O/t) (I.20)

in the infinite-time limit. Equation (I.20) is known as the large deviation principle for
observable O [1]. It can be interpreted as the probability of observing an atypical value of
observable O after a large-time scale. The rate function π(O/t) is a dynamical equivalent of
the intensive entropy in the microcanonical ensemble and it is known as the large deviation
function [1]. It encodes not only the Gaussian but also the non-Gaussian fluctuations (or
large deviations) of the observable O/t which can be obtained by an expansion beyond the
quadratic order of the function π(O/t). In the infinite-time limit the function π(O/t) may not
be analytic which can be interpreted as a signature of dynamical heterogeneities (dynamical
phase transition) [71, 72].

The problem of the determination of the rate function π(O/t) is in general a difficult task,
one thus prefers to go to the dynamical canonical ensemble or Laplace space. Instead of fixing
the value of the observable O in order to determine π(O/t) one introduces a parameter s
(intensive in time) which biases the statistical weight of histories and fixes the average value
of O, so that s 6= 0 favors its non-typical values. In order to do that, we introduce the
dynamical partition function (or moment generating function)

Z(s, t) = 〈e−sO〉, (I.21)

where 〈·〉 is the expected value with respect to trajectories of duration t. Since the observable
O is additive and the system is described by a Markov process, Z(s, t) satisfies at large times
the scaling

Z(s, t) ∼ etψ(s) (I.22)
for t → ∞. The growth rate of Z(s, t) with respect to time, ψ(s) is known as the scaled
cumulant generating function (CGF) which fulfils the role of a dynamical free energy. It
allows to recover the large-time limit of the cumulants of O as derivatives of ψ(s) in s = 0
from

lim
t→∞

1
t
〈Ok〉c = (−1)k ∂ksψ(s) |s=0,

where 〈Ok〉c is the kth cumulant of O. The cumulative generating function ψ(s) and the
large deviation function π(O/t) are related through the Legendre transform

ψ(s) = max
ô

[π(ô)− sô],

where ô = O/t. If π is convex, i.e., π′′(ô) ≤ 0 [124], then

π(ô) = min
s

[ψ(s) + sô].
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I.6 The s-modified Dynamics

As mentioned before, the parameter s involves a (exponential) modification on the statistical
weight of the histories of the system. Within this s parametrized ensemble, averages of the
observable O (I.19) defined as

〈O〉s = 〈Oe
−sO〉

〈e−sO〉

for s = 0 correspond to the steady state averages of O. Meanwhile, values of s 6= 0 favours
histories with non-typical values of observable O. The s-modified dynamics can be obtained
taking the Laplace transform of the probability distribution P (C,O, t)

P̂ (C, s, t) =
∫
dO e−sOP (C,O, t).

This Laplace transform allows to recover the moment generating function (I.21) as

Z(s, t) =
∑
C

P̂ (C, s, t).

The probability P̂ (C, s, t) satisfies an s-modified master equation for its time-evolution [40]

∂t|P̂ (t)〉 = Ws|P̂ (t)〉, (I.23)

where the s-modified master operator Ws is given by

(Ws)CC′ = Ws(C ′ → C)− rs(C) δCC′ + δrs(C) δCC′ , (I.24)

where δrs(C) is defined as

δrs(C) = rs(C)− r(C)− sb(C), (I.25)

and r(C) is the escape rate (I.3). On the other hand, Ws(C → C ′) and rs(C) can be seen
as s-modified transition and escape rates, respectively,

Ws(C → C ′) = e−sa(C,C′) W (C → C ′), (I.26)
rs(C) =

∑
C′

Ws(C → C ′).

The cumulative generating function ψ in Eq. (I.22) can be determined from this s-modified
dynamics as the maximum eigenvalue of the matrixWs (I.24) or also, by simulating Eq. (I.23)
using a population dynamics algorithm (or cloning algorithm). Both of them are discussed
below.

I.6.1 ψ as the Largest Eigenvalue of Ws

Similarly as we saw for Eq. (I.11), equation (I.23) has as solution

|P̂ (t)〉 = etWs |P̂ (0)〉. (I.27)
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Matrix Ws can be written in terms of its left 〈Ln| and right |Rn〉 eigenvectors and their
respective eigenvalues λn, with λ0 > λ1 > · · · , as

Ws =
∑
n

λn(s)|Rn〉〈Ln|.

In the large-time limit, the exponential in Eq. (I.27) is dominated by the largest eigenvalue
λ0(s), so that

etWs = |R0〉〈L0|etλ0(s) + . . .

Thus, |P̂ (t)〉 in the large-time limit also scales as

|P̂ (t)〉 = etWs |P̂ (0)〉 ∼ |R0〉etλ0(s)〈L0|P0〉+ . . .

which is equivalent to
P̂ (C, s, t) ∼ R0(C, s)etλ0(s).

Thus, in the large-time limit

Z(s, t) =
∑
C

P̂ (C, s, t) ∼ etλ0(s)

from which we can see that the maximum eigenvalue of matrix Ws (I.24) corresponds to the
cumulative generating function ψ(s).

I.6.2 A Mutation-Selection Mechanism
Following the procedure used in Sec. I.4 for the master equation, the solution of its s-modified
version (I.23) is given by

P (C, s, t) =
∑
K>0

∑
C0...CK

∫ t

0
dt1

∫ t

t1
dt2 . . .

∫ t

tK−1
dtK

× rs(C0) e−(t1−t0) rs(C0) . . . rs(CK−1) e−(tK−tK−1) rs(CK−1) × e−(t−tK) rs(CK)

× Ws(C0 → C1)
rs(C0) · · ·Ws(CK−1 → CK)

rs(CK−1)

× e(rs(C0)−r(C0)) (t1−t0) . . . e(rs(CK−1)−r(CK−1)) (tK−tK−1) × e(rs(CK)−r(CK)) (t−tK)

× P (C0, s, 0)

which have been written conveniently in order to introduce the terms

Y (Ck) = e(rs(Ck)−r(Ck)) ∆t(Ck), (I.28)

where ∆t(Ck) is the time spent in the configuration Ck. Contrarily to the original operator
W (I.12), the s-modified operator Ws (I.24) does not conserve probability (since δrs(C) 6= 0),
implying that there is no obvious way to simulate Eq. (I.23). However, this time-evolution
equation can be interpreted not as the evolution of a single system, but as a population
dynamics on a large number Nc of copies of the system which evolve in a coupled way [18, 33].
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More precisely, reading the operator of the modified master equation (I.23) as in Eq. (I.24),
we find that this equation can be seen as a stochastic process of transition rates Ws(C →
C ′) (I.26) supplemented with a selection mechanism of rates δrs(C) (I.25), where a copy of
the system in configuration C is copied at rate δrs(C) if δrs(C) > 0 or killed at rate |δrs(C)|
if δrs(C) < 0. As detailed below, an estimator for the CGF ψ(s) may be recovered from the
exponential growth (or decay) rate of a population evolving with these rules.

I.7 Continuous-Time Population Dynamics
The basic idea of the population dynamics algorithm consists in preparing Nc copies of
the system (or clones) and in evolving them according to the transition rates Ws(C → C ′)
given by Eq. (I.26). During this evolution some copies are repeatedly multiplied or eliminated
according to a selection mechanism of rates δrs(C) (I.25). The mutation-selection mechanism
described above can be performed in a number of ways. One of them consists in keeping the
total number of clones constant and another, in leaving this population of clones to grow (or
decrease) in time (as implemented in chapter II). Additionally, the selection mechanism can
be implemented along with each evolution of the copies (Continuous-Time) [7, 17, 19] or
for each pre-fixed time-interval (Discrete-Time) [18]. This last one is implemented (in a
constant population fashion) in chapter III, while the continuous-time version is used in the
majority of the manuscript. An explanation about important differences between continuous
and discrete-time techniques can be found in Secs. III.2.4.2 and IV.5. A detailed description
of the continuous-time approaches is presented below.

I.7.1 The Cloning Algorithm

We consider Nc copies (or clones) of the system. The dynamics is continuous in time:
for each copy, the actual changes of configuration occur at times (which we call ‘evolution
times’) which are separated by intervals whose duration is distributed exponentially. At a
given step of the algorithm, we denote by t = {t(i)}i=1,...,Nc the set of the future evolution
times of all copies and by C = {Ci}i=1,...,Nc the configurations of the copies. Their initial
configurations do not affect the resulting scaled cumulant generating function in the large-
time limit. However, for the concreteness of the discussion, without loss of generality, we
assume that these copies have the same configuration C0 at t = 0. The cloning algorithm is
constituted of the repetition of the following procedures:

1. Find the clone whose next evolution time is the smallest among all the clones, i.e.,
j = argminit(i).

2. Compute yj = bY (Cj) + εc, where the cloning factor Y (Cj) (I.28) is defined as
e∆t(Cj) δrs(Cj), ∆t(Cj) is the time spent by the clone j in the configuration Cj since its
last configuration change, and ε is a random number uniformly distributed on [0, 1].

3. If yj = 0, remove this copy from the ensemble, and if yj > 0, make yj − 1 new copies
of this clone.

4. For each of these copies (if any), the state Cj is changed independently to another
state C ′j , with probability Ws(Cj → C ′j)/rs(Cj).
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5. Choose a waiting time ∆t(j) from an exponential law of parameter rs(C ′j) for each
of these copies. Their next change of configuration will occur at the evolution time
t(j) + ∆t(j).

I.7.1.1 Non-Constant Population Approach

The repetition of this procedure will result (after an enough time) in an exponential growth
(or decay) of the number of clones. We can keep track of the different changes in the number
of clones and the times where these changes occur and denote by N(s, t) the time-dependent
population. The CGF estimator can be computed from the slope in time of the log-population
N̂(s, t) = logN(s, t), which constitutes an evaluation of the population growth rate. This
can be done in different ways, for example by fitting N̂(s, t) by pt = Ψ(s)t+ p0 where Ψ(s)
is the CGF estimator or also using

Ψ(s) = 1
Tmax − Tmin

log
(
Nmax
Nmin

)
, (I.29)

where Nmax and Nmin are the maximum and minimum values for N(s, t) and Tmax and Tmin
their respective times. This approach is implemented in chapter II, where we discuss the
discreteness effects in populations dynamics and their influence in the CGF estimation.

I.7.1.2 Constant-Population Approach

In order to keep the total number of copies constant, we add to the procedure described
above an additional step

6. We choose randomly and uniformly: (i) a clone k, k 6= j and we copy it (if yj = 0), or
(ii) yj − 1 clones and we erase them (if yj > 1).

Thus, the CGF estimator Ψ(Nc)
s can be obtained from the exponential growth rate that the

population would present if it was not kept constant [7]. More precisely, this estimator is
defined as

Ψ(Nc)
s = 1

t
log

K∏
i=1

Xi, (I.30)

where Xi = (Nc + yi − 1)/Nc are the “growth” factors at each step j of the procedure
described above, and K is the total number of configuration changes in the full population
up to time t (which has not to be confused with K). This growth rate can also be computed
from a linear fit over the reconstructed log-population and the initial transient regime, where
the discreteness effects are present, can be discarded in order to obtain a better estimation.
This approach is used in chapters IV, V and VI.

I.8 Example Models
In the next chapters, the cloning algorithm is implemented in order to obtain an estimation of
the CGF ψ(s). This is done with two specific models: a simple two-state annihilation-creation
dynamics, and a contact process on a one-dimensional periodic lattice [19, 38, 107, 108]. The
first system (chapters: II, III, IV and V) was chosen for its simplicity and the possibility of
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comparing the numerical predictions with the exact values of ψ(s). On the other hand,
the contact process (chapters: IV, V and VI) is used to extend the analysis and to verify
the results on a (more complex) many body system where the dependence with the size
of the system can be also analyzed. In both cases, we consider the dynamical activity
K [12, 39, 40, 74–82] as the additive observable O (I.19). The analytical expression of
the CGF ψ(s) is obtained (when possible) by solving the largest eigenvalue of the operator
Ws (I.24) as discussed in Sec. I.6.1.

I.8.1 Annihilation-Creation Dynamics
The dynamics occurs in one site where the only two possible configurations C are either 0
or 1. The transition rates between configurations are given by

W (0→ 1) = c,

W (1→ 0) = 1− c,

where c ∈ [0, 1]. Eq. (I.8) for this process becomes

∂t

(
P (0, t)
P (1, t)

)(
−c 1− c
c −1 + c

)(
P (0, t)
P (1, t)

)
. (I.31)

As we mentioned before, one advantage of considering this process for our analysis is that
the large deviation function for the activity can be determined analytically. The large-time
cumulant generating function ψK(s) = limt→∞

1
t log〈e−sK〉 corresponds to the maximum

eigenvalue of the matrix Ws (I.24)

Ws =
(
−c (1− c) e−s
c e−s −1 + c

)
(I.32)

which results in
ψK(s) = −1

2 + 1
2

(
1− 4c (1− c)(1− e−2s)

)1/2
. (I.33)

Equation (I.33) will allow us to assess the quality of our numerical results. The inverse of
the difference between the eigenvalues of Ws

tgap = 1√
1− 4c (1− c)(1− e−2s)

(I.34)

allows us to define the typical convergence time tgap for the large-time behavior for Eq. (I.31)
which is analyzed in Sec. II.4.1.

I.8.2 Contact Process
This system consists in a one-dimensional lattice with L sites and periodic boundary con-
ditions [38, 107, 108]. Each position i is occupied by a spin which is either in the state
ni = 0 or ni = 1. The configuration C is then constituted by the states of these spins, i.e.,
C = (ni)Li=1. The transition rates for this process are given by

W (ni = 1→ ni = 0) = 1,
W (ni = 0→ ni = 1) = λ(ni−1 + ni+1) + h,
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where λ and h (spontaneous rate of creation) are positive constants. This model is an
example of contact processes [38], which have been studied in many contexts especially to
model the spread of infection diseases [251]. Within this context, the state ni = 1 is used to
represent a sick individual and λ can be seen as a infection rate. The corresponding CGF
develops a singularity as L → ∞, showing a dynamical phase transition [19, 35, 74, 252].
The contact process is a model of the directed percolation universality class and its scaling
properties have been discussed extensively [252–254].



II – Discreteness Effects
in Population Dynamics

II.1 Introduction

In the present chapter [P1], we focus on the non-constant population approach of the
cloning algorithm (as described in Sec. I.7.1.1), that we study numerically for the simple
annihilation-creation (Sec. I.8.1) model where its implementation and its properties can be
examined in great details. As we mentioned in the introduction, the cloning algorithm
results (as time goes to infinity) in an exponential growth (for s < 0) or decay (for s > 0)
of the number of clones. As we will see later, the “discreteness effects” in the evolution
of our populations are strong at initial times. That is why the determination of the large
deviation function using this algorithm is constrained not only to the parameters (c, s), the
initial number of clones Nc and the number of realizations R but also to the final time (or
the maximum population) until which the process evolves in the numerical procedure. In
Sec. II.2 we describe issues related to the averaging of distinct runs, that we quantify in
Sec. II.3. In Sec. II.4 we propose a new method to increase the efficiency of the population
dynamics algorithm by applying a realization-dependent time delay, and we present the
results of its application in Sec. II.5. We characterize numerically the distribution of these
time delays in Sec. II.6. Our conclusions and perspectives are gathered in Sec. II.7.

II.2 Average Population and the LDF

In order to obtain an accurate estimation of ψ(s), we should average several realizations
of the procedure described in Sec. I.7.1.1. To perform this average, we will define below a
procedure that we have called merging which will allow us to determine in a systematic
way the average population from which we can obtain this estimation that we denote Ψ(s).
Noteworthy, this erroneously could be seen as obtaining Ψ(s) from the growth rate of the
average (or equivalently the sum) of several runs of the population dynamics. This procedure
would be incorrect since it amounts to performing a single run of the total population of the
different runs, with a dynamics that would partition the total population into non-interacting
sub-populations, while, as described in Sec. I.7.1.1, the population dynamics induces effective
interactions among the whole set of copies inside the population. In fact, the right way of
performing this numerical estimate comes from computing Ψ(s) from the average growth rate
of several runs of the population, i.e., from taking the average 〈logN(s, t)〉 of the slopes of
several logN(s, t) instead of the slope of log〈N(s, t)〉. The two results differ in general since

17
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〈logN(s, t)〉 6= log〈N(s, t)〉. One can expect that the two results become equivalent in the
large Nc limit as the distribution of growth rate should become sharply concentrated around
its average value; however, they are different in the finite Nc regime that we are interested
in. This alternative way of defining the CGF estimator is discussed deeply in Secs. III.4.3
and V.3.

II.2.1 Populations Merging
Let us consider J populations: N = {N1(s, t), N2(s, t), ..., NJ(s, t)}. In order to compute the
average population 〈N〉 defined as 〈N〉 = 〈Nj(s, t)〉Jj=1, we introduce a procedure that we
have called merging (of populations) which is described below.

Given Ni(s, t) and Nj(s, t) the result of merging these two populations M(Ni, Nj) is
another population Nij = Ni +Nj which represents the total number of clones for each time
where a change in population for Ni and Nj has occurred. If 〈Nij〉 is the average population
for Ni and Nj , this is related to the merged population through 〈Nij〉 = Nij

2 . If we add, for
example, to our previous result another population Nk, the resultM(Nij , Nk) is related to
the average byM(Nij , Nk) = Nij + Nk = Ni + Nj + Nk = Nijk = 3〈Nijk〉. These merging
procedure can be repeated for each of the populations in N so that

M[N ] =M(M(M(. . . (M(M(N1, N2), N3), N4) . . .), NJ−1), NJ)

is the result of systematically merging all the populations in N . The average population
〈N〉 can be recovered fromM[N ] as

〈N〉 = (1/J)M[N ].

Similarly, in the case of log-populations (N̂j(s, t) = logNj(s, t)), the average 〈N̂〉 = 〈N̂j(s, t)〉Jj=1
is obtained from merging all the log-populations in N̂ = {N̂1(s, t), N̂2(s, t), . . . , N̂J(s, t)}.
The estimator Ψ(s) is then computed from the slope of 〈N̂〉 with 〈N̂〉 = (1/J)M[N̂ ].

II.2.2 Discreteness Effects at Initial Times
Issues can emerge in the determination of Ψ(s) (I.29) which are not only related to the depen-
dence of the method in Nc (the initial number of clones) and J (the number of populations).
At initial times there is a wide distribution of times at which the first series of jumps occurs.
This means that fluctuations at initial times induce that some populations remain in their
initial states longer than others, producing an effective delay compared to other populations
that evolve faster in their initial regime. From a practical point of view, this can induce
that the numerical determination of Ψ(s) becomes a slow and inefficient task. One way of
dealing with this issue comes from restricting the evolution of N up to a maximum time
Tmax or a maximum population Nmax. However, this implies that if Tmax or Nmax are not
long enough, the determination of Ψ(s) will be strongly affected by the behavior of N at
initial times. We now discuss two issues that are encountered in the numerical evaluation
of the CGF estimator: (i) the influence of how the dynamics is halted; and (ii) the role of
initial population in the initial regime.
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Figure II.1: Log-populations as function of time (blue). Their evolution has been restricted
up to a maximum (log) population value. (a) The average log-population 〈N̂〉 (black) is
made in the interval [0,min TF ], where all the populations are defined. (b) After a cut
in populations CN (in order to eliminate the initial discreteness effects), the average log-
population (red) that represents the new N̂ is defined only in the interval [max TC ,min TF ].

Let us call TF = {tF1 , . . . , tFJ } the set of final times of N , with tFj ≤ Tmax, ∀j ∈ {1, . . . , J}.
Note that tFj depends on j whenever the simulation is stopped at Nmax (as in Fig. II.1) or
at Tmax. This is due to the fact that the algorithm is continuous in time and the last ∆t(C)
does not exactly lead to Tmax. We say that the average population 〈N〉 represents N only if
the average is made in the interval [0,min TF ] where all the populations are defined. In other
words, the average population in this interval takes into consideration all the populations
while for times t ≥ min TF some populations have stopped evolving. This phenomenon is
especially evident when considering a maximum population limit Nmax for the evolution of
the populations (Fig. II.1(a)). As a consequence, 〈N〉 depends on the distribution of final
times of N which are not necessarily equal to Tmax.

An alternative that can be considered in order to overcome the influence of initial dis-
creteness effects in the determination of Ψ(s) is to get rid of the initial transient regime where
these effects are present. In other words, to cut the initial time regime of our populations.
Let us call CN ≥ logNc the initial cut in log-populations and equivalently Ct ≥ 0 the initial
cut in times. TC = {tC1 , . . . , tCJ} is the distribution of times at Ct,N . In that case, similarly
as we analyzed before, the average population 〈N〉 represents N only if the average is made
in the interval [max TC ,min TF ] which can be in fact very small and could result in a bad
approximation of Ψ(s) (Fig. II.1(b)).

As we will see in the next section, the log-populations after a long enough time become
parallel, i.e., once the populations have surpassed the discreteness effects regime, the distance
between them is constant. We will use this fact in order to propose a method which allows
us to overcome the problems we have described in this section. Throughout this chapter, we
consider for our simulations c = 0.3, Nc = 22, Nmax = 103, J = 28 and s ∈ [−0.3, 0].
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Figure II.2: Evolution of two log-populations N̂i, N̂j as function of time and the distance
D(N̂i, N̂j) between them as defined in Eq. (II.1). (a) Log-populations after a long enough
time become parallel. (b) Once the populations have overcome the initial discrete population
regime, the distance between them becomes constant. (s = −0.1).

II.3 Parallel Behavior in Log-Populations

II.3.1 Distance between Populations
Given Ni(s, t) and Nj(s, t), we define the distance between these populations at N∗ (with
N∗ ∈ Ni and N∗ ∈ Nj), as

D(Ni, Nj)(N∗) =
∣∣∣∣(tj(N∗) + ∆tj(N∗)

2

)
−
(
ti(N∗) + ∆ti(N∗)

2

)∣∣∣∣ , (II.1)

where ∆tk(N∗) is the time interval Nk(s, t) spent at N∗ and tk(N∗) is the time where
Nk(s, t) changes to N∗. Evidently, there are cases where N∗ /∈ Ni but N∗ ∈ Nj , N∗ ∈ Ni

but N∗ /∈ Nj and N∗ /∈ Ni and N∗ /∈ Nj . However, D(Ni, Nj)(N∗) for these cases can also
be computed. The last analysis (and definitions) is also valid for log-populations. These
distances, D(Ni, Nj)(N∗) and D(N̂i, N̂j)(N∗) enjoy interesting properties that we discuss
below.

II.3.2 Properties of D(N̂i, N̂j)
In Fig. II.2, we show two log-populations and the distance between them. These log-
populations after a long enough time become parallel (Fig. II.2(a)), i.e., once the populations
have overcome the discreteness effects regime, the distance between them becomes constant
(Fig. II.2(b)). The region where the distance between populations is constant characterizes
the exponential regime of the populations growth, i.e., the region where the discreteness
effects are not strong anymore.
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Figure II.3: (a) Average distance of the log-populations in N̂ with respect to a reference
one for R = 20 realizations (light blue) and their average (dark blue). (b) Average distance
between populations for several values of the parameter s. How fast a population “exits”
from the discreteness effects regime depends on s: s closer to zero corresponds to a slower
population growth and hence a longer discreteness regime.

If we consider some population N̂F ∈ N̂ as reference, using the definitions above, it
is possible to determine the distance D(N̂F , N̂j) between N̂F and the rest of populations
in N̂ = {N̂1, N̂2, ..., N̂J}. In Fig. II.3(a) we show their average 〈D(N̂F , N̂j)〉j in light blue
and its average over R = 20 realizations

[
〈D(N̂i, N̂j)〉

]
R

in dark blue. The parameter s
characterizes atypical behaviors of the unbiased dynamics (as we mentioned in Sec. I.6), and
this induces a dependence in s of the population growth. A population with a large value of
s corresponds to a large deviation of K. Also, as it is clearly illustrated in Fig. II.3(b), the
time of entrance of the system into a regime free of discreteness effects depends on s.

II.4 Time Correction in the Evolution of Populations

Based on the results we just illustrated, we propose a method to improve the estimation
of ψ(s) and reduce the influence of the initial transient regime we described in Sec. II.2.2.
We aim at giving more weight to the exponential regime in the determination of ψ(s). As
detailed below, this can be done through a time delay in the evolution of populations.

II.4.1 Time Delay Correction

Consider J populations N , their respective log-populations N̂ and their distribution of final
times TF = {tF1 , ..., tFJ }. We define as delay ∆τj of N̂j (with respect to a fixed reference
population N̂F ∈ N̂) the time interval

∆τj = tFF − tFj

such that, if ∆τj < 0, N̂j is ahead with respect to N̂F , and if ∆τj > 0, N̂j is delayed with
respect to N̂F . This lag can be compensated by performing on N̂j the time translation
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Figure II.4: (a) Log-populations, (b) time-delayed log-populations, and their average (dark
green). The fluctuations at initial times produce a gap in the evolution of individual pop-
ulations inducing a relative shift that lasts forever. This is compensated by delaying the
populations in time, as explained in Sec. II.4.1. (s = −0.25).

N̂new
j = N̂j(s, t+ ∆τj) (II.2)

which produces that N̂new
j and N̂F share not only the final population Nmax, but also the

same final time tFF . Moreover, considering also the fact that log-populations are parallel at
large times, this procedure produces that N̂new

j and N̂F overlap in a free of discreteness
effects region. The result of performing this transformation to all the populations in N̂ is
shown in Fig. II.4.

Fig. II.4 also illustrates many of the points we have discussed up to now. One of them
is related to the “wide” distribution of final times, i.e., min TF and max TF can be very
distant one from each other. This along with the fact that the average population depends
on min TF makes that the determination of Ψ(s) omits a considerable region where the
populations have already entered the exponential regime. This implies precisely that more
weight is given to the initial discreteness effects than to the exponential regime. These effects
are in fact present up to relatively long times which means that if we would like to get rid of
the region were discreteness effects are strong by cutting the populations, the determination
of Ψ(s) would be restricted to the interval [max TC ,min TF ]. By applying precisely this time
delay correction to N̂ we solve these two problems. First, we give more importance precisely
to the region where the population growth is exponential. Second, we omit naturally the
very first initial times of the evolution of our populations.

The inverse of the difference between the two largest eigenvalues of Ws (I.32), tgap
(Eq. (I.34)) allows us to define the typical convergence time to the large time behavior for
Eq. (I.31) (as we mentioned in Sec. I.8.1). A crucial remark is that, as observed numerically,
the duration before the population enters into the exponential regime is in fact larger than
the time scale given by the gap: for instance, for the parameters used to obtain Fig. II.4,
from Eq. (I.34) one has tgap ≈ 0.804. The understanding of the duration of this discreteness
effects regime would require a full analysis of the finite-population dynamics which are not
fully understood. We propose in this section a numerical procedure to reduce its influence.
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Figure II.5: (a) Variance of the log-populations (black) and the delayed log-populations
(blue) as a function of time. The variance of log-populations increases (or decreases, after
the time transformation) as function of time. (b) Log-population variance in semi-log scale.
(s = −0.1).

Log-Population Variance

As can be seen from Fig. II.4, and as it is verified in Fig. II.5, the variance of log-populations
(black) increases as a function of the time, faster during the transient regime, and slower
during the exponential growth regime until the variance becomes constant. After the time-
delay correction, the variance of the delayed log-population (blue) decreases to zero as a
function of time. The s-dependent decrease rate is shown in Fig. II.5(b).

II.5 Ψ(s) Before and After the Time Delay

The CGF estimator Ψ(s) can be recovered from the slope in time of the logarithm of the
average population (see Sec. II.2.1). We also mentioned in Sec. II.2.2, that an alternative we
can consider to overcome the discreteness effects would be to eliminate the initial transient
regime where these effects are strong. The improvement in the estimation of the analytical
CGF ψ(s) (I.33) comes precisely from these two main contributions, the time delaying of
populations and the discarding of the initial transient regime of the populations. We denote
Ψnum(s) the numerical estimator which is obtained from the slope of the logarithm of the
average population (computed from merging several populations that have been generated
using the cloning algorithm). On the other hand, Ψτ (s) is obtained through a time delay
procedure over N̂ , as described above. These two numerical estimations are in fact averages
over R realizations and over their last γ values. The approach followed in order to compute
Ψnum(s) and Ψτ (s) are computed is explained below.

II.5.1 Numerical Estimators for ψ(s)

Let us call Ψ∗(CN ) an estimation of ψ (by some method (∗) ∈ {num, τ}) as a function of the
cut in log-population CN . If we consider CN as CN = {C1

N , ..., C
Γ
N} a set of Γ cuts, Ψ∗(CN )
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Figure II.6: Numerical estimations of ψ(s = −0.1) as a function of the cut CN in (log)
population. [Ψτ (CN )] is shown in blue and [Ψnum(CN )] in black for R = 40. The numerical
estimations Ψnum and Ψτ are computed from an average of

[
Ψ∗(CiN )

]
over its last γ = 6

values. The subscript “∗” denotes “num” or “τ”.

is in fact Ψ∗(CN ) = {Ψ∗(C1
N ), ...,Ψ∗(CΓ

N )}. If
[
Ψ∗(CiN )

]
is an average over R realizations,

[
Ψ∗(CiN )

]
= 1
R

R∑
r=1

Ψr
∗(CiN )

our numerical estimation (for a given s) is then computed from an average of
[
Ψ∗(CiN )

]
over

its last γ values, i.e.,

Ψ∗(s) = 1
γ

Γ∑
i=Γ−γ

[
Ψ∗(CiN )

]
= 1
γR

Γ∑
i=Γ−γ

R∑
r=1

Ψr
∗(CiN )

as is shown in Fig. II.6. More details of the determination of these estimators are given in
the subsection below.

II.5.2 Comparison between “Bulk” and “Fit” Estimators of ψ(s)

The estimators defined in the last subsection can be obtained from the “bulk” slope (Fig. II.7(a))
given by Eq. (I.29) and from the affine fit of the average log-population by pt = Ψ(s)t + p0
(Fig. II.7(b)), as explained in Sec. I.7.1.1. Fig. II.7 shows the average over R = 40 re-
alizations of the numerical estimators Ψnum(CN ) and Ψτ (CN ) as a function of the cut in
log-population for s = −0.1. As before, [Ψτ (CN )] is shown in blue and [Ψnum(CN )] (without
the “time delay”) is shown in black. As we already mentioned, the estimation for ψ becomes
better if we discard the initial transient regime where the discreteness effects are strong.

The black curves in Fig. II.7 represent the standard way of estimating ψ which comes
from the slope of the average log-population, shown in dark green in Fig. II.4(a) for one
realization. We can observe the effect of discarding the initial transient regime of these
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Figure II.7: Average over R = 40 realizations of the numerical estimators Ψnum(CN ) and
Ψτ (CN ) as a function of the cut in log-population for s = −0.1. The CGF estimations were
obtained from (a) a “Bulk” slope and from (b) a “Fit” slope. The estimation for ψ becomes
better if we discard the initial transient regime where discreteness effects are strong.

populations by cutting systematically this curve and computing Ψnum(CN ) from the growth
rate Ψ(s) computed on the interval [CN , Nmax]. Independently if Ψnum(CN ) is computed
from the “bulk” slope or by the “fit” slope, for appropriate values of CN , Ψnum(CN ) becomes
closer to the theoretical value. Additionally to this result, we can add the time correction or
delay proposed in Sec. II.4.1 and the estimation Ψτ (CN ), shown by blue curves in Fig. II.7,
is closer to the theoretical value than Ψnum(CN ) for all CN .

Once we have proved that the estimation of ψ becomes better when we discard the initial
times where the discreteness effects are strong and when we perform a “time delay” over our
populations in order to give more weight to the final regime of our populations, the question
that remains is related to what we should consider as Ψnum(s) and Ψτ (s). As we showed
in Fig. II.6, Ψnum(s = −0.1) and Ψτ (s = −0.1) are computed from an average over the last
γ values of [Ψnum(CN )] and [Ψτ (CN )]. Below, we repeat this procedure and compute these
estimators for several values of s, s ∈ [−0.3,−0.05]. The improvement in the determination
of the CGF is measured through the relative distance of the numerical estimations with
respect to the theoretical values and their errors.

II.5.3 Relative Distance and Estimator Error
The relative distance

D(ψ(s),Ψ∗(s)) =
∣∣∣∣ψ(s)−Ψ∗(s)

ψ(s)

∣∣∣∣
between the estimator Ψ∗(s) and its theoretical value ψ(s) is shown in Fig. II.8. These
distances were also computed from the “bulk” and the “fit” slope and with (blue) and
without time delay (black). As we can observe, the deviation from the theoretical value is
larger for values of s close to 0, but is smaller after the “time correction” for almost every
value of s. Fig. II.9 presents the estimator error for ψ(s) defined as

ε = σΨ∗√
R
,
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Figure II.8: Relative distance D(ψ(s),Ψ∗(s)) between the estimator Ψ∗(s) and its theoretical
value ψ(s). The deviation from the theoretical value is larger for values of s close to 0, but
is smaller after the “time delay correction” for almost every value of s. The CGF estimators
were obtained from (a) a “Bulk” and from (b) a “Fit” slope.
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Figure II.9: Estimator error for ψ(s), εnum (black) and ετ (blue). The estimator error
decreases as s approaches to 0 (for both, (a) “Bulk”, (b) and “Fit” slopes) and it is always
smaller for Ψτ (s) for any value of s.

.

where R is the number of realizations and σΨ∗ is the standard deviation of Ψ∗(s). Similarly
as in previous results, the estimator error decreases as s approaches to 0 (for both slopes)
and it is always smaller for Ψτ (s) for any value of s.

II.6 Time Delay Properties

Here, we analyze the properties of the distribution of time delays ∆τ(s) = {∆τ1(s), . . . ,∆τJ(s)}
which has been centered with respect to its mean. In Fig. II.10(a), we show its variance
σ2
s [∆τ ]. The dispersion of time delays is large for values of s close to 0 and decreases quickly
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Figure II.10: (a) Time delay variance σ2
s [∆τ ]. The dispersion of the time delays is large for

values of s close to 0 and decreases rapidly as −s increases. (b) Time delay variance regimes,
one characterized with m1 ≈ −2.877 (s ∈ [−0.15,−0.3]) and the other with m2 ≈ −2.4214
(s ∈ [−0.05,−0.15]).

as −s increases. This is understood by observing that the typical growth rate [rs(C)− r(C)]
of the cloning algorithm goes to zero as s → 0 inducing a longer transient regime be-
tween the small and large population regimes. When we plot the variance in log-log scale,
as in Fig. II.10(b), we can observe two linear regimes, one characterized by an exponent
m1 ≈ −2.877 (s ∈ [−0.15,−0.3]) and the other by m2 ≈ −2.4214 (s ∈ [−0.05,−0.15]). They
correspond to power-law behaviors in time of the variance of the delays, which remain to be
understood.

This dependence of the dispersion of time delays with s can be better seen in the distri-
bution of time delays Ps(∆τ) shown in Fig. II.11 for various values of s. This distribution
is wider for values of s closer to zero (Fig. II.11(a)). However if we rescale the distributions
of time delays by their respective σs, as shown in Fig. II.11(b), the distributions become
independent of s as Ps(∆τ) = σs [∆τ ] P̂

(
∆τ

σs[∆τ ]

)
. This provides a strong numerical evidence

supporting the existence of a universal distribution P̂ .

II.7 Discussion
In this chapter, we analyzed the discreteness effects at initial times in population dynamics.
During the initial transient regime of the evolution of populations, there is a wide distribution
of times at which the first series of jumps occurs. This means that fluctuations at initial
times produce that some populations remain in their initial states for much longer than
others, producing a gap in their individual evolution. This induces a relative shift that
lasts forever. These effects play an important role specially for the determination of the
large deviation function which may be obtained from the growth rate of the average log-
population (Sec. I.7.1.1).

However, in Sec. II.2.2 we saw how by restricting the evolution of our populations up
to a maximum time Tmax (or population Nmax) which is not “large enough”, the average
population (and Ψ(s)) is strongly affected by the behavior of N at initial times. We proposed
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Figure II.11: (a) Distribution of time delays for different values of s. The dispersion of
time delays is wider for values of s closer to zero. (b) Rescaled distribution of time de-
lays P̂

(
∆τ

σs[∆τ ]

)
. The distribution of time delays depends only on their σs as Ps(∆τ) =

σs [∆τ ] P̂
(

∆τ
σs[∆τ ]

)
.

as an alternative to overcome the influence of initial discreteness effects to get rid of the
regions of the populations where these effects are present. In other words, to cut the initial
transient regime of the populations. In that case, we saw that the average of populations
is restricted to the interval [max TC ,min TF ] which can be in fact very small and this can
induce a poor estimation of ψ(s) (Fig. II.1(b)).

Complementary to this, we found a way of emphasizing the effects of the exponential
growth regime in the determination of ψ(s) by using the fact that log-populations after a
long enough time become parallel (Fig. II.2(a)) and that once the populations have overcome
the discreteness effects, the distance between them becomes constant (Fig. II.2(b)) and the
discreteness effects are not strong anymore (Sec. II.3). We argued in Sec. II.4.1 that this
initial discreteness effects or initial “lag” between populations could be compensated by
performing over the populations a time translation (Eq. (II.2)). This time delay procedure
is chosen so as to overlap the population evolutions in their large-time regime (Fig. II.4(b)).
The improvement in the estimation of ψ comes precisely from these two main contributions,
the time delaying of populations and the discarding of the initial transient regime of the
populations.

We showed how the numerical estimations for the CGF are improved as the initial tran-
sient regime of the populations are discarded (independently of the method used to compute
the growth rate of the average population, see Fig. II.7). Also, it is was shown that if addi-
tionally, we perform the time delay procedure, the estimation of ψ is improved even more and
closer to the theoretical value (Sec. II.5.2). This result was confirmed later in Sec. II.5.3 by
computing the relative distance of the numerical estimators with respect to the theoretical
value and their errors. As we observed in Fig. II.8, the deviation from the theoretical value
is higher for values of s close to 0, but is smaller after the “time correction” for almost every
value of s. Similarly for the error estimator (Fig. II.9).
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Our numerical study was performed on a simple system, and we hope it can be extended
to more complex phenomena. However, there remain open questions even for the system we
have studied. The duration of the initial discrete-population regime could be understood
from an analytical study of the population dynamics itself. Our numerical results also
support a power-law behavior in time of the variance of the delays. Furthermore, it appeared
that the distribution of the delays takes a universal form, after rescaling the variance to one.
Those observations open questions for future studies.





III – Finite-Time and Finite-Size
Scalings in the Evaluation of
Large-Deviation Functions:
I. Analytical Study using
a Birth-Death Process

III.1 Introduction

Cloning algorithms are numerical procedures aimed at simulating rare events efficiently,
using a population dynamics scheme. In such algorithms, copies of the system are evolved in
parallel and the ones showing the rare behavior of interest are multiplied iteratively [7, 16–
19, 23, 32, 33, 62–70] (See Fig. III.1). One of these algorithms proposed by Giardinà et
al. [7, 17–19, 33, 70] is used to evaluate numerically the cumulant generating function CGF
(a large deviation function, LDF) of additive (or “time-extensive”) observables in Markov
processes [1, 83]. While the method has been used widely, there have been less studies
focusing on the analytical justification of the algorithm. Even though it is heuristically
believed that the LDF estimator converges to the correct result as the number of copies Nc

increases, there is no proof of this convergence. Related to this lack of the proof, although
we use the algorithm by assuming its validity, we do not have any clue how fast the estimator
converges as Nc →∞.

In this chapter [P2], we discuss this convergence defining two types of numerical errors.
First, for a fixed finite Nc, averaging over a large number of realizations, the CGF estimator
converges to an incorrect value, which is different from the desired large deviation result. We
call this deviation from the correct value, systematic errors. Compared with these errors,
we also consider the fluctuations of the estimated value. More precisely, for a fixed value of
Nc, the results obtained in different realizations are distributed around this incorrect value.
We call the errors associated to these fluctuations stochastic errors. Although both errors
are important in numerical simulations, the former one can lead this algorithm to produce
wrong results. For example as seen in Ref. [85], the systematic error grows exponentially as
a temperature decreases (or generically in the weak noise limit of diffusive dynamics).

To study these errors, we employ a birth-death process [86, 87] description of the pop-
ulation dynamics algorithm as explained below: We focus on physical systems described
by a Markov dynamics [7, 18, 19] with a finite number of states M . We denote by i

31
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Figure III.1: Schematic picture illustrating the principle of the population dynamics algo-
rithm. ‘Clones’ (or copies) of the system are prepared and they evolve following a mutation-
and-selection process, maintaining the total population constant.

(i = 0, 1, · · ·M − 1) the states of the system. This Markov process has its own stochastic
dynamics, described by the transition rates w(i→ j). In population dynamics algorithms, in
order to study its rare trajectories, one prepares Nc copies of the system, and simulate these
copies according to (i) the dynamics of w(i→ j) (followed independently by all copies) and
(ii) ‘cloning’ step in which the ensemble of copies is directly manipulated, i.e., some copies
are eliminated while some are multiplied (See Table III.1). Formally, the population dynam-
ics represents, for a single copy of the system, a process that does not preserve probability,
as mentioned in Sec. I.6.2. This fact has motivated the studies of auxiliary processes [88],
effective processes [89] and driven processes [90] to construct modified dynamics (and their
approximations [91]) that preserve probability. Different from these methods, in this chapter,
we formulate explicitly the meta-dynamics of the copies themselves by using a stochas-
tic birth-death process which preserves probability, and it allows us to study the numerical
errors of the algorithm when evaluating LDF. We consider the dynamics of the copies as a
stochastic birth-death process whose state is denoted by n = (n0, n1, n2, . . . , nM−1), where
0 ≤ ni ≤ Nc represents the number of copies which are in state i in the ensemble of copies.
We explicitly introduce the transition rates describing the dynamics of n, which we denote
by σ(n→ ñ). We show that the dynamics described by these transition rates lead in general
to the correct LDF estimation of the original system w(i→ j) in the Nc →∞ limit. We also
show that the systematic errors are of the order O(1/Nc), whereas the numerical errors are
of the order O(1/(τNc)) (where τ is an averaging duration). This result is in clear contrast
with standard Monte-Carlo methods, where the systematic errors are always 0. The formula-
tion developed in this chapter provides us the possibility to compute exactly the expressions
of the convergence coefficients, as we do in Sec. III.4 on a simple example. The analytical
analysis presented here [P2] is supplemented with a thorough numerical study in the next
chapter IV [P3]. There, we employ an intrinsically different cloning algorithm, which is the
continuous-time population dynamics algorithm, that cannot be studied by the methods
presented here (see Secs. III.2.4.2 and IV.5). We show in chapter IV that the validity of the
scaling that we derive analytically here is very general, we make use of the convergence speed
to propose a simple interpolation technique demonstrating in practice its efficiency in the
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Population dynamics algorithm Birth-death process describing
the population dynamics

State of the system i n = (n0, n2, · · · , nM−1)
(i = 0, 1, · · ·M − 1) (0 ≤ ni ≤ Nc with

∑
i ni = Nc)

Transition rates w(i→ j) σ(n→ ñ)
Markov process on states i Markov process on states n

Numerical procedure Prepare Nc clones and evolve those Described by the dynamics
for rare-event sampling with a mutation-selection procedure of rates σ(n→ ñ)

Table III.1: Correspondence between the population dynamics and the birth-death process
to describe it.

evaluation of the LDF, irrespectively of the details of the population dynamics algorithm.
The present chapter is structured as follows. We first define the LDF problem in the

beginning of Sec. III.2, and then formulate the birth-death process used to describe the algo-
rithm in Sec. III.2.1. By using this birth-death process, we demonstrate that the estimator
of the algorithm converges to the correct large deviation function in Sec. III.2.2. At the
end of this section, in Sec. III.2.3, we discuss the convergence speed of this estimator (the
systematic errors) and derive its scaling ∼ 1/Nc. In Sec. III.3, we turn to stochastic errors.
For discussing this, we introduce the large deviation function of the estimator, from which
we derive that the convergence speed of the stochastic errors is proportional to 1/(τNc). In
the next section, Sec. III.4, we introduce a simple two-state model, to which we apply the
formulations developed in the previous sections. We derive the exact expressions of the sys-
tematic errors in Sec. III.4.1 and of the stochastic errors in Sec. III.4.2. Then, in Sec. III.4.3,
we propose another large deviation estimator and finally, in Sec. III.5, we summarize the
results obtained.

III.2 Birth-Death Process and the Population Dynamics Algorithm

As explained in the introduction of this chapter (also see Table III.1), the state of the
population is n = (n0, n1, · · · , nM−1), where ni represents the number of clones in the state
i. The total population is preserved:

∑
i ni = Nc. Below, we introduce the transition rates

of the dynamics between the occupations n, σ(n → ñ) that describe corresponding large
deviations of the original system whose dynamics is given by the rates w(i→ j).

As the original system, we consider the continuous-time Markov process in a discrete-
time representation. By denoting by dt the time step, the transition matrix Rj,i for time
evolution of the state i is described as

Rj,i = δi,j + dt
[
w(i→ j)− δi,j

∑
k

w(i→ k)
]
, (III.1)

where we set w(i → i) = 0. The probability distribution of the state i, pi(t), evolves in
time as pi(t + dt) =

∑
j Ri,jpj(t). In the dt → 0 limit, one obtains the continuous-time

Master equation (I.8) describing the evolution of pi(t) [86, 87]. For simplicity, especially for



34 Chapter III. Finite-Time and Finite-Size Scalings. I. Discrete Time

the cloning part of the algorithm, we keep here a small finite dt. The reason why we use a
discrete-time representation is solely for simplicity of the discussion. The main results can
be derived even if we start with a continuous-time representation (see Sec. III.2.4.1). For the
original dynamics described by the transition matrix (III.1), we consider an observable bi
depending on the state i and we are interested in the distribution of its time-averaged value
during a time interval τ , defined as

B(τ) = 1
τ

τ/dt∑
t=0

dt bi(t). (III.2)

Here i(t) is a trajectory of the system generated by the Markov dynamics described by Rj,i.
We note that B(τ) is a path- (or history-, or realization-) dependent quantity. Since τB(τ)
is an additive observable, the fluctuations of B(τ) depending on the realizations are small
when τ is large, but one can describe the large deviations of B(τ). Those occur with a
small probability, and obey a large deviation principle (I.20). We denote by Prob(B) the
distribution function of B(τ). The large deviation principle ensures that Prob(B) takes an
asymptotic form Prob(B) ∼ exp(−τI(B)) for large τ , where I(B) is a large deviation function
(or ‘rate function’) [1, 83]. As we mentioned in the introduction, if the rate function I(B)
is convex, the large deviation function is expressed as a Legendre transform of a cumulant
generating function ψ(s) defined as

ψ(s) = lim
τ→∞

1
τ

log
〈
e−sτB(τ)

〉
,

so that I(B) = − infs [sB + ψ(s)]. The large deviation function I(B) and this generating
function ψ(s) are by definition difficult to evaluate numerically in Monte-Carlo simulations of
the original system of transition rates w(i→ j) (see for example Ref. [255]). To overcome this
difficulty, population dynamics algorithms have been developed [7, 17–19, 33, 70]. Here, we
describe this population dynamics algorithm by using a birth-death process on the occupation
state n allowing us to study systematically the errors in the estimation of ψ(s) within the
population dynamics algorithm. We mention that, without loss of generality, we restrict our
study to so-called ‘type-B’ observable (see Sec. I.5 in the Introduction) that do not depend
on the transitions of the state [40], i.e., which are time integrals of the state of the system,
as in Eq. (III.2). Indeed, as explained for example in Refs. [7] and [85], one can always
reformulate the determination of the CGF of mixed-type observables into that of a type-B
variable, by modifying the transition rates of the given system.

Note that in chapter IV, we use a continuous-time version of the algorithm [19] to study
an observable of ‘type A’. This version of the algorithm differs from the one considered here,
in the sense that after its selection step, a copy in the population can have strictly more than
one offspring. This results in an important difference: the effective interaction between copies
due to the cloning/pruning procedure is unbounded (it can a priori affect any proportion
of the population), while in the discrete-time settings of the present chapter, this effective
interaction is restricted to a maximum of one cloning/pruning event. However, we observe
numerically in chapter IV that the same finite-time and finite-population size scalings are
present, illustrating their universal character.
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Transition matrices

Dynamics (“mutations”) Tñ,n ≡ δñ,n + dt
∑M−1
i=0 ni

∑M−1
j=0,(j 6=i)w(i→ j)

[
δñi,ni−1δñj ,nj+1 δ

i,j
ñ,n − δñ,n

]
Cloning (“selection”) Cñ,n = δñ,n + s dt

∑M−1
i=0 ni|αi|

[
δñi,ni+αi/|αi| δ

i
ñ,n − δñ,n

]
+O(dt2)

Maintaining Nc Kñ,n = δ∑ni,Nc
δñ,n +

∑
k=−1,1 δ

∑
i
ni,Nc+k

∑M−1
i=0 δñi,ni−k δ

i
ñ,n

ni
Nc+k

Full process (KCT )ñ,n = δñ,n + dt
∑M−1
i=0 ni

∑M−1
j=0,(j 6=i) [w(i→ j) + sw̃n(i→ j)]

[
δñi,ni−1δñj ,nj+1 δ

i,j
ñ,n − δñ,n

]
with w̃n(i→ j) = nj

Nc

[
αjδj∈Ω(+)

Nc
Nc+1 − αiδi∈Ω(−)

Nc
Nc−1

]

Table III.2: Transition matrices (Eq. (III.3)) describing the birth-death process.

III.2.1 Transition Matrices Representing the Population Dynamics Algorithm

We denote the probability distribution of the occupation n at time t by Pn(t). The time-
evolution of this probability is decomposed into three parts. The first one is the original
Monte-Carlo dynamics based on the transition rates w(i→ j). The second one is the cloning
procedure of the population dynamics algorithm, which favors or disfavors configurations
according to a well-defined rule. The third one is a supplementary (but important) part
which maintains the total number of clones to a constant Nc. We denote the transition
matrices corresponding to these steps by T , C and K, respectively. By using these matrices,
then, the time evolution of the distribution function is given as

Pn(t+ dt) =
∑
ñ

(KCT )n,ñ Pñ(t). (III.3)

We derive explicit expressions of these matrices in the following sub-sections. A summary of
the results obtained can be found in Table III.2.

III.2.1.1 Derivation of the Original Dynamics Part: T

We first consider the transition matrix T , which describes the evolution of the occupation
state n solely due to the dynamics based on the rates w(i → j). During an infinitesimally
small time step dt, the occupation n = (n0, n1, · · · , nM−1) changes to ñ = (n0, n1, · · · , ni −
1, · · · , nj + 1, · · · , nM−1) where 0 ≤ i < M and 0 ≤ j < M (for all i 6= j). Since there are ni
clones in the state i before the transition, the transition probability of this change is given
as niw(i→ j)dt. Thus, we obtain

Tñ,n ≡ δñ,n + dt
M−1∑
i=0

ni

M−1∑
j=0,(j 6=i)

w(i→ j)
[
δñi,ni−1δñj ,nj+1 δ

i,j
ñ,n − δñ,n

]
,

where δi,jñ,n is a Kronecker δ for the indices except for i, j: δi,jñ,n ≡
∏
k 6=i,j δñk,nk . One can

easily check that this matrix satisfies the conservation of the probability:
∑
ñ Tñ,n = 1. It

corresponds to the evolution of Nc independent copies of the original system with rates
w(i→ j).
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III.2.1.2 Derivation of the Cloning Part: C

In the population dynamics algorithm (for example the one described in the Appendix A
of Ref. [85]), at every certain time interval ∆t, one evaluates the exponential factor for
all clones equal to e−s

∫ t+∆t
t

dt′ bi(t′) if the clone is in state (i(t′))t+∆t
t′=t during a time interval

t ≤ t′ ≤ t + ∆t. This cloning factor determines whether each clone is copied or eliminated
after this time interval. In the continuous-time version of the algorithm this factor was given
by Eq. (I.28). Although the details of how to determine this selection process can depend
on the specific type of algorithms, the common idea is that each of the clones is copied or
eliminated in such a way that a clone in state i(t) has a number of descendant(s) proportional
to the cloning factor on average after this time interval.

In order to implement this idea in our birth-death process, we assume this time step ∆t
to be small. For the sake of simplicity, we set this ∆t to be our smallest time interval dt:
∆t = dt. This condition is not mandatory whenever the ∆t → 0 limit is taken at the end
(see Sec. III.2.4.1 for the case ∆t > dt). Then, noticing that the time integral

∫ t+∆t
t dt′ bi(t′)

is expressed as dt bi(t) for small dt, we introduce the following quantity for each state i
(i = 0, 1, 2, . . . ,M − 1):

νi ≡
ni e

−s dt bi∑M−1
j=0 nj e−s dt bj

Nc. (III.4)

Note that there is a factor ni in front of the exponential function e−s dt bi which enumerates
the number of clones that occupy the state i. The quantity νi is aimed at being the number
of clones in state i after the cloning process, however, since νi is not an integer but a real
number, one needs a supplementary prescription to fix the corresponding integer number
of descendants. In general, in the implementation of population dynamics, this integer is
generated randomly from the factor νi, equal either to its lower or to its upper integer part.
The probability to choose either the lower or upper integer part is fixed by imposing that
the number of descendants is equal to νi on average. For instance, if νi is equal to 13.2, then
13 is chosen with probability 0.8, and 14 with probability 0.2. Generically, bνic and bνic+ 1
are chosen with probability 1 + bνic − νi and νi − bνic, respectively. We note that we need
to consider these two possibilities for all indices i. We thus arrive at the following matrix:

Cñ,n ≡
1∑

x0=0

1∑
x1=0

1∑
x2=0
· · ·

1∑
xM−1=0

M−1∏
i=0

× δñi,bνic+xi [(νi − bνic)xi + (1 + bνic − νi) (1− xi)] .

(III.5)

Now, we expand C at small dt and we keep only the terms proportional to O(1) and
O(dt), which do not vanish in the continuous-time limit. For this purpose, we expand νi as

νi = ni

[
1 + s dt

(∑
j

njbj
Nc
− bi

)]
+O(dt2),

where we have used
∑
i ni = Nc. This expression indicates that bνic is determined depending

on the sign of
∑
j njbj/Nc − bi, where we assumed s > 0 for simplicity without loss of

generality (because when s < 0, we can always re-define −b as b to make s to be positive).
By denoting this factor by αi, i.e.,

αi(n) ≡
∑
j

njbj
Nc
− bi, (III.6)
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we thus define the following state-space Ω(±)(n):

Ω(±)(n) =
{
i
∣∣ 0 ≤ i < M and ± αi(n) > 0

}
.

From this definition, for sufficiently small dt, we obtain bνic = ni for i ∈ Ω(+), and bνic =
ni−1 for i ∈ Ω(−). Substituting these results into Eq. (III.5) and expanding in dt, we obtain
(denoting here and thereafter αi = αi(n)):

Cñ,n = δñ,n + s dt
M−1∑
i=0

ni|αi|
[
δñi,ni+αi/|αi| δ

i
ñ,n − δñ,n

]
+O(dt2), (III.7)

where δiñ,n is a Kronecker delta for the indices except for i: δiñ,n =
∏
k 6=i δñk,nk . One can

easily check that this matrix preserves probability:
∑
ñ Cñ,n = 1.

III.2.1.3 Derivation of the Maintaining Part: K

As directly checked, the operator T preserves the total population
∑
i ni. However, the

operator representing the cloning C, does not. In our birth-death implementation, this
property originates from the rounding process bνic in the definition of C: even though νi
itself satisfies

∑
i νi = Nc, because of the rounding process of νi, the number of clones after

multiplying by C (that is designed to be proportional to νi on average) can change. There
are several ways to keep the number Nc of copies constant without biasing the distribution
of visited configurations. One of them is to choose randomly and uniformly δNc clones from
the ensemble, where δNc is equal to the number of excess (resp. lacking) clones with respect
to Nc, and to eliminate (resp. multiply) them.

In our birth-death description, we implement this procedure as follows. We denote by
K the transition matrix maintaining the total number of clones to be the constant Nc. We
now use a continuous-time asymptotics dt → 0. In this limit, from the expression of the
transition matrix elements Eq. (III.7), we find that at each cloning step the number of copies
of the cloned configuration varies by ±1 at most. Hence, the total number of clones after
multiplying by C,

∑
i ni, satisfies the following inequality

Nc − 1 ≤
∑
i

ni ≤ Nc + 1.

Among the configurations n that satisfy this inequality, there are three possibilities, which
are

∑
i ni = Nc and

∑
i ni = Nc ± 1. If n satisfies

∑
i ni = Nc, we do not need to adjust n,

while if n satisfies
∑
i ni = Nc + 1 (resp.

∑
i ni = Nc − 1), we eliminate (resp. multiply) a

clone chosen randomly and uniformly. Note that, in our formulation, we do not distinguish
the clones taking the same state. This means that we can choose one of the occupations ni
of a state i according to a probability proportional to the number of copies ni in this state.
In other words, the probability to choose the state i and to copy or to eliminate a clone from
this state is proportional to ni/

∑M−1
j=0 nj . Therefore, we obtain the expression of the matrix

K as

Kñ,n = δ∑
i
ni,Nc

δñ,n +
∑

k=−1,1
δ∑

i
ni,Nc+k

M−1∑
i=0

δñi,ni−k δ
i
ñ,n

ni
Nc + k

for ñ that satisfies
∑
i ñi = Nc, and Kñ,n = 0 otherwise.
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III.2.1.4 Total Transition: KCT

From the obtained expressions we calculate the matrix KCT , which describes the total tran-
sition of the population dynamics (III.3)

(KCT )ñ,n = δñ,n+dt
M−1∑
i=0

ni

M−1∑
j=0,(j 6=i)

[w(i→ j) + s w̃n(i→ j)]×
[
δñi,ni−1δñj ,nj+1 δ

i,j
ñ,n − δñ,n

]
,

(III.8)
where the population-dependent transition rate w̃n(i→ j) is given as

w̃n(i→ j) = nj
Nc

[
αjδj∈Ω(+)

Nc

Nc + 1 − αiδi∈Ω(−)
Nc

Nc − 1

]
.

The comparison of the expression (III.8) with the original part T provides an insight into
the result obtained. The jump ratio w(i → j) in the original dynamics is replaced by
w(i→ j) + s w̃n(i→ j) in the population dynamics algorithm. We note that this transition
rate depends on the population n, meaning that we cannot get a closed equation for this
modified dynamics at the level of the states i in general. We finally remark that the transition
matrix σ(n→ ñ) for the continuous-time limit is directly derived from Eq. (III.8) as

σ(n→ ñ) =
M−1∑
i=0

ni

M−1∑
j=0,(j 6=i)

[w(i→ j) + sw̃n(i→ j)] ×
[
δñi,ni−1δñj ,nj+1 δ

i,j
ñ,n

]
. (III.9)

III.2.2 Derivation of the Large Deviation Results in the Nc →∞ Asymptotics
In this subsection, we study the Nc →∞ limit for the transition matrix of rates σ(n→ ñ),
and derive the validity of the population dynamics algorithm.

III.2.2.1 Estimator of the Large Deviation Function

One of the ideal implementations of the population dynamics algorithm is as follows: We
make copies of each clone at the end of simulation, where the number of copies for each
realization is equal to the exponential weight e−sτB(τ) in Eq. (III.2) (so that we can discuss an
ensemble with this exponential weight without multiplying the probability by it, as described
in the Introduction for the continuous-time case). In this implementation, the number of
clones grows (or decays) exponentially proportionally as

〈
e−sτB(τ)

〉
by definition. In real

implementations of the algorithm, however, since taking care of an exponentially large or
small number of clones can cause numerical problems, one rather keeps the total number of
clones to a constant Nc at every time step, as seen in Eq (III.4). Within this implementation,
we reconstruct the exponential change of the total number of clones as follows: We compute
the average of the cloning factor at each cloning step, and we store the product of these
ratios along the cloning steps. At final time, this product gives the empirical estimation
of total (unnormalized) population during the whole duration of the simulation [P1], i.e.,
an estimator of

〈
e−sτB(τ)

〉
. One thus estimates the CGF ψ(s) given in Eq. (III.2) [7, 17–

19, 33, 70] as the logarithm of this reconstructed population, divided by the total time.
In this formulation, the average cloning ratio is given as

∑
i nie

−s dt bi/Nc, and thus
the multiplication over whole time interval reads

∏τ/dt
t=0 {ni(t)e−s dt bi/Nc}. Given that we
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empirically assume that the CGF estimator converges to ψ(s) in the Nc, τ → ∞ limit, the
following equality is expected to hold in probability 1:

ψ(s) ?= lim
Nc→∞

lim
τ→∞

1
τ

τ/dt∑
t=0

log
∑
i

ni(t)e−s dt bi
Nc

+O(dt). (III.10)

Since the dynamics of the population n is described by a Markov process, ergodicity is satis-
fied, i.e., time averages can be replaced by the expected value with respect to the stationary
distribution function which applied to the right-hand side of Eq (III.10), we obtain

lim
τ→∞

1
τ

τ/dt∑
t=0

log
∑
i

ni(t)e−sdtbi
Nc

= 1
dt

∑
n

P st
n log

∑
i

nie
−s dt bi

Nc
+O(dt),

where P st
n is the stationary distribution function of the population n in the dt → 0 limit,

(namely, P st
n is the stationary distribution of the dynamics of transition rates σ(n→ ñ)). By

expanding this right-hand side with respect to dt, we rewrite the expected equality (III.10)
as

ψ(s) ?= −s lim
Nc→∞

∑
n

P st
n

∑
i

nibi
Nc

+O(dt). (III.11)

where we used that
∑
i ni = Nc is a conserved quantity. Below we demonstrate that this

latter equality (III.11) is satisfied by analyzing the stationary distribution function P st
n .

III.2.2.2 Connection between the Distribution Functions of the Population
and of the Original System

From the definition of the stationary distribution function P st
n , we have∑

ñ

P st
ñ σ(ñ→ n)−

∑
ñ

P st
n σ(n→ ñ) = 0, (III.12)

which is a stationary Master equation. In this equation, we use the explicit expression of σ
shown in Eq. (III.9). By denoting by nj→i the configuration where one clone in the state
j moves to the state i: nj→i ≡ (n0, n1, · · · , ni + 1, · · · , nj − 1, · · · , nM−1), the stationary
Master equation (III.12) is rewritten as∑

i,j(i 6=j)

[
fi→j(nj→i)− fi→j(n)

]
= 0, (III.13)

where we defined fi→j(n) as

fi→j(n) = P st
n ni [w(i→ j) + sw̃n(i→ j)] .

Now we multiply expression (III.13) by nk (k is arbitrary from k = 0, 1, 2, · · · ,M − 1), and
sum it over all configurations n:∑

n

∑
i,j(i 6=j)

nk
[
fi→j(nj→i)− fi→j(n)

]
= 0. (III.14)

We can change the dummy summation variable n in the first term to ni→j , which leads to∑
n

∑
i,j(i 6=j)(ni→j)kfi→j(n). Since the second term has almost the same expression as the
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first one except for the factor nk, the sum in Eq. (III.14) over the indices (i, j), where none
of i nor j is equal to k, becomes 0. The remaining term in Eq. (III.14) is thus

0 =
∑
n

∑
j(j 6=k)

(
(nk→j)k − nk

)
fk→j(n) +

∑
n

∑
i(i 6=k)

(
(ni→k)k − nk

)
fi→k(n).

Using the definition of ni→j in this equation, we arrive at

0 =
∑
n

[ ∑
i(i 6=k)

fi→k(n)− fk→i(n)
]
. (III.15)

This equation (III.15) connects the stationary property of the population dynamics (de-
scribed by the occupation states n) and the one in the original system (described by the
states i).

The easiest case where we can see this connection is when s = 0. By defining the empirical
occupation probability of the original system as pi ≡

∑
n P

st
n ni/Nc, Eq. (III.15) leads to the

following (stationary) master equation for w(i→ j):

0 =
∑
j

pjw(j → i)−
∑
j

piw(i→ j) (for s = 0) (III.16)

This is valid for any Nc, meaning that, for original Monte-Carlo simulations in s = 0, the
empirical probability pi is exactly equal to the steady-state probability, as being the unique
solution of Eq. (III.16). It means that there are no systematic errors in the evaluation of
pi. However, in the generic case s 6= 0, this property is not satisfied. One thus needs to
understand the Nc → ∞ limit to connect the population dynamics result with the large
deviation property of the original system.

III.2.2.3 Justification of the Convergence of the Large Deviation Estimator as
Population Size becomes Large

We define a scaled variable xi as ni/Nc. While keeping this occupation fractions xi to be
O(1), we take the Nc →∞ limit in Eq. (III.15), which leads to

0 =
∑
n

P st
n

[∑
j

xjw(j → i)−
∑
j

xiw(i→ j)

− s xi

(
bi −

∑
k

xkbk

)]
+O(1/Nc).

(III.17)

Inspired by this expression, we define a matrix Lsi,j as

Lsi,j = w(j → i)− δi,j

(∑
k

w(i→ k) + s bi

)
,

and a correlation function between xi and xj as

ci,j =
∑
n

xixjP
st
n − pipj ,
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(where we recall pi ≡
∑
n xiP

st
n ). From these definitions, Eq.(III.17) is rewritten as

∑
j

pjL
s
i,j = −spi

∑
k

pkbk − s
∑
k

ci,kbk +O
( 1
Nc

)
.

Since xi ≡ ni/Nc is an averaged quantity (an arithmetic mean) with respect to the total
number of clones, we can safely assume that the correlation ci,j becomes 0 in Nc →∞ limit:

lim
Nc→∞

ci,k = 0. (III.18)

For a more detailed discussion of why this is valid, see the description after Eq. (III.20).
Thus, by defining p∞i ≡ limNc→∞ pi, we obtain∑

j

p∞j L
s
i,j = −sp∞i

∑
k

p∞k bk.

From the Perron-Frobenius theory, the positive eigenvector of the matrix Lsi,j is unique
and corresponds to its eigenvector of largest eigenvalue (in real part). This means that
−s
∑
k p
∞
k bk is the largest eigenvalue of the matrix Lsi,j . Finally, by recalling that the largest

eigenvalue of this matrix Lsi,j is equal to the generating function ψ(s) (see Ref. [40] for
example), we have justified that the CGF estimator (III.11) is valid in the large-Nc limit.
This is equivalent to what we saw in Sec. I.6.1 for the continuous-time version.

III.2.3 Systematic Errors due to Finite Nc: Convergence Speed of the Large
Deviation Estimator as Nc →∞

In the introduction of this chapter, we defined the systematic errors as the deviations of
the large deviation estimator from the correct value due to a finite number of clones Nc.
From Eq. (III.11), we quantitatively define this systematic error εsys as

εsys ≡
∣∣∣∣∣ψ(s) + s

∑
i

pibi

∣∣∣∣∣ . (III.19)

From a simple argument based on a system size expansion, we show below that this εsys is of
order O(1/Nc). We first show that one can perform a system size expansion (as for example
in Ref. [86]) for the population dynamics. In Eq. (III.13), by recalling the definition of the
vector x as x = n/Nc, and by denoting P̃ st(x) = P st

xNc
, we obtain

0 =
∑

i,j(i 6=j)

∞∑
r=1

1
r!

1
N r
c

(
∂

∂xi
− ∂

∂xj

)r
xiP̃

st(x)

× [w(i→ j) + sw̃n(i→ j)|n=xNc ] .

(III.20)

This indicates that the stochastic process governing the evolution of x becomes deterministic
in the Nc →∞ limit. The deterministic trajectory for x is governed by a differential equation
derived from the sole term r = 1 in the expansion (III.20) (see Sec. 3.5.3 in ref. [87] for the
detail of how to derive this property). Thus if x converges to a fixed point as Nc increases,
which is normally observed in implementations of cloning algorithms, the assumption (III.18)
is satisfied.
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From the expression of εsys, we see that the dependence in Nc comes solely from pi,
which can be calculated from the first order correction of P st

n (at large Nc). The equation
to determine P st

n is the stationary Master equation (III.12) or equivalently, the system-size
expansion formula (III.20). We expand the jump ratio w(i→ j) + sw̃n(i→ j) in Eq. (III.20)
with respect to 1/Nc as:

w(i→ j) + sw̃n(i→ j) = w(i→ j) + sw̃∞x (i→ j) + s

Nc
δwx(i→ j) +O(1/N2

c ), (III.21)

where w̃∞x (i→ j) and δwx(i→ j) are defined as

w̃∞x (i→ j) = xj
[
αjδj∈Ω(+) − αiδi∈Ω(−)

]
and

δwx(i→ j) = −xj
[
αjδj∈Ω(+) + αiδi∈Ω(−)

]
.

By substituting Eq. (III.21) into the system-size expansion formula (III.20) and performing
a perturbation expansion, we find that a first-order correction of p is naturally of order
O(1/Nc), i.e., εsys = O(1/Nc). For a practical scheme of how to implement this perturbation
on a specific example, see Sec. III.4.1. In chapter IV [P3], the scaling analysis of the 1/Nc

correction is shown to hold numerically with the continuous-time cloning algorithm. We also
show that the 1/Nc correction behavior remains in fact valid at finite time, an open question
that remains to be investigated analytically.

III.2.4 Remarks
Here, we discuss some remarks on the formulation presented in this section.

III.2.4.1 Relaxing the Condition dt = ∆t

In Sec. III.2.1.2, we set the discretization time of the process dt to be equal to the time
interval for cloning ∆t, and we took the dt = ∆t → 0 limit at the end. We note that the
condition ∆t = dt is not necessary if both limits ∆t→ 0 and dt→ 0 (with dt < ∆t) are taken
at the end. This is practically important, because we can use the continuous-time process to
perform the algorithm presented here by setting dt = 0 first, and ∆t → 0 limit afterwards.
More precisely, replacing dt by ∆t in the matrix C and K, we build a new matrix KC(T ∆t/dt).
Taking the dt → 0 limit in this matrix while keeping ∆t non-infinitesimal (but small), this
matrix represents the population dynamics algorithm of a continuous-time process with a
finite cloning time interval ∆t. The arguments presented in this section can then be applied
in the same way, replacing dt by ∆t. We note that the deviation due to a non-infinitesimal
∆t should thus appear as O(∆t) (see Eq. (III.10) for example).

III.2.4.2 A Continuous-Time Cloning Algorithm

The ∆t → 0 limit is the key point in the formulation developed in this section (and in this
chapter). Thanks to this limit, upon each cloning step, the total number of clones

∑M−1
j=0 nj

always varies only by ±1, which makes the expression of the matrices C and K simple enough
to develop the arguments presented in Secs. III.2.2 and III.2.3. Furthermore, during the time
interval ∆t separating two cloning steps, the configuration is changing at most once. The
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process between cloning steps is thus simple, which allows us to represent the corresponding
time-evolution matrix as T (by replacing dt by ∆t as just explained above). Generalizing our
analytical study to a cloning dynamics in which the limit ∆t→ 0 is not taken is therefore a
very challenging task, which is out of the scope of this chapter.

However, interestingly, in chapter IV [P3] we observe numerically that our predictions for
the finite-time and finite-population scalings are still valid in a different version of algorithm
for which

∑M−1
j=0 nj can vary by an arbitrary amount – supporting the hypothesis that the

analytical arguments that we present here could be extended to more general algorithms.
More precisely, in chapter IV [P3], we use a continuous-time version of the algorithm [19]
to study numerically an observable of ‘type A’ [40] (See Sec. I.5). This version of the
algorithm differs from that considered in this chapter, in the sense that the cloning steps are
separated by non-fixed non-infinitesimal time intervals. These time intervals are distributed
exponentially, in contrast to the fixed ones taken here where ∆t is a constant. This results in
an important difference: the effective interaction between copies due to the cloning/pruning
procedure is unbounded (it can a priori affect any proportion of the population), while in
the algorithm of the present here, this effective interaction is restricted to a maximum of one
cloning/pruning event in the ∆t → 0 limit. We stress that the dt → 0 limit of the cloning
algorithm studied in here with a fixed ∆t does not yield the continuous-time cloning
algorithm, stressing that these two versions of the population dynamics present essential
differences.

III.3 Stochastic Errors: Large Deviations of the Population Dynamics

In the previous section, we formulated the population dynamics algorithm as a birth-death
process and evaluated the systematic errors (which are the deviation of the large deviation
estimator from the correct value) due to a finite number of clones (Table III.3). In this
section, we focus on stochastic errors corresponding to the run-to-run fluctuations of the
large deviation estimator within the algorithm, at fixed Nc.

In order to study stochastic errors, we formulate the large deviation principle of the
large deviation estimator. In the population dynamics algorithm, the CGF estimator is the
time-average of the average cloning ratio of the population (see Sec. III.2.2.1):

ψNc,τ (s) ≡ −s1
τ

∫ τ

0
dt

M−1∑
i=0

ni(t)bi
Nc

. (III.22)

As τ increases, this quantity converges to the expected value (which depends on Nc) with
probability 1. However whenever we consider a finite τ , dynamical fluctuations are present,
and there is a probability that this estimator deviates from its expected value. Since the
population dynamics in the occupation states n is described by a Markov process, the proba-
bility of these deviations are themselves described by a large deviation principle (I.20) [1, 83]:
By denoting by Prob(ψ) the probability of ψNc,τ (s), one has:

Prob(ψ) ∼ exp (−τINc,s(ψ)) ,

where INc,s(ψ) is a large deviation “rate function” (of the large deviation estimator). To study
these large deviations, we can apply a standard technique using a biased evolution operator
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Magnitude of errors
Systematic errors O(1/Nc)
Numerical errors O(1/(τNc))

Table III.3: Magnitudes of the numerical errors

for our population dynamics: For a given Markov system, to calculate large deviations
of additive quantities such as Eq. (III.22), one biases the time-evolution matrix with an
exponential factor [83]. Specifically, by defining the following matrix

Lhñ,n = σ(n→ ñ)− δñ,n
∑
n′

σ(n→ n′)− hs
M−1∑
i=0

nibi
Nc

. (III.23)

and by denoting the largest eigenvalue of this matrix G(h, s) (corresponding, as a func-
tion of h, to a scaled cumulant generating function for the observable (III.22)), the large
deviation function INc,s(ψ) is obtained as the Legendre transform suph [hψ −G(h, s)]. In
chapter IV [P3], we show that a quadratic approximation of the rate function INc,s(ψ) (i.e.,
a Gaussian approximation) can be estimated directly from the cloning algorithm.

We consider the scaling properties of INc,s in the large-Nc limit. For this, we define
a scaled variable h̃ ≡ h/Nc and a scaled function G̃(h̃, s) ≡ G(h̃Nc, s)/Nc. If this scaled
function G̃(h̃, s) ≡ G(h̃Nc, s)/Nc is well-defined in the Nc → ∞ limit (which is natural as
checked in the next paragraph), then we can derive that INc,s has the following scaling:

INc,s(ψ) = NcIs(ψ) + o(Nc) (III.24)

or equivalently,
Prob(ψ) ∼ e−τNcIs(ψ), (III.25)

where Is(ψ) = maxh̃
[
h̃ψ − G̃(h̃, s)

]
. The scaling form (III.24) is validated numerically in

chapter IV [P3]. From this large deviation principle, we can see that the stochastic errors
of the large deviation estimator is of O(1/(Ncτ)) as shown in Table III.3.

In the largest eigenvalue problem for the transition matrix (III.23), by performing a
system size expansion (see Sec. III.2.3), we obtain

G̃(h̃, s) =
∑

i,j(i 6=j)

(
∂

∂xi
− ∂

∂xj

)
xiq(x)× [w(i→ j) + sw̃∞x (i→ j)]

− h̃

s
s
∑
i

xibiq(x) +O(1/Nc),

where q(x) is the right-eigenvector associated to the largest eigenvalue of Lhñ,n (represented
as a function of x ≡ n/Nc). The first order of the right-hand side is of order O(N0

c ), so
that G̃(h̃, s) is also of order O(N0

c ) in Nc →∞. (For an analytical example of the function
G̃(h̃, s), see Sec. III.4.2).
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III.4 Example: A Simple Two-State Model
In order to illustrate the formulation that we developed in the previous sections, here we
consider a simple two state model. In this system, the dimension of the state i is two (M = 2)
and the transition rates w(i→ j) are

w(0→ 1) = c,

w(1→ 0) = d

with c, d > 0 and w(i→ i) = 0. In this model, the quantity αi defined in Eq. (III.6) becomes

αi = δi,0
n1
Nc

(b1 − b0) + δi,1
n0
Nc

(b0 − b1).

Hereafter, we assume that b1 > b0 without loss of generality. From this, the space Ω(±) is
determined as Ω(+) = {0} and Ω(−) = {1}, which leads to the jump ratio w̃n(i→ j) as

w̃n(i→ j) = δi,1δj,0
n0
Nc

(b1 − b0)
[

n1
Nc + 1 + n0

Nc − 1

]
.

Finally, from the conservation of the total population: n0 + n1 = Nc, we find that the state
of the population n can be uniquely determined by specifying only the variable n0. Thus the
transition rate for the population dynamics is a function of n0 (and ñ0), σ(n0 → ñ0), which
is derived as

σ(n0 → ñ0) = δñ0,n0+1

[
(Nc − n0)d+ k(n0, Nc − n0)

×
( n0
Nc − 1 + Nc − n0

Nc + 1
)]

+ δñ0,n0−1 n0 c,

where we have defined
k(n0, n1) = n0n1

Nc
s [b1 − b0] .

III.4.1 Systematic Errors
In order to evaluate the systematic errors (see Sec. III.2.3), we consider the distribution
function P st

n . Since the system is described by a one dimensional variable n0 restricted to
0 ≤ n0 ≤ Nc, the transition rates σ(n0 → ñ0) satisfy the detailed balance condition:

P st
n0σ(n0 → n0 + 1) = P st

n0+1σ(n0 + 1→ n0).

We can solve this equation exactly, but to illustrate the large-Nc limit, it is in fact sufficient
to study the solution in an expansion 1/Nc � 1. The result is

P st
xNc = C exp [−NcIconf(x) + δI(x) +O(1/Nc)]

with x ≡ n0/Nc and explicitly

Iconf(x) = x+ log(1− x)− d log [d+ (b1 − b0)sx]
(b1 − b0)s

− x log
[ 1
cx

(1− x) (d+ (b1 − b0)sx)
]
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and

δI(x) =− x− 2dx
(b1 − b0)s + x2 − log x

+ 2d2 log [d+ (b1 − b0)sx]
(b1 − b0)2s2 + d log [d+ (b1 − b0)sx]

(b1 − b0)s .

We now determine the value of x that minimizes −NcIs(x)+δI(x), which leads to a finite-
size correction (i.e., the systematic errors) of the population dynamics estimator. Indeed,
denoting this optimal value of x by x∗Nc , the large deviation estimator is obtained as

ψNc(s) = −s
[
x∗Ncb0 + (1− x∗Nc)b1

]
(see Sec. III.2.2.1). From a straightforward calculation based on the expressions Iconf(x) and
δI(x), we obtain the expression of x∗Nc as

x∗Nc = x∗ + 1
Nc
δx∗ +O((1/Nc)2),

with

x∗ = −c− d+ (b1 − b0)s
2(b1 − b0)s +

√
4d(b1 − b0)s+ [−c− d+ (b1 − b0)s]2

2(b1 − b0)s

and
δx∗ = (2d+ 2(b1 − b0)sx∗)−1 × 2c

[
−d− (b1 − b0)sx∗

(
1 + x∗ − 2(x∗)2)]√

4d(b1 − b0)s+ [c+ d− (b1 − b0)s]2)
.

We thus arrive at

ψ(s) = −c− d− (b1 + b0)s
2 +

√
4d(b1 − b0)s+ [−c− d+ (b1 − b0)s]2

2 (III.28)

and

εsys = 1
Nc

1
|d+ (b1 − b0)sx∗| ×

∣∣∣∣∣sc(b0 − b1) (d+ (b0 − b1)s(x∗ − 1)x∗(1 + 2x∗))√
4(b1 − b0)ds+ [c+ d+ (b0 − b1)s]2

∣∣∣∣∣
(see Eq. (III.19) for the definition of the systematic error εsys). We check easily that the
expression of ψ(s) is the same as the one obtained from a standard method by solving the
largest eigenvalue problem of a biased time-evolution operator (as explained in Sec. I.6.1,
and implemented in chapter II [P1]).

III.4.2 Stochastic Errors
We now turn our attention to the stochastic errors. The scaled cumulant generating function
NcG̃(h̃, s) is the largest eigenvalue of a matrix Lhñ,n (III.23). We then recall a formula to
calculate this largest eigenvalue problem from the following variational principle:

G̃(h̃, s) = sup
φ>0

∑
n

pst(n0)φ(n0)2
[
σ(n→ n+ 1)

Nc

(
φ(n0 + 1)
φ(n0) − 1

)

+ σ(n→ n− 1)
Nc

(
φ(n0 − 1)
φ(n0) − 1

)
− sh̃

∑
i nibi
N2
c

]
.
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(See e.g., the appendix G of [256] or [40] for the derivation of this variational principle). By
following the usual route to solve such equations (see e.g., the Sec. 2.5 of Ref. [257]), we
obtain

G̃(h̃, s) = sup
x

[
−
(√

(1− x)(d+ (b1 − b0)sx)−
√
cx

)2
− sh̃ [xb0 + (1− x)b1]

]
.

Thus, G̃(h̃, s) is well-defined, justifying that the large deviation principle (III.25) is satisfied.
Furthermore, by expanding this variational principle with respect to h̃, we obtain

G̃(h̃, s) = ψ(s)h̃+ κs
2 h̃

2 +O(h̃3), (III.29)

where ψ(s) is given in Eq. (III.28), and the variance κs is given as

κs = c+ cs(b1 − b0)√
4(b1 − b0)sd+ (c+ d+ (b0 − b1)s)2

− c(c+ d)2 + c(b0 − b1)(c− 3d)s
c2 + 2c [d+ (b0 − b1)s] + (d+ (b1 − b0)s)2 .

We note that the expansion (III.29) is equivalent to the following expansion of the large
deviation function Is(ψ) (III.25) around the expected value ψ(s):

Is(ψ) = (ψ − ψ(s))2

2κs
+O((ψ − ψs)3).

The variance of the obtained large deviation estimator is thus κs/(Ncτ).

III.4.3 A Different Large Deviation Estimator
As an application of these exact expressions, we expand the systematic error εsys and the
stochastic error (variance) κs with respect to s. A straightforward calculation leads to

εsysNc =
∣∣∣∣∣2c(b0 − b1)

c+ d
s

∣∣∣∣∣+O(s2)

and
κs = 2(b0 − b1)2cd

(c+ d)3 s2 +O(s3).

We thus find that the first-order of the error εsys scales as O(s) at small s, but that the
variance κs is of order O(s2). From this scaling, as we explain below, one can argue that the
following large deviation estimator can be better than the standard one for small s:

Ψ̃(s) ≡ 1
τ

log
τ/dt∏
t=0

∑
i

ni(t)e−sdtbi
Nc

, (III.30)

where the overline represents the averaging with respect to the realizations of the algorithm.
Normally, this realization-average is taken after calculating the logarithm, which corresponds
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to the estimator (III.10). Mathematically, this average (Eq.(III.30), before taking the loga-
rithm) corresponds to a bias of the time-evolution matrix σ as seen in Eq. (III.23) for h = 1.
This means that, in the limit τ → ∞ with a sufficiently large number of realizations, this
averaged value behaves as Ψ̃(s) ∼ eτG(1,s). By combining this result with the expansion
(III.29), we thus obtain

lim
τ→∞

limmany
realizations

Ψ̃(s) = ψ(s) + κs
2 N

−1
c +O(N−2

c ) (III.31)

(recalling G̃ = G/Nc and h̃ = h/Nc). When we consider small s, by recalling εsysNc = O(s)
and κs = O(s2), we thus find that the deviations from the correct value are smaller in the
estimator Ψ̃(s) than in the normal estimator given in Eq. (III.10), which comes as a surprise
because in Eq. (III.30) the average and the logarithm are inverted with respect to a natural
definition of the CGF estimator.

To use this estimator, we need to discuss the two following points. First, since the scaled
cumulant generating function G(1, s) has small fluctuations, one needs a very large number
of realizations in order to attain the equality (III.31). The difficulty of this measurement is
the same level as the one of direct observations of a large deviation function, see for example
Ref. [255]. However, we stress that this point may not be fatal in this estimator, because we
do not need to attain completely this equality, i.e., our aim is the zero-th order coefficient,
ψ(s), in Eq. (III.31). Second, we have not proved yet the scaling properties with respect
to s, which are εsysNc = O(s) and κs = O(s2), in a general set-up aside from this simple
two state model. We show in practice in the next chapter that for small values of s, the
estimator (III.30) is affected by smaller systematic errors, in the numerical study of the
creation-annihilation process studied in this section. This alternative way of defining the
CGF estimator is studied again for the continuous-time version of the algorithm in Sec V.3.

III.5 Discussion
In this chapter, we formulated a birth-death process that describes population dynamics
algorithms and evaluated numerically large deviation functions. We showed that this birth-
death process leads generically to the correct large deviation results in the large limit of the
number of clones Nc → ∞. We also showed that the deviation of large deviation estimator
from the desired value (which we called systematic errors) is small and proportional with
O(N−1

c ). In the next chapter, we verify and use the 1/τ - and 1/Nc-scalings of the CGF
estimator in order to interpolate its large-τ and large-Nc asymptotic value from the measured
values for finite τ and Nc. We demonstrate numerically that the interpolation technique is
very efficient, by a direct comparison of the resulting CGF estimation to its analytical value,
which can be determined in the studied system. We also underline that this is done for
a different version of the algorithm, a continuous in time population dynamics [19]. For a
description of their conceptual difference refer to Secs. III.2.4.2 and IV.5.



IV – Finite-Time and Finite-Size
Scalings in the Evaluation of
Large-Deviation Functions:
II. Numerical Approach
in Continuous Time

IV.1 Introduction

In chapter III [P2], we performed an analytical study of a discrete-time version of the pop-
ulation dynamics algorithm. We derived the finite-Nc and finite-t scalings of the systematic
errors of the LDF estimator, showing that these behave as 1/Nc and 1/t in the large-Nc and
large-t asymptotics respectively. In principle, knowing the scaling a priori means that the
asymptotic limit of the estimator in the t → ∞ and Nc → ∞ limits may be interpolated
from the data at finite t and Nc. However, whether this idea is actually useful or not is a
non-trivial question, as there is always a possibility that onset values of Nc- and t-scalings
are too large to use these scalings. In the present chapter, we consider a continuous-time
version of the population dynamics algorithms [17, 19]. We show numerically that one can
indeed make use of these scaling properties in order to improve the estimation of CGF, in
an application to a system with many-body interactions (a contact process). We emphasize
that the two versions of the algorithm differ on a crucial point which makes that an extension
of the analysis developed in chapter III [P2] cannot be done straightforwardly in order to
comprehend the continuous-time case (see section IV.5). We thus stress that the observation
of these scalings themselves is also non-trivial.

This chapter IV [P3] is organized as follows. In Sec. IV.3.1 we study the behavior
of the CGF estimator as a function of the duration of the observation time (for a fixed
population Nc) and we see how its infinite-time limit can be extracted for the numerical
data. In Sec. IV.3.2 we analyze the behavior of the estimator as we increase the number of
clones (for a given final simulation time) and the infinite-size limit of the LDF estimator.
Based on these results, we present in Sec. IV.4 a method which allows us to extract the
infinite-time, infinite-size limit of the large deviation function estimator from a finite-time,
finite-size scaling analysis. In Sec. IV.5, we discuss the difficulty of an analytical approach
to the continuous-time algorithm. Finally, our conclusions are made in Sec. IV.6.

49
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IV.2 CGF Estimator: Constant-Population Approach
In practice, in order to obtain a good estimation of the CGF, it is normal to launch the
simulation several times (where we denote by R the number of realizations of the same
simulation), and to estimate the arithmetic mean of the obtained values of Eq. (I.30) over
these R simulations. Strictly speaking (as discussed in Sec. II.2.2), as the simulation does
not stop exactly at the final simulation time T but at some time tFr ≤ T (which is different
for every r ∈ {1, ..., R}), the average over R realizations of Ψ(Nc)

s is then correctly defined as

Ψ(Nc)
s = 1

R

R∑
r=1

1
tFr

log
Kr∏
i=1

Xr
i . (IV.1)

However, we have observed that for not too short simulation times,
∣∣Ψ(Nc)

s (T ) − Ψ(Nc)
s (tFr )

∣∣
is small. By assuming tFr ≈ T , Eq. (IV.1) can be approximated by replacing tFr by T (which
is what we do in practice)

Ψ(Nc)
s ' 1

R

1
T

R∑
r=1

log
Kr∏
i=1

Xr
i . (IV.2)

The CGF estimator can be defined differently from Eq. (IV.1) by using an alternative way
of computing the average over R realizations (as in Sec. III.4.3 in discrete-time and as in
Sec. V.3 in continuous-time). Equations (IV.1) and (IV.2) allow us to estimate the CGF
using the constant-population approach of the continuous-time cloning algorithm for a s-
biased Markov process, given a fixed number of clones Nc, a simulation time T and R
realizations of the algorithm.

IV.3 Finite-Time and Finite-Nc Behavior of CGF Estimator

In this section, we focus on the annihilation-creation process (Sec. I.8.1) for a particular
value of parameter s (s = −0.2), which is representative of the full range of s on which we
study large deviations.

IV.3.1 Finite-Time Scaling
Here, we study the large-time behavior of the CGF estimator, at fixed number of clones Nc.
Fig. IV.1 presents the average over R = 104 realizations of the CGF estimator Ψ(Nc)

s (IV.1)
as a function of the (simulation) time for given numbers of clones Nc = {10, 100, 1000}. It is
compared with the analytical value ψ(s) (I.33) which is shown with a black dashed line. As
can be seen in Fig. IV.1 for a small number of clones (Nc = 10), the CGF estimator Ψ(Nc)

s

highly deviates from the analytical value ψ(s). However, as Nc and the simulation time t
become larger, the CGF estimator gets closer to the analytical value ψ(s). One can expect
that in the t→∞ and Nc →∞ limits, ψ(s) will be obtained from the estimator as

lim
Nc→∞

lim
t→∞

Ψ(Nc)
s (t) = ψ(s),

as it was derived in chapter III [P2]. However, in a practical implementation of the algorithm,
this infinite-time and -size limits are not achievable and we use large but finite simulation
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Figure IV.1: Average over R = 104 realizations of the CGF estimator Ψ(Nc)
s (IV.1) as

a function of duration t of the observation window, for Nc ∈ {10, 100, 1000} clones, for
the annihilation-creation dynamics with c = 0.3. The analytical expression for the large
deviation function ψ(s) (I.33) is shown with a black dashed line and the fitting functions
f

(Nc)
t encoding the finite-t scaling (Eq. (IV.3)) are shown with continuous curves. The
(a priori) best estimation of the large deviation function (to which we refer as standard
estimator) is given by Ψ(Nc)

s (t) at the largest simulation time T = 1000, which are shown
with solid circles (at the right end of the figure). The extracted infinite-time limits f (Nc)

∞ are
shown as dotted lines and squares (Nc = 10), diamonds (Nc = 100) and circles (Nc = 1000).

time t and number of clones Nc. This fact motivates our analysis of the actual dependence
of the estimator with t and Nc. The standard estimator of the large deviation function is
the value of Ψ(Nc)

s at the largest simulation time T and for the largest number of clones Nc,
(Ψ(Nc)

s (T ) for Nc = 1000 and T = 1000), i.e., the black solid circle • in Fig. IV.1. This
value provides the (a priori) best estimation of the large deviation function that we can
obtain from the continuous-time cloning algorithm. However encouragingly, as we detail
later, this estimation can be improved by taking into account the convergence speed of the
CGF estimator.

The result of fitting Ψ(Nc)
s (t) with the curve f (Nc)

t is shown with solid lines in Fig. IV.1.
This is defined as

f
(Nc)
t ≡ f (Nc)

∞ + b
(Nc)
t t−1, (IV.3)

where the fitting parameters f (Nc)
∞ and b(Nc)t can be determined from the least squares method

by minimizing the deviation from Ψ(Nc)
s (t). The clear coincidence between Ψ(Nc)

s (t) and the
fitting lines indicates the existence of a 1/t-convergence of Ψ(Nc)

s (t) to limt→∞Ψ(Nc)
s (t) (that

we call t−1 -scaling). This property can be derived from the assumption that the cloning
algorithm itself is described by a Markov process: in chapter III [P2] with a different version
of the algorithm, we constructed a meta-Markov process to describe the cloning algorithm
by expressing the number of clones by a birth-death process. Once such meta process is
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constructed, the CGF estimator (I.30) is regarded as the time-average of the observable Xi

within such meta-Markov process. In other words, tΨ(Nc)
s is an additive observable of the

meta-process describing the cloning algorithm. We now recall that time-averaged quantities
converge to their infinite-time limit with an error proportional to 1/t when the distribution
function of the variable converges exponentially (as in Markov processes). This leads to the
t−1-scaling of CGF estimator (IV.3). We note that constructing such a meta-Markov process
explicitly is not a trivial task, and for the algorithm discussed here, such a construction
remains as an open problem.

By assuming the validity of the scaling form (IV.3), it is possible to extract the infinite-
time limit of the CGF estimator from finite-time simulations. We denote this infinite-time
limit as f (Nc)

∞ and it is expected to be a the better estimator of CGF than Ψ(Nc)
s (T ) at finite

T , provided that
f (Nc)
∞ = lim

t→∞
Ψ(Nc)
s (t).

In Fig. IV.1, we show f
(Nc)
∞ with dotted lines and circles (Nc = 10), diamonds (Nc = 100)

and squares (Nc = 1000). As can be seen, this parameter indeed provides a better numerical
estimate of ψ(s) than Ψ(Nc)

s (T ).

IV.3.2 Finite-Nc Scaling

Here, we study the behavior of the (standard) CGF estimator Ψ(Nc)
s (T ) as we increase the

number of clones Nc, for a given final (simulation) time T . Similar to what we did in
Sec. IV.3.1, we consider a curve in the form

g
(T )
Nc

= g(T )
∞ + b̃

(T )
Nc
N−1
c , (IV.4)

where g(T )
∞ and b̃(T )

Nc
are fitting parameters which are determined by the least squares fitting

to Ψ(Nc)
s (T ). The obtained g(T )

Nc
as a function of Nc are shown in Fig. IV.2 as solid lines. We

considered four values of final simulation time T = {200, 300, 500, 1000} and population sizes
in the range 10 ≤ Nc ≤ 1000. As can be seen, these curves describe well the dependence
in Nc of Ψ(Nc)

s (T ), indicating that Ψ(Nc)
s (T ) converges to its infinite-Nc limit with an error

proportional to 1/Nc (that we call N−1
c -scaling). This scaling could be proved under general

assumptions in chapter III [P2], (i) however without covering the continuous-time algorithm
discussed here, and (ii) for the CGF estimator Ψ(Nc)

s (T ) considered the T →∞ limit, instead
of finite T . The generalization of the argument presented in chapter III [P2] in order to cover
the general cases (i) and (ii) is an important open direction of research.

By assuming the validity of such N−1
c -scaling, we can evaluate the Nc → ∞ limit of

Ψ(Nc)
s (T ) as the fitting parameter g(T )

∞ obtained from finite Nc simulations as

g(T )
∞ = lim

Nc→∞
Ψ(Nc)
s (T ).

These parameters g(T )
∞ (to which we refer as infinite-size limit) are shown in Fig. IV.2 as

dotted lines and provide better estimations of ψ(s) than the standard estimator Ψ(Nc)
s (T ).
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Figure IV.2: CGF estimator Ψ(Nc)
s (T ) (IV.1) for given final (simulation) times T =

{200, 300, 500, 1000} as a function of the number of clones Nc (on the range 10 ≤ Nc ≤ 1000).
The analytical value ψ(s) (I.33) is shown with a dashed line and the fits g(T )

Nc
(IV.4) with

continuous curves. A large simulation time for a small number of clones, shown in (A),
produces a better estimation compared to the one given by the largest number of clones
with a relatively short simulation time, which is shown in (B). The best CGF estimation
we can naively obtain would be given by Ψ(Nc)

s (T ) at largest simulation time T and largest
number of clones Nc. However, the extracted infinite-size limits g(T )

∞ provide a better estima-
tion in comparison. These limits are shown with dotted lines and circles (T = 200), crosses
(T = 300), diamonds (T = 500) and dots (T = 1000). Additionally, c = 0.3 and s = −0.2.

IV.4 Finite-Time and Finite-Nc Scaling Method to estimate Large
Deviation Functions

In the previous section, we have shown how it is possible to extract f (Nc)
∞ and g

(T )
∞ from

finite T - and finite Nc- simulations respectively. In this section, we combine both of these
1/t- and 1/Nc- scaling methods in order to extract the infinite-time and -size limit of the
CGF estimator. This limit gives a better evaluation of the large deviation function within
the cloning algorithm than the standard estimator.

We first note that either of f (Nc)
∞ or g(T )

∞ is expected to converge to ψ(s) as Nc → ∞ or
as T →∞. We checked numerically this property by defining the distance D between ψ(s)
and its numerical estimator Ψ(Nc)

s ,

D
(
Ψ(Nc)
s , ψ(s)

)
=
∣∣Ψ(Nc)

s − ψ(s)
∣∣. (IV.5)

This quantity is shown in Fig. IV.3 as a function of t in log-log scale. As we can see, as Nc

increases, logD behaves as straight line with slope −1 on a time window which grows with
Nc. In other words, when Nc →∞,∣∣Ψ(Nc)

s − ψ(s)
∣∣ ∼ t−1. (IV.6)
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Figure IV.3: Distance D (Eq. (IV.5)) between the analytical CGF ψ(s) and its numerical
estimator Ψ(Nc)

s , as a function of time t in log-log scale. The distances are computed from
the values in Fig. IV.1. This distance behaves as a power law of exponent −1 on a time
window, where the size of the time window increases as Nc increases. This illustrates the
scaling (IV.6). The parameters of the model are c = 0.3, s = −0.2.

Inspired by this observation, we assume the following scaling for the fitting parameter
fNc∞ . If we consider a set of simulations performed at population sizes ~Nc = {N (1)

c , ..., N
(j)
c },

the obtained infinite-time limit of the CGF estimator fNc∞ behaves as a function of Nc as

f (Nc)
∞ ' f∞∞ + b(Nc)∞ N−1

c , (IV.7)

which means that f (Nc)
∞ itself exhibits 1/Nc corrections for large but finite Nc. By using this

scaling, we detail below in Sec. IV.4.1 the method to extract the infinite-time infinite-Nc

limit of the CGF estimator Ψ(Nc)
s (T ) from finite-time and finite-Nc data. We note that this

method can be used for a relatively short simulation time and a relatively small number of
clones (see Fig. IV.5). In Sec. IV.4.2, we present numerical examples of the application of
this method to the contact process.

IV.4.1 The Scaling Method
The procedure is summarized as follows:

1. Determine the average over R realizations Ψ(Nc)
s (t) (IV.1) up to a final simulation time

T for each Nc ∈ ~Nc.

2. Determine the fitting parameters f (Nc)
∞ ’s defined in the form f

(Nc)
t = f

(Nc)
∞ +b(Nc)t t−1 (IV.3)

from each of the obtained Ψ(Nc)
s (t)’s.

3. Determine f∞∞ from a fit in size f (Nc)
∞ = f∞∞ +b

(Nc)
∞ N−1

c (IV.7) on the extracted f (Nc)
∞ ’s.

The result obtained for f∞∞ renders a better estimation of ψ(s) than the standard estimator
Ψ(Nc)
s (t) evaluated for Nc = max ~Nc and for t = T .
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Figure IV.4: Estimator of the large deviation function Ψ(Nc)
s (t) as a function of time and

the number of clones. The estimator Ψ(Nc)
s (T ) at final simulation time T = 100 as a function

of the number of clones (up to Nc = 200) is shown as black circles. The best CGF estimation
under this configuration given by the standard estimator, i.e., Ψ(Nc=200)

s (T = 100) is shown as
a yellow circle. The analytical value of the CGF ψ(s) is obtained from the largest eigenvalue
of the matrix (I.24) and shown as a black dashed line. The extracted limit f∞∞ is shown with
red squares. Additionally, L = 6, s = 0.15, h = 0.1, λ = 1.75 and R = 103.

IV.4.2 Application to the Contact Process

We apply the scaling method to the one-dimensional contact process (see Sec. I.8.2). We
set L = 6, h = 0.1, λ = 1.75, T = 100 and s = 0.15. As we detail below, we com-
pare the improved estimator f∞∞ obtained from the application of the scaling method (for
~Nc = {20, 40, ..., 180, 200}) with the standard estimator Ψ(Nc)

s (T ) (for Nc = max ~Nc = 200).
Fig. IV.4 represents the behavior of the estimator Ψ(Nc)

s (t) as a function of the simulation
time t and of the number of clones Nc. The values of the estimator at the final simulation
time T are represented with black circles for each Nc ∈ ~Nc and with a yellow circle for
Nc = max ~Nc. The analytical expression for the large deviation function ψ(s) is shown in a
black dashed line.

On Fig. IV.5(a) we show the projection of the surface of Fig. IV.4 on the plane Ψ − t.
The behavior in t of the estimator Ψ(Nc)

s (t) is shown for Nc = 20 and Nc = 200, in blue
dots in Fig. IV.5(a). The standard CGF estimators, Ψ(Nc)

s (T ), are shown in large blue dots
in Fig. IV.5(a) (on the axis for T = 100). The fitting curves f (Nc)

t (Eq. (IV.3)) are shown
in black continuous lines (for Nc = 20 and Nc = 200) and black dotted lines (for other
intermediate values of Nc). Next, we show in Fig. IV.5(b) the projection of the surface
of Fig. IV.4 on the plane Ψ − Nc where the time has been set to the largest t = T . The
standard CGF estimators, Ψ(Nc)

s (T ) are plotted as blue filled circles, and the fitting curve g(T )
Nc

(Eq. (IV.4)) on Ψ(Nc)
s (T ) is shown as a blue solid line. From these curves, we determine g(T )

∞
(see Sec. IV.3.2), which is shown as a blue dashed line and diamonds. Finally, the parameter
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Figure IV.5: (a) Projection of the surface represented in Fig. IV.4 over the plane Ψ − t.
Ψ(Nc)
s (t) is represented forNc = 20 andNc = 200 with blue dots. The estimations Ψ(Nc)

s (T ) of
the large deviation (at the final simulation time T = 100) are shown in large blue dots for all
the values of Nc considered. The fit in time (Eq. (IV.3)) over Ψ(Nc)

s (t) is shown as black solid
lines (for Nc = 20 and Nc = 200) and dotted lines (for other values of Nc). (b) Projection
at the final simulation time T = 100 on the plane Ψ −Nc, Ψ(Nc)

s (T ) is shown in large blue
dots. The infinite-time limit f (Nc)

∞ as a function of Nc (see Eq. (IV.3)) is represented in red
circles. The results of fitting Ψ(Nc)

s (T ) (Eq. (IV.4)) and f (Nc)
∞ (Eq. (IV.7)) are shown with

blue and red solid curves respectively. The infinite-Nc limit g(T )
∞ is shown with blue dashed

line and diamonds meanwhile the infinite-size and time limit f∞∞ is shown with a red dotted
line in both of (a) and (b). The extracted limit f∞∞ renders a better estimation of the large
deviation function than Ψ(Nc=200)

s (T = 100) (and also than g(T )
∞ ) demonstrating the efficacy

of the method proposed.

f
(Nc)
∞ extracted from the fitting on Ψ(Nc)

s (t) (for each value of Nc) is shown as red circles in
Fig. IV.5(b). These values also scale as 1/Nc (Eq. (IV.7)) and their fit is shown as a red solid
curve. The scaling parameter f∞∞ obtained from this last step provides a better estimation of
the large deviation function than the standard estimator Ψ(Nc=200)

s (T = 100) that is widely
used in the application of cloning algorithms. This improvement is valid on a wide range of
values of the parameter s as can be visualized in Fig IV.6, where we represented the relative
systematic error [Ψ(s)− ψ(s)] /ψ(s) between the standard and improved estimators Ψ(s)
and the analytical CGF ψ(s).
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Figure IV.6: Relative systematic error [Ψ(s)− ψ(s)] /ψ(s) between the numerical estimators
Ψ(s) and the analytical CGF ψ(s). The error for the standard estimator Ψ(Nc)

s (T ) is shown
in blue and for the improved one, f∞∞ (Eq. (IV.7)) in red. The scaling method proposed in
this chapter was tested on the contact process (with L = 6, h = 0.1, and λ = 1.75) for a
set of populations ~Nc = {20, ..., 200}, a simulation time T = 100, and R = 1000 realizations.
As can be seen, the errors due to finite-size and -time effects can be reduced through the
improved estimator.

IV.5 Issues on an Analytical Approach

In chapter III [P2], we considered a discrete-time version of the population dynamics algo-
rithm, where a cloning procedure is performed every small time interval ∆t. We have proved
the convergence of the algorithm in the large-Nc, -t limits, and we also derived that the
systematic error of the LDF estimator (i.e., the deviation of the estimator from the desired
LDF) decayed proportionally to 1/t and 1/Nc. From a practical point of view, however, the
formulation used there had one problem. In order to prove the result, we took the large
frequency limit of cloning procedure or, in other words, we took the ∆t→ 0 limit. A rough
estimate of the error due to non-infinitesimal ∆t proves to be O(∆t). For a faster algorithm,
it is better to take this value to be larger, and indeed empirically, we expect that this error
to be very small (or rather disappearing in the large t,Nc limits). However, the detailed
analytical estimation of this error is still an open problem.

In the main part of this chapter, from a different point of view, we consider the continuous-
time version of the population dynamics algorithm [17, 19]. Here, the cloning is performed
at each change of state of a copy. The time intervals ∆t which separate those changes of
state are non-infinitesimal, which means that the formulation used in chapter III [P2] can-
not be applied to understand its convergence. Furthermore, because these time intervals
are of non-constant duration and stochastically distributed, the continuous-time algorithm
is more difficult to handle analytically than the discrete-time version. Instead of pursuing
the analytical study within the continuous-time algorithm, we performed a numerical study,
and we have shown that the 1/Nc and 1/t scalings are also observed for the continuous-time
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algorithm. Although the proof of these scalings are beyond the scope of this chapter, these
numerical observations support a conjecture that such scaling in large t and in large Nc

limits are generally valid in cloning algorithms to calculate large deviation functions.

IV.6 Conclusions
Direct sampling of the distribution of rare trajectories is a rather difficult numerical issue
(see for instance Ref. [255]) because of the scarcity of the non-typical trajectories. We have
shown how to increase the efficiency of a commonly used numerical method (the so-called
cloning algorithm) in order to improve the evaluation of large deviation functions which
quantify the distribution of such rare trajectories, in the large time limit. We used the finite-
size and finite-time scaling behavior of CGF estimators in order to propose an improved
version of the continuous-time cloning algorithm which provides more reliable results, less
affected by finite-time and -Nc effects. We verified the results observed for the discrete-time
version of the cloning algorithm in chapter III [P2] and we showed their validity also for
the continuous case [P3]. Importantly, we showed how these results can be applied to more
complex systems.

We note that the scalings which rule the convergence to the infinite-size infinite-time
limits (with corrections in 1/Nc and in 1/t) have to be taken into account properly: indeed,
as power laws, they present no characteristic size and time above which the corrections
would be negligible. The situation is very similar to the study of the critical depinning
force in driven random manifolds: the critical force presents a corrections in one over the
system size [92] which has to be considered properly in order to extract its actual value.
Generically, such scalings also provide a convergence criterion to the asymptotic regimes of
the algorithm: one has to confirm that the CGF estimator does present corrections (first) in
1/t and (second) in 1/Nc with respect to an asymptotic value in order to ensure that such
value does represent a correct evaluation of the CGF.

It would be interesting to extend our study of these scalings to systems presenting dy-
namical phase transitions (in the form of a non-analyticity of the CGF), where it is known
that the finite-time and the finite-size scalings of the CGF estimator can be very hard to
overcome [19]. In particular, in this context, it would be useful to understand how the
dynamical phase transition of the original system translates into anomalous features of the
distribution of the CGF estimator in the cloning algorithm. These phase transitions are
normally accompanied with an infinite system-size limit (although there was a report of dy-
namical phase transitions without taking a such limit [258]). To overcome these difficulties
(caused by a large system size and/or by the presence of a phase transition), it may be useful
to use the adaptive version of the cloning algorithm [259], which has been recently developed
to study such phase transitions, with the scaling method presented in this chapter.



V – Fluctuations of CGF Estimator

In order to complement the main discussion done in the previous chapter, here we study the
fluctuations of the CGF estimator [P3] as defined in Eq. (IV.1). This is done by studying
its distribution and its dependence with the simulation time and the number of clones.
Compatible with the central limit theorem, we show how a proper rescaling of the CGF
estimator produces a collapse of the distributions into a normal standard distribution for
different values ofNc and simulation times. Additionally, we discuss in Sec. V.3 an alternative
way of defining it which was already introduced in Sec. III.4.3 for the discrete-time version.

V.1 Central Limit Theorem

From relation (IV.1), one can infer that the dispersion of the distribution of Ψ(Nc)
s depends

on the simulation time t. This determines whether or not a large number of realizations R is
required in order to minimize the statistical error. In fact, as seen in Fig. V.1, the dispersion
of Ψ(Nc)

s is concentrated around its mean value, which approaches the analytical value ψ(s)
as the simulation time and the number of clones increase. We numerically confirm that these
distributions are well-approximated by a Gaussian distribution

P
(
Ψ(Nc)
s

)
∼ Ae

− 1
C2

(
Ψ(Nc)
s −B

)2

(V.1)
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Figure V.1: Distribution P
(
Ψ(Nc)
s

)
of the CGF estimator Ψ(Nc)

s for (a) Nc = 10, (b)
Nc = 100 and (c) Nc = 1000 and for simulation times t ∈ [10, 1000]. Each realization
(R = 104 for each simulation time) is shown with gray dots meanwhile its respective Gaussian
fit (Eq. (V.1)) is shown with a dotted or a continuous curve. The dispersion of Ψ(Nc)

s is wider
for shorter simulation times and small Nc. The mean value of the distribution converges to
the theoretical value as the simulation time and the number of clones increase.
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Figure V.2: The distribution function of the rescaled variable Ψ̂(Nc)
s (Eq. (V.2)). Compatible

with the central limit theorem, a collapse of the distribution function into a standard normal
distribution for different number of clones is observed.

where the parameter B is equal to Ψ(Nc)
s (T ) and the parameters A and 1/C2 are respectively

of the order of N1/2
c and Nc. A mathematical argument to explain this obtained Gaussian

distribution is given as follows: At any given time (not necessarily at T ), let us perform the
following rescaling

Ψ̂(Nc)
s = Ψ(Nc)

s −Ψ(Nc)
s

σΨ(Nc)
s

, (V.2)

where

σ2
Ψ(Nc)
s

= 1
R− 1

R∑
r=1

∣∣∣∣(Ψ(Nc)
s

)
r
−Ψ(Nc)

s

∣∣∣∣2
is the variance of the R realizations of Ψ(Nc)

s . Then, this rescaling produces a collapse of
the distributions P

(
Ψ̂(Nc)
s

)
, for any t and any Nc (Fig. V.2). We remark then that the

CGF estimator (IV.1) is an additive observable of the history of the population, which
follows a Markov dynamics. Hence, the rescaled estimator Ψ̂(Nc)

s follows a standard normal
distribution in the large time limit, according to the central limit theorem (CLT):

P
(
Ψ̂(Nc)
s

)
= 1√

2π
e−

1
2

(
Ψ̂(Nc)
s

)2
.

The verification of the CLT allows us to ensure if the steady-state of the population dynamics
has been reached. Note that in general the typical convergence time to the steady state is
larger than the inverse of the spectral gap of the biased evolution operator as discussed in
Secs. I.8.1 and II.4.1.

By considering the scaling (V.2) we focus only on the small fluctuations of Ψ(Nc)
s around

Ψ(Nc)
s . But in general, the distribution function is not Gaussian, and in that case we need

to consider a large deviation principle as below.
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V.2 Logarithmic Distribution of CGF Estimator

Since Ψ(Nc)
s is itself an additive observable of the dynamics of the ensemble of clones (chap-

ter III [P2]), the distribution of the CGF estimator Ψ(Nc)
s satisfies itself a large deviation

principle

P
(
Ψ(Nc)
s

)
∼ e−t INc

(
Ψ(Nc)
s

)
, (V.3)

where INc
(
Ψ(Nc)
s

)
is the rate function. This rate function could be evaluated in principle

from the empirical distribution P
(
Ψ(Nc)
s

)
as

INc
(
Ψ(Nc)
s

)
≈ −1

t
logP

(
Ψ(Nc)
s

)
for a large t. Here we try to estimate the rate function from this equation. The numerical
estimation of the right-hand side of the last expression at final simulation time T is shown
in Fig. V.3(a), where we have defined

ÎNc
(
Ψ(Nc)
s

)
≡ −1

t
logP

(
Ψ(Nc)
s

)
+ 1
t

logP
(
Ψ(Nc)
s

)
(V.4)

so that ÎNc
(
Ψ(Nc)
s

)
= 0. In the same figure, we also show Ψ(Nc)

s (T ) as vertical dotted lines
which correspond to the minima of the logarithmic distribution ÎNc

(
Ψ(Nc)
s

)
. As can be seen,

these minima are displaced towards the analytical value ψ(s) (shown with a dashed line) as
Nc →∞. The logarithmic distribution ÎNc also becomes more concentrated as Nc increases.

Next, in order to study this decreasing of the width, we show a rescaled logarithmic
distribution function (1/Nc)ÎNc

(
Ψ(Nc)
s

)
in Fig. V.3(b). The minimum converges to the ana-

lytical value ψ(s) (black dashed line) as Nc → ∞. In the infinite-time infinite-size limit of
Ψ(Nc)
s , it would be thus compatible with a logarithmic distribution function given by

I
(
Ψ(Nc)
s

)
= − lim

Nc→∞

1
Nc

lim
t→∞

1
t

logP
(
Ψ(Nc)
s (t)

)
which is shown (rescaled) with black dots in Fig. V.3(b). By performing the shift Ψ̌(Nc)

s =(
Ψ(Nc)
s −Ψ(Nc)

s
)
we can see in the inset of Fig. V.3(b) the superposition of quadratic deviations

of the numerical estimator Ψ(Nc)
s around the minimum of ˆINc (especially for Nc = 100, 1000).

This indicates the decreasing of the fluctuation of CGF estimator proportional with both of
T and Nc (see chapter III [P2] for more detailed explanation).

The obtained logarithmic distribution is well-approximated by a quadratic form, although
these large deviations are in general not quadratic (chapter III [P2]). This means that the
direct observation discussed here cannot capture the large deviations of the CGF estima-
tor (see also Ref. [255] for more detailed study of the direct estimation of rate functions).
However we note that, for practical usage of the algorithm, we only consider small fluctu-
ations described by central limit theorem, although these large fluctuations might play an
important role in more complicated systems, such as the ones presenting dynamical phase
transitions.
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Figure V.3: (a) Logarithmic distribution ÎNc
(
Ψ(Nc)
s

)
(Eq. (V.4)). Numerical evaluations

were made for three fixed population sizes Nc ∈ {10, 100, 1000} with a fixed simulation time
T = 1000. The logarithmic distribution presents a smaller width as Nc increases. The
average over R realizations of the CGF estimator Ψ(Nc)

s (T ) corresponds to the minimum
of ÎNc

(
Ψ(Nc)
s

)
(dotted lines) and converges to the analytical value ψ(s) (dashed lines) as

Nc →∞. (b) Rescaled logarithmic distribution 1
Nc
ÎNc

(
Ψ(Nc)
s

)
as a function of Ψ(Nc)

s and as

a function of Ψ̌(Nc)
s =

(
Ψ(Nc)
s −Ψ(Nc)

s
)
(inset) for a final simulation time T = 1000.

V.3 A Different CGF Estimator
Normally, the CGF estimator is defined as an arithmetic mean over many realizations, as
seen in Eq. (IV.1). Here we show that another definition of the CGF estimator can be used,
which indeed provides better results than the ones from the standard estimator (in some
parameter ranges). We define a new estimator as

Φ(Nc)
s = 1

T
log

Kr∏
i=1

Xr
i , (V.5)

where we note that the average with respect to realizations are taken inside the logarithm.
As we discussed in Sec. III.4.3, this estimator provides a correct value of CGF ψ(s) in the
infinite-time infinite-Nc limits. This is thanks to the fact that the distribution of Ψ(Nc)

s

concentrates around ψ(s) in those limits (the so-called “self-averaging” property). At any
finite population, one can rewrite Φ(Nc)

s using the large-time LDF principle (V.3) as follows:

Φ(Nc)
s = 1

T
log eTΨ(Nc)

s

= 1
T

log
∫
dΨ e−T [INc (Ψ)+Ψ]

which proves that in the large-T limit,

Φ(Nc)
s = min

Ψ

[
INc(Ψ) + Ψ

]
,
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Figure V.4: Comparison between two different estimators of the large deviation function,
Ψ(Nc)
s (Eq. (IV.1)) shown in dots and Φ(Nc)

s (Eq. (V.5)) in circles, for the annihilation-creation
dynamics (Sec. I.8.1). The analytical value ψ(s) (Eq (I.33)) is shown with a dashed line.
Here we have also compared two different values of parameter s = 0.2 (blue) and s = −1
(black). Additionally, Nc = 100, c = 0.4, T = 500 and R = 500. As discussed in the text,
Φ(Nc)
s provides a better numerical evaluation of the CGF at small s.

to be compared to
Ψ(Nc)
s = argmin

Ψ
INc(Ψ).

On one hand, the definition (V.5) amounts to estimate ψ from the exponential growth
rate of the average of the final-T population of many small (non-interacting) “islands”,
where the cloning algorithm would be operated. On the other hand, the estimator (IV.1)
amounts to estimate ψ from growth rate of a large “island” gathering the full set of the R
populations. The latter is thus expected to be a better estimator of ψ(s) than the former
because it corresponds to a large population, where finite-size effects are less important. As
a consequence, the estimator Φ(Nc)

s appears a priori to be worse estimator than Ψ(Nc)
s of

ψ(s). However, as shown in Sec. III.4.3, at small |s| and finite-Nc, a supplementary bias
introduced by taking Eq. (V.5) in fact compensates the finite-Nc systematic error presented
by Eq. (IV.1), for a simple two state model. Namely, the error is O(sN−1

c ) for Eq. (IV.1)
while it is O(s2N−1

c ) for Eq. (V.5). This fact is illustrated on Fig. V.4, where we show that
at small s = 0.2, Φ(Nc)

s provides a better estimation of ψ(s) than Ψ(Nc)
s , while at larger |s|

(s = −1) the two estimators yield a comparable error.





VI – Breakdown of the Finite-Time
and Finite-Nc Scalings
in the Large-L Limit

VI.1 Introduction

The analysis of the finite-t and finite-Nc scalings in the evaluation of the LDF was per-
formed following two different approaches: an analytical one, in chapter III [P2], using
a discrete-time version of the population dynamics algorithm [18], and a numerical one, in
chapter IV [P3], using a continuous-time version [17, 19]. In both cases, the systematic errors
of these scalings were found to behave as 1/t and 1/Nc in the large-t and large-Nc asymp-
totics respectively. Moreover, it was shown how these scaling properties can be used in order
to improve the LDF estimation by the implementation of a scaling method (Sec. IV.4.1).
This was done considering that the asymptotic behavior of the estimator in the t→∞ and
Nc →∞ limits may be interpolated from the data obtained from simulations at finite and
relative small simulation time and number of clones.

However, the validity of these scalings and the method efficiency were proved only in
cases for which the number of sites L (where the dynamics occurs) was small: a simple
two-states annihilation-creation dynamics (Sec. I.8.1) (in one site) and a one-dimensional
contact process (Sec. I.8.2) (with L = 6 sites). Here, we complement the results presented
in chapters III [P2] and IV [P3] by extending the analysis to a large-L contact process.
This is done by introducing the exponents γt and γNc such that the generalized t−γt- and
N−γNcc -scalings allow to characterize the scaling behavior in the large-L limit where we
verify that t−1 and N−1

c -scalings are no longer valid.

This chapter VI [P4] is organized as follows: The generalization to large-L systems of
the finite-time and finite-Nc scalings of the LDF is done in Sec. VI.2.2. We make use of these
results in Sec. VI.3 where we check the validity of the t−1- and N−1

c -scalings (Sec. VI.3.1),
their behavior in the s-modified dynamics (Sec. VI.3.2) as well as the applicability of the
scaling method (Sec. VI.3.3) for a contact process with L = 100 sites. This analysis is
generalized in Sec. VI.4 where we characterize the finite-t and finite-Nc scalings of the LDF
in the plane s − L. Before presenting our conclusions in Sec. VI.6, we discuss about the
effects of the dynamical phase transition in the scalings in Sec. VI.5.

65



66 Chapter VI. Finite-Time and Finite-Nc Scalings in the Large-L Limit

VI.2 Finite Scalings of the Large Deviation Function Estimator
Below, we summarize the finite-time and finite-Nc scalings of the CGF estimator and its
generalization to large-L systems.

VI.2.1 Large-Time and Large-Nc Limit
When we analyze the time behavior of the CGF estimator (IV.2) for a fixed number of clones
Nc, we observe this can be well described by a curve f (Nc)

t (IV.3) indicating the existence of
a t−1-convergence to the value f (Nc)

∞ . We call this t−1-scaling and is valid independently if
Nc is small or large. The curve f (Nc)

t is determined from a fit in time over Ψ(Nc)
s (t) up to

(the final simulation) time T and allows the extraction of the infinite-time limit of the CGF
estimator f (Nc)

∞ = limt→∞Ψ(Nc)
s (t) which provides a better CGF estimation 1.

When we repeat this procedure for different values of population size Nc ∈ ~Nc =
{N (1)

c , ..., N
(j)
c }, extracting in each case the corresponding f

(Nc)
∞ , we observe they exhibit

1/Nc corrections in Nc (N−1
c -scaling). In other words, the f (Nc)

∞ ’s satisfy a equation of the
form (IV.7) which can be obtained from a fit in Nc over the extracted f

(Nc)
∞ ’s. Thus, the

t−1- and N−1
c -scalings of the CGF estimator are given by Eqs. (IV.3) and (IV.7), i.e.,

f
(Nc)
t = f (Nc)

∞ + b
(Nc)
t t−1,

f (Nc)
∞ = f∞∞ + b(Nc)∞ N−1

c .

These equations imply that Ψ(Nc)
s (t) converges to its infinite-t and infinite-Nc limit, f∞∞ =

limNc→∞ f
(Nc)
∞ , proportionally to 1/t and 1/Nc. Importantly, this limit can be obtained

using a small number of clones and simulation time by making use of the scaling method
(Sec. IV.4.1 [P3]). The results obtained for f∞∞ rendered a better estimation of ψ(s) than
the standard estimator Ψ(Nc)

s (t) evaluated for Nc = max ~Nc and for t = T .

VI.2.2 Scalings in the Large-L Limit
In order to verify whether the scalings observed in small systems are also valid in the large-L
limit, we assume that the CGF estimator can be described by equations of the form

χ
(Nc)
t ≡ χ(Nc)

∞ + κ
(Nc)
t t−γt , (VI.1)

χ(Nc)
∞ ≡ χ∞∞ + κ(Nc)

∞ N
−γNc
c , (VI.2)

redefining in a more general way the scalings (IV.3) and (IV.7). We will refer to Eq. (VI.1)
as t−γt-scaling whereas Eq. (VI.2) as N−γNcc -scaling. The problem reduces in determining

1Additionally, the behavior of the standard CGF estimator Ψ(Nc)
s (T ) as a function of the population size

Nc is well described by a behavior of the form (IV.4)

g
(T )
Nc

= g(T )
∞ + b̃

(T )
Nc
N−1
c

indicating that Ψ(Nc)
s (T ) also converges to its infinite-Nc limit g(T )

∞ = limNc→∞Ψ(Nc)
s (T ) with an error

proportional to 1/Nc.
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Figure VI.1: Exponents (a) γt & (b) γNc which characterize the finite-time and -size scalings
of the CGF estimator of the activity for a contact process with λ = 1.75 and h = 0.1. These
exponents were determined from the slope of a linear fit in log-log scale over Eqs. (VI.4)
and (VI.3), respectively. For γt, we used L = 13, s = 0.2 and Nc ∈ ~Nc = {100, 120, ..., 200}.
Meanwhile, γNc was computed for L = 20 and s = 0.2, and for L = 100 and s = 0.04.
Additionally, in all the cases T = 100 and R = 500.

the exponents γt and γNc in order to verify if effectively γt ≈ 1 and γNc ≈ 1 and whether
the terms χ(Nc)

∞ and χ∞∞ represent the limits in t→∞ and Nc →∞ of the CGF estimator.
Thus, a value of the exponent γt ≈ 1, verifies χ(Nc)

∞ ≈ f (Nc)
∞ and γNc ≈ 1, verifies χ∞∞ ≈ f∞∞ .

This is done in Sec. VI.3 on a contact process with L = 100 sites. Below we describe the
procedure followed in order to obtain these exponents 2.

VI.2.2.1 Determination of the Exponents γt & γNc

From Eqs. (VI.1) and (VI.2) we expect that, independently of Nc, T , L or s, a power law
behavior of the form ∣∣χ(Nc)

t − χ(Nc)
∞

∣∣ ∼ t−γt , (VI.4)∣∣χ(Nc)
∞ − χ∞∞

∣∣ ∼ N−γNcc , (VI.5)

be observed. Thus, the exponents γt & γNc can be obtained from the slope of a straight
curve in log-log scale of Eqs. (VI.4) and (VI.5). This can be seen in Fig. VI.1. Despite only
some representative configurations have been considered, we confirm this power law behavior
independently of the parameters chosen.

2 Additionally to Eqs. (VI.1) and (VI.2), the Nc-behavior of Ψ(Nc)
s (T ) can be described by the equation

χ
(T )
Nc

= χ(T )
∞ + κ̃

(T )
Nc
N
−γT

Nc
c , (VI.3)

where χ(T )
∞ = limNc→∞Ψ(Nc)

s (T ). Here it is important to remark that both χ(Nc)
∞ and Ψ(Nc)

s (T ) scale in the
same way in Nc. In other words, γNc ≈ γTNc

.
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Figure VI.2: Large deviations of the activity for a contact process with L = 100, λ = 1.75
and h = 0.1. The CGF estimator Ψ(Nc)

s (t) (Eq. (IV.1)) is presented as a function of time
t and the number of clones Nc for (a) s = −0.1 and (b) s = 0.2. These surfaces were
computed using the continuous-time cloning algorithm up a final simulation time T = 100,
~Nc = {20, ..., 200} and R = 500 realizations. The N−1

c -scaling observed in small-L systems
holds only for s = −0.1 whereas for s = 0.2 a N−γNcc -scaling is observed (γNc(s = 0.2) ≈
−0.16). Similarly, for the time-scaling for which γt(s = 0.2) ≈ 0.7.

VI.3 Finite Scalings for a Large-L Contact Process

In Fig. VI.2, we compare the behavior of Ψ(Nc)
s (t) as function of t and Nc, for two represen-

tative values of the parameter s, s = −0.1 (left) and s = 0.2 (right). The size of the system
is L = 100 sites. Each point of these surfaces was obtained using the cloning algorithm
(Eq. (IV.1)) up to time T = 100, for ~Nc = {20, 40, ..., 180, 200} and for R = 500 realizations.
The best possible CGF estimation (i.e., at largest T and Nc) in both cases is shown with
solid circles which, according to the results presented in chapter IV [P3], could be improved
by using the t−1 and N−1

c -scalings (if still valid for large-L).

VI.3.1 Finite-Time and Finite-Nc Scalings

Although the exponents γt and γNc can be computed in principle for any value of Nc ∈ ~Nc

and for any t ≤ T , as we saw above, from now on, we will consider these exponents defined
at the highest number of clones and at final simulation time, i.e.,

γt := γt(Nc = max ~Nc),
γNc := γNc(t = T ).

Thus, the exponent γt is obtained as described in Sec. VI.2.2.1 after adjusting Eq. (VI.1) to
Ψ(Nc)
s (t) for Nc = max ~Nc = 200. On the other hand, γNc is determined after fitting χ(Nc)

∞

with Eq. (VI.2) at T = 100 or, as γNc ≈ γTNc , after fitting Ψ(Nc)
s (t = T ) using Eq. (VI.3). In

simple words, these exponents can be obtained from an adequate fit over the thick curves
in Fig. (VI.2). They characterize the finite-t and finite-Nc scalings of the large deviations of
the dynamical activity K.
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Following this approach, we found that the t−1-scaling (IV.3) is satisfied only for s =
−0.1, meaning that the exponent γt was found to be γt ≈ 1. As a consequence, the parameter
χ

(Nc)
∞ obtained from Eq. (VI.1) effectively represents the limit in t→∞ of the CGF estimator,

i.e., χ(Nc)
∞ ≈ f

(Nc)
∞ . This is not the case for s = 0.2 for which γt(s = 0.2) ≈ 0.7. Similarly, a

N
−γNc
c -scaling is observed for s = 0.2, whereas for s = −0.1, the N−1

c -scaling (IV.7) holds. It
is important to remark that a value of exponent γNc > 0 could still guaranty the convergence
of the CGF estimator in the infinite-Nc limit. However, even though γNc(t = 10) > 0 at
initial times, at final time T , the exponent is negative (γNc(t = T ) ≈ −0.16), which would
imply that χ∞∞ does not corresponds to the t,Nc → ∞ limit of the CGF estimator. This
fact will be addressed later in Sec. VI.5. Below, we present how the change in the scalings
is produced depending on s.

VI.3.2 Exponents Characterization & s-Dependence
Here, we consider values of s ranging in the interval s ∈ [−0.1, 0.2]. For s < 0, the exponent
γt(s) varies around 1. However for s > 0, γt deviates slightly from 1 decreasing with s up to
γt ≈ 0.7 at s = 0.2. In order to describe the behavior of this exponent, results convenient to
define s′ as the value of the parameter s ∈ [sa, sb] such that γt(s < s′) ≈ 1, i.e., until which
the t−1-scaling holds. Thus,

γt(L = 100) :
{
γt(s) ≈ 1, for s < s′

0 < γt(s) < 1, otherwise.
If the scaling holds ∀s ∈ [sa, sb] (given some system size L), then s′ = sb.

On the other hand, the value of s ∈ [sa, sb] which signals the validity of the N−1
c -scaling

is denoted by s∗. From this point, γNc decreases until eventually it becomes negative, as can
be seen in Fig. VI.3. Here, we introduce s∗∗ such that γNc(s = s∗∗) = 0. Thus, γNc < 0
for s > s∗∗. This behavior was not observed in chapter IV [P3] for L = 6 for which the
N−1
c -scaling was valid independently of s. In those cases, s∗ = sb and @s∗∗. Instead of

confirming for L = 100 the N−1
c -scaling of the CGF estimator presented in chapter IV [P3],

here we have been able to distinguish clearly three stages for the exponent γNc(s):

γNc(L = 100) :


γNc(s) ≈ 1, for s < s∗

0 < γNc(s) < 1, for s∗ < s < s∗∗

γNc(s) < 0, for s > s∗∗.

The possibility of extracting the infinite-t and infinite-Nc limit of the CGF estimator relied
on the validity of the t−1- and N−1

c -scalings. How the results obtained from the application
of the scaling method are affected by γt and γNc are presented below.

VI.3.3 Implementation of the Scaling Method
The scaling method allows to determine the asymptotic limit to which the CGF estima-
tor (IV.1) converges in the t→∞ and Nc →∞ limits. This limit, that we have denoted f∞∞
(Eq. (IV.7)), was proved to render a better estimation of the analytical CGF ψ(s) than the

standard estimator Ψ(max ~Nc)
s (T ), at least for the cases analyzed in chapter IV [P3]. However,

the results we just presented would suggest that the determination of f∞∞ could be affected
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Figure VI.3: Dependence of the N
−γNc
c -scaling with the parameter s ∈ [−0.1, 0.2].

The exponent γNc(s) is obtained by fitting Ψ(Nc)
s (T = 100) as function of Nc ∈ ~Nc =

{20, 40, ..., 180, 200} by Eq. (VI.3) in log-log scale as described in Sec. VI.2.2.1. Three
stages of γNc(s) can be clearly distinguish for L = 100: (i) γNc(s < s∗) ≈ 1, (ii)
0 < γNc(s∗ < s < s∗∗) < 1, and (iii) γNc(s > s∗∗) < 0. The exponent γNc for s = 0
was set to γNc(s = 0) = 1.

depending whether γt ≈ γNc ≈ 1 or not. If this holds, the scaling method could render valid
results in our example only for s < 0. Solely in this region the extracted χ∞∞ (obtained from
Eq. (VI.2)) would represent the infinite-t and -Nc limit of the CGF estimator. Indeed, this
can be observed in Fig. VI.4 where we have applied the scaling method to our example.

The method can be performed following two different approaches: (i) (t−1, N
−γNc
c ): First,

imposing a t−1-scaling for Ψ(Nc)
s (t) (setting γt = 1 in Eq. (VI.1)) and then, considering a

N
−γNc
c -scaling (VI.2) for the extracted χ

(Nc)
∞ ’s. Alternatively, (ii) (t−γt , N−γNcc ): Leaving

γt and γNc as free parameters in Eqs. (VI.1) and (VI.2). Both resulting estimators χ∞∞(i)
and χ∞∞(ii) are shown in Fig. VI.4 with squares and circles, respectively. Additionally, the
infinite-Nc limit χT∞ (VI.3) is also presented with diamonds. The standard CGF estimator

Ψ(max ~Nc)
s (T ) (in dots) serves as reference.
As can be seen in Fig. VI.4, the different estimators correspond to each other up to

s = s∗. From this point, their distance with respect to Ψ(max ~Nc)
s (T ) increases rapidly with s

up to s = s∗∗ where a discontinuity occurs. In fact, the behavior observed in Fig. VI.4 keeps
correspondence with the N−γNcc -scaling of the CGF estimator. Specifically, with the stages
of the exponent γNc that were presented in Sec. VI.3.2 and Fig. VI.3. Thus, the discontinuity
in χ∞∞ is related precisely with the change in sign of γNc in s = s∗∗ in the same way as the
divergence of the estimators from the standard one at s = s∗ is related with the fact that
from this point, γNc 6= 1.

The example presented through this section related the effectiveness of the scaling method
(as proposed in chapter IV [P3]) with the actual scaling of the CGF estimator in large-L
systems. Depending on the value of the exponents (γt, γNc) it is possible to extract or
not the infinite-t and infinite-Nc limit of the CGF estimator. Moreover, we also presented
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Figure VI.4: Different estimators of the large deviations of the activity as function of the
parameter s ∈ [−0.1, 0.2] for a contact process with L = 100 sites. The standard CGF
estimator Ψ(Nc)

s (t) (evaluated at Nc = max ~Nc = 200, t = T = 100 and for R = 500
realizations) is shown with dots meanwhile the ones obtained from the scaling method χ∞∞
are presented in squares and circles, and χT∞ in diamonds. The legend (t−1, N

−γNc
c ) refers

to the assumption of a t−1-scaling for Ψ(Nc)
s (t) (setting γt = 1 in Eq. (VI.1)) and a N−γNcc -

scaling (VI.2) for the χ(Nc)
∞ ’s. On the other hand, (t−γt , N−γNcc ) refers to the fact that we

have left γt and γNc as free parameters. The different estimators correspond to each others
up to s = s∗ from which they diverge up to s = s∗∗ where there is a discontinuity and they
become negative for s > s∗∗. This is directly related with the behavior of the exponent γNc
observed in Fig. VI.3.

the dependence of these exponents with the parameter s. Below we extend our analysis by
considering the scaling behavior on a wider range of values of L. This will provide a complete
overview of how the CGF estimator behaves and how the change in scaling is given.

VI.4 L-Dependence of the Finite Scalings

In this section, we detail the behavior of the finite-t and -Nc scalings of the CGF estimator
for s > 0 and L ranging in the interval L ∈ [3, 100]. For each pair (s, L), the exponents γt and
γNc were computed as described in Sec. VI.2.2.1 for T = 100 and ~Nc = {20, 40, ..., 180, 200}.

VI.4.1 Characterization of the Exponent γt(s, L)

The contour plot in Fig. VI.5 shows the value of the exponent γt as it changes depending
on the parameters s and L. We have focused in the region for s ∈

[
0.02, 0.2

]
as for s < 0,

γt ≈ 1 and thus, the t−1-scaling (IV.3) holds. The values closest to 1 are presented with the
darkest tone while smaller values are shown with clearer tones. As can be seen, the exponent
γt decreases gradually as L and s increase.
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Figure VI.5: Behavior of the exponent γt in a region of the plane s − L given by the
parameters s ∈

[
0.02, 0.2

]
and L ∈

[
3, 100

]
. This exponent characterizes the finite-time

scaling of the large deviations of the activity in the contact process (t−γt-scaling). The
values of γt closest to 1 are presented with the darkest tones whereas smaller values are
shown with clearer ones. Although for small values of L the t−1-scaling holds independently
of s, in general the exponent γt decreases gradually as s and L increase.

For a given system size L, we can describe qualitatively the behavior of γt with respect to
s is similar way as we did for L = 100 in Sec. VI.3.2. In order to extend that description into
the plane s− L, we introduce a number of sites dependency of the bound s′. We denote by
s′(L) the value of s until which the t−1-scaling is valid given a particular L. Similarly, γ◦t (L) is
the lower bound of γ(L)

t (s). Thus, the exponent γt which characterizes the t−γt-scaling (VI.1)
of the CGF estimator is given by

γt :

γ
(L)
t (s) ≈ 1, for s < s′(L)
γ◦t (L) ≤ γ(L)

t (s) . 1, otherwise,

where s′(L) > 0, γ◦t (L) > 0 and L is large. In fact, for this case, γ◦t (L) > 1/2, for all L.

VI.4.2 Characterization of the Exponent γNc(s, L)
Similarly as above, in Fig. VI.6 we present the exponent γNc as it changes depending of
some particular choice of the parameters (s, L) within the intervals considered. The surface
in Fig. VI.6(a) illustrates clearly the change in theNc-scaling of the CGF estimator. For every
value of L considered, the exponent γNc is approximately 1 up to some value of s, denoted
as s∗(L) (Sec. VI.3.2). However, from this point, its value decreases as s and L increases,
becoming, in some cases, negative. This change in the N−γNcc -scaling is also shown in the
contour plot in Fig. VI.6(b) where we have focus in the region for s > 0. The values of γNc
closer to 1 are shown in dark tones.

In Sec. VI.3.2, we also defined s∗∗ such that γ(L)
Nc

(s∗∗) = 0. This value of course depends
on L and in some cases it does not even exists. However, for some particular values of L
(large), the exponent γ(L)

Nc
changes sign twice (as can be seen in Fig. VI.6(b)). We will use
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this fact in order to characterize the N−γNcc -scaling depending on the number of zeros of the
exponent γ(L)

Nc
(s) for a given L.

We define LI as the set of values of L, for which the exponent γ(L)
Nc

(s) has no zeros, LII :
if has two zeros (s∗∗1 (L) and s∗∗2 (L), with s∗∗2 (L) > s∗∗1 (L)) and LIII : if has one zero (s∗∗(L)).
These regions are bounded by Linf and/or by Lsup, where Linf is the smallest value of L
such that the curve L = Linf is tangent to γNc(s, L) = 0 in one single point. On the other
hand, Lsup is the largest L such that the curve L = Lsup cuts γNc(s, L) = 0 in two points.
Thus, the region LI groups the values of L such that L < Linf , LII the values of L within the
interval Linf < L < Lsup and LIII , the values of L such that L > Lsup. Thus, the exponent
γNc which characterizes the N−γNcc -scaling (VI.2) of the CGF estimator is given by

γNc :



LI :

γ
(L)
Nc

(s) ≈ 1, for s < s∗(L)
0 < γ

(L)
Nc

(s) . 1, otherwise.

LII :


γ

(L)
Nc

(s) ≈ 1, for s < s∗(L)

0 < γ
(L)
Nc

(s) < 1,
for s∗(L) < s < s∗∗1 (L)
and s > s∗∗2 (L)

γ
(L)
Nc

(s) < 0, for s∗∗1 (L) < s < s∗∗2 (L)

LIII :


γ

(L)
Nc

(s) ≈ 1, for s < s∗(L)
0 < γ

(L)
Nc

(s) < 1, for s∗(L) < s < s∗∗(L)
γ

(L)
Nc

(s) < 0, for s > s∗∗(L)

VI.5 Dynamical Phase Transition and Finite-Scalings

In Sec. I.5, we introduced the biasing parameter (or field) s (conjugated to an observable O)
to characterize a non-equilibrium ensemble of trajectories. Within this “s-ensemble”, space-
time or dynamical phase transitions manifest themselves as singularities in the CGF and,
in our case, express a dynamical coexistence of histories with high and low activity K [35].

The contact process [38, 107, 108] is well know to exhibit a dynamical phase transition
in the L → ∞ limit [19, 35, 74, 252] even in one-dimension [252]. However in Ref. [19]
evidence of the presence of a phase transition (in the active phase of λ) was reported to
occur at sc ≈ 0.057 for finite-L. There, the authors used the same version of the contact
process and the same approach we used throughout this thesis (i.e., the cloning algorithm).
On the other hand, in Ref. [74], using a density matrix re-normalization group approach
(DMRG) [260–264], it was showed that for every value of infection rate λ, either if this
belong to the absorbing or to the active phase, there exists a phase transition as a function
of s. For the case of the active phase, this transition was found to occur at sc = 0. It
is important to remark that even if the versions of the contact process used in Refs. [19]
and [74] are different, both present a dynamical phase transition. Meanwhile in the later
case the particles are created just at the boundaries, in Ref. [19] (and here) they are created
at every site and also, the spontaneous rate of creation h is considered different from 0 (in
order to circumvent the absorbing state in finite size [35]).
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Figure VI.6: Behavior of the exponent γNc in a region of the plane s − L given by the
parameters s ∈

[
− 0.1, 0.2

]
and L ∈

[
3, 100

]
. This exponent characterizes the finite-Nc

scaling of the large deviations of the activity in the contact process (N−γNcc -scaling).
(a) The surface γNc(s, L) illustrates the change in the scaling of the CGF estimator. The
exponent γNc(s, L) ≈ 1 up to some value of s (which depends of L), from which it decreases
as s and L increases, even becoming negative for some values of L. (b) Projection of the
surface in (a) on the plane s − L. The values of γNc(s, L) closer to 1 are shown in dark
tones while the smaller tones with clearer ones. The N−γNcc -scaling can be characterized
depending on the number of zeros of the exponent γNc(s) for a given L in three regions: LI
if has no zeros, LII : if have two zeros and LIII : if have one zero.

Despite our main interest is not the study of the dynamical phase transition in the
contact process, what does concern us is how this could affect the finite scalings of the CGF.
Importantly, the relation that s∗ (but also s′ or s∗∗) could have with sc where this transition
occurs. In Sec. VI.2 we showed how the scaling behavior given by Eqs. (VI.1) and (VI.2)
was robust independently of T , Nc, s or L (Fig. VI.1), but not the exponents γt and γNc
whose behavior change depending on s and L specially in s ≥ 0 as L becomes larger. We
remark that even if the infinite-L limit is not achievable numerically, the effects induced by a
dynamical phase transition should become more evident as L increases (which could explain
many of the behavior observed throughout this chapter). This was clearly illustrated for
L = 100 for which γNc has an abrupt change for s ≥ 0, where we know the dynamical phase
transition occurs, even taking negative values and inducing a divergence of the infinite-t and
infinite-Nc limit of the CGF estimator (Fig. VI.4).

We recall here that our purpose was to verify the validity of the scalings (and the scaling
method) presented in chapters III [P2] and IV [P3] (for small size systems) in the large-L
limit where a main result was the possibility of extracting the infinite-Nc infinite-t limit of the
CGF estimator from finite and small number of clones and time. An analysis of the dynamical
phase transition, on the other hand, would require a large-Nc and -t configuration which
under our approach is a task difficult to fulfill. This however does not represent any surprise
given that is well know that the existing methods [12, 13, 18, 265, 266] perform poorly in the
vicinity of a dynamical phase transition, or they are numerically expensive in order to obtain
accurate estimations [266–268] developing if not important finite-size effects [22]. However,
recently has been proposed a promising method [85, 259] which combines the existing cloning
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algorithm [7, 12, 13, 17–19, 265, 266, P2, P3] with a modification of the dynamics [88–91]
resulting in a significant improvement of its computational efficiency. The method was
successfully applied to the study of the dynamical phase transition of 1D FA model [42]
using a relatively small Nc and L. The implementation of this method will provide in a next
stage a clear contrast between the results obtained following the two different approaches
and a correct relation between sc and s∗.

VI.6 Conclusion

The dependence of the CGF estimator (and of its accuracy) with the simulation time T and
number of clones Nc was studied in chapters III [P2] and IV [P3] where the finite-t and
finite-Nc scalings of the systematic errors of the LDF were found to behave as 1/Nc and 1/t
in the large-Nc and large-t asymptotics, respectively. By making use of these convergence-
speeds, a scaling method was proposed which allowed to extract the asymptotic behavior of
the CGF estimator in the t → ∞ and Nc → ∞ limits. At least for the cases analyzed in
chapters III [P2] and IV [P3], this infinite-time and infinite-Nc limit resulted to render a
better LDF estimation in comparison with the standard estimator. However, the validity of
the method and of these scalings were proved only for a simple one-site annihilation-creation
dynamics and for a contact process with L = 6 sites, leaving an analysis of the dependence
with the number of sites L pending. In order to do so, in this chapter, we redefined these
scalings in a more general way. We assume the behavior of the CGF estimator described by
a t−γt-scaling (Eq. (VI.1)) and a N−γNcc -scaling (Eq. (VI.2)). This redefinition allowed us to
verify in large-L systems if effectively γt ≈ 1 and γNc ≈ 1 and whether the terms χ(Nc)

∞ and
χ∞∞ represent the limits in t→∞ and Nc →∞ of the CGF estimator.

This was done at first in Sec. VI.3.1 where we considered a contact process with L = 100
sites and two representative values of the parameter s. Although the t−1-scaling and N−1

c -
scaling were proved to hold for s = 0.1, this was not the case for s = 0.2. How this change in
the scaling is produced depending on the parameter s was presented in detail in Sec. VI.3.2
where the exponents γt(s) and γNc(s) were characterized. Particularly, for γNc(s), we were
able to distinguish three stages in its behavior, where, the N−1

c -scaling was valid up to s = s∗,
then γNc decreases to 0 at s = s∗∗ and finally, it becomes negative for s > s∗∗. In Sec. VI.3.3
we showed how these scalings affect the determination of the infinite-t and infinite-Nc limit
of the CGF estimator. This occurs because the scaling method relied on the validity of the
t−1- and N−1

c -scalings. As for L = 100 this was not the case, it was possible to see how the
different estimators corresponded to each others up to s = s∗ from which they diverge up to
s = s∗∗ where there is a discontinuity.

This analysis was extended to the plane s−L in Sec. VI.4 where the exponents γt and γNc
were computed for a grid of values of the parameters (s, L). Their characterization was done
introducing a number-of-sites dependency of the bounds s′, s∗ and s∗∗ previously defined
in Sec. VI.3 as well as the use of the number of zeros of the exponent γ(L)

Nc
(s) in order to

characterize the different groups of L. Whether the results presented through this chapter
are restricted only to the contact process or not is left as a pending problem and a possible
direction for future research.





VII – Intra-day Seasonalities in High
Frequency Financial Time Series

VII.1 Introduction

From the statistical study of financial time series have arisen a set of properties or empirical
laws sometimes called “stylized facts” or seasonalities. These properties have the characteris-
tic of being common and persistent across different markets, time periods and assets [93–99].
As it has been suggested in Ref. [99], the reason why these “patterns” appear could be be-
cause markets operate in synchronization with human activities which leave a trace in the
financial time series. However using the “right clock” might be of primary importance when
dealing with statistical properties and the patterns could vary depending if we use daily data
or intra-day data and event time, trade time or arbitrary intervals of time (e.g. T = 1, 5, 15
minutes, etc). For example, it is a well-known fact that empirical distributions of financial
returns and log-returns are fat tailed [102, 103], however as one increases the time scale
the fat-tail property becomes less pronounced and the distribution approach the Gaussian
form [104]. As was stated in Ref. [96], the fact that the shape of the distribution changes
with time makes it clear that the random process underlying prices must have a non-trivial
temporal structure. In a previous work, Allez et al. [99] established several new stylized facts
concerning the intra-day seasonalities of single and cross-sectional stock dynamics. This dy-
namics is characterized by the evolution of the moments of its returns during a typical day.
Following the same approach, we show the bin size dependence of these patterns for the case
of returns and, motivated by the work of Kaisoji [100], we extend the analysis to relative
prices and show how in this case, these patterns are independent of the size of the bin, also
independent of the index we consider but characteristic for each index. These facts could be
used in order to detect an anomalous behavior during the day, like market crashes or intra-
day bubbles [100, 101]. The work presented in this chapter VII [P0] is completely empirical
but it could offer signs of the underlying stochastic process that governs the financial time
series.

VII.2 Definitions

The data consists in two sets of intra-day high frequency time series, the CAC 40 and the
S&P 500. For each of the D = 22 days of our period of analysis (March 2011), we dispose
with the evolution of the prices of each of the stocks that composes our indexes during a
specific day from 10 : 00 a.m. to 16 : 00 p.m. The main reasons why we chose to work with

77
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these two indexes are: The number of stocks that compose them (N1 = 40 andN2 = 500), the
time gap between their respective markets and the different range of stock prices (between
5 and 600 USD for the S&P 500 and between 5 and 145 EU for the CAC 40).

As the changes in prices are not synchronous between different stocks (Fig. VII.1), we
manipulated our original data in order to construct a new homogeneous matrix P (j)

D of bin
prices. In order to do this, we divided our daily time interval [10 : 00, 16 : 00] in K bins of
size T (minutes), i.e., B1 = [10 : 00, 10 : 00 + T ], B2 = [10 : 00 + T, 10 : 00 + 2T ], . . . , BK =
[16 : 00 − T, 16 : 00], where the right endpoints of these intervals are called bin limits. For
a particular day j, the prices that conform the matrix P (j)

D are given by the last prices that
reaches that stock i just before a specific bin limit.

Figure VII.1: Intra-day asynchronous financial time series. Si are the stocks and Bk are
bins. The asynchronous prices are show in red and the bin limit in blue.

Each row in the matrix below represents the evolution of the prices of a particular stock
as function of the bins. For example, the element (PD)(j)

ik , represents the price for a particular
day j of the stock i and just before the bin limit of the bin Bk.

P
(j)
D =



P
(j)
11 P

(j)
12 ... ... ... P

(j)
1K

P
(j)
21 P

(j)
22 ... ... ... P

(j)
2K

... ... ... ... ... ...

... ... ... P
(j)
ik ... ...

... ... ... ... ... ...

P
(j)
N1 P

(j)
N2 ... ... .. P

(j)
NK


In a similar way, we can construct the matrix P

(i)
S for each of the i = 1, ..., N1,2 stocks.

(PS)(i)
jk is the price of the stock (i) in the day j and just before the bin limit of the bin Bk.
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In the following and for simplicity, we will refer to the price P of a particular stock i = α
during a particular day j = t and just before the bin limit of the bin Bk as Pα(k, t) where
Pα(k, t) = P

(α)
tk = P

(t)
αk . We will perform our statistical analysis over the variable xα(k, t)

that can be computed from the matrices above. For our interests we will be working with
returns

x(1)
α (k, t) = Pα(k + 1, t)− Pα(k, t)

Pα(k, t) ,

and relative prices [100, 101]

x(2)
α (k, t) = Pα(k, t)− Pα(1, t)

Pα(1, t) .

The single or collective stock dynamics is characterized by the evolution of the moments of
the returns (or relative prices). Below, we show how we computed these moments [99].

VII.2.1 Single Stock Properties

The distribution of the stock α in bin k is characterized by its four first moments: mean
µα(k), standard deviation (volatility) σα(k), skewness ζα(k) and kurtosis κα(k) defined as

µα(k) = 〈xα(k, t)〉 ,
σ2
α(k) =

〈
x2
α(k, t)

〉
− µ2

α(k),

ζα(k) = 6
σα(k)(µα(k)−mα(k)),

κα(k) = 24
(

1−
√
π

2
〈|xα(k, t)− µα(k)|〉

σα(k)

)
+ ζ2

α(k),

where mα(k) is the median of all values of xα(k, t) and time averages for a given stock in a
given bin are expressed with angled brackets 〈...〉.

VII.2.2 Cross-Sectional Stock Properties

The cross-sectional distributions (i.e., the dispersion of the values of the variable x of the N
stocks for a given bin k in a given day t) are also characterized by the four first moments

µd(k, t) = [xα(k, t)] ,
σ2
d(k, t) =

[
x2
α(k, t)

]
− µ2

d(k, t),

ζd(k, t) = 6
σd(k, t)

(µd(k, t)−md(k, t)),

κd(k) = 24
(

1−
√
π

2
[|xα(k, t)− µα(k)|]

σd(k)

)
,

where md(k, t) is the median of all the N values of the variable x for a given (k, t) and the
square brackets [...] represent averages over the ensemble of stocks in a given bin and day. If
xα(k, t) are the returns, µd(k, t) can be seen as the return of an index equi-weighted on all
stocks.
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Figure VII.2: Single Stock Intra-day Seasonalities: Stock average of the single stock mean,
volatility, skewness and kurtosis for the CAC 40 (blue) and the S&P 500 (green). T = 1.

VII.3 Intra-day Seasonalities for Returns

The following results are in complete agreement with the ones presented in [97–99].

VII.3.1 Single Stock Intra-day Seasonalities

Figure VII.2 shows the stock average of the single stock mean [µα(k)], volatility [σα(k)],
skewness [ζα(k)] and kurtosis [κα(k)] for the CAC 40 (blue) and the S&P 500 (green), and
T = 1 minute bin. As can be seen in Fig. VII.2(a), the mean tends to be small (in the order of
10−4) and noisy around zero. The average volatility reveals the well known U-shaped pattern
(Fig. VII.2(b)), high at the opening of the day, decreases during the day and increases again
at the end of the day. The average skewness (Fig. VII.2(c)) is also noisy around zero. The
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Figure VII.3: Cross-Sectional Intra-day Seasonalities: Time average of the cross-sectional
mean, volatility, skewness and kurtosis for the CAC 40 (blue) and the S&P 500 (green), and
T = 1 minute bin.

average kurtosis exhibits an inverted U-pattern (Fig. VII.2(d)), it increases from around 2
at the beginning of the day to around 4 at mid day, and decreases again during the rest of
the day.

VII.3.2 Cross-Sectional Intra-day Seasonalities

As the time average of the cross sectional mean is equal to the stock average of the single
stock mean, the result we show in Fig. VII.3(a) is exactly the same as the one shown in
Fig. VII.2(a). The time average of the cross sectional volatility 〈σd(k, t)〉 (Fig. VII.3(b))
reveals a U-shaped pattern very similar to the stock average volatility, but less noisy (less
pronounced peaks). The dispersion of stocks is stronger at the beginning of the day and



82 Chapter VII. Intra-day Seasonalities in Financial Time Series

0 50 100 150 200 250 300 350

0.2

0.4

0.6

0.8

1

1.2

1.4 x 10−3

(a)

0 10 20 30 40 50 60 70

0.5

1

1.5

2

2.5
x 10−3

(b)

Figure VII.4: U-Pattern Volatilities: Stock average of single stock volatility [σα(k)] (black),
time average of the cross-sectional volatility 〈σd(k, t)〉 (red) and the average absolute value
of the equi-weighted index return 〈|µd|〉 (blue) for the CAC 40, for (a) T = 1 minute bin
and (b) T = 5 minute bin. Similar results were obtained for the S&P 500.

decreases as the day proceeds. The average skewness 〈ζd(k, t)〉 is noisy around zero without
any particular pattern (Fig. VII.3(c)). The cross sectional kurtosis 〈κd(k)〉 (Fig. VII.3(d))
also exhibits an inverted U-pattern as in the case of the single stock kurtosis. It increases
from around 2.5 at the beginning of the day to around 4.5 at mid day, and decreases again
during the rest of the day. This means that at the beginning of the day the cross-sectional
distribution of returns is on average closer to Gaussian.

VII.3.3 U-Pattern Volatilities

In Fig. VII.4, we compare the stock average of single stock volatility [σα(k)] (black), the time
average of the cross-sectional volatility 〈σd(k, t)〉 (red) and the average absolute value of the
equi-weighted index return 〈|µd|〉 (blue) for the CAC 40, and for T = 1 (left) and T = 5
minute bin (right). Similar results were obtained for the S&P 500. As can be seen, the
average absolute value of the equi-weighted index return also exhibits a U-shaped pattern
and it is a proxy for the index volatility. One thing that results interesting to observe is
that the values of these volatilities actually depends of the size of the bin that we consider.
For T = 5 minute bin, the volatilities double the values found for T = 1 minute bin (we will
discuss this result in the next sections).

VII.3.4 Intra-day Seasonalities in the Stock Correlation

In order to compute the correlation between stocks, we first normalize the returns by the
dispersion of the corresponding bin [99] i.e.,

x̂α(k, t) = x(1)
α (k, t)/σd(k, t)
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Figure VII.5: Largest eigenvalues structure for the CAC 40, T = 5 minute bin. (a) Average
correlation between stocks (black) and top eigenvalue λ1/N (blue) of the correlation matrix
Cαβ(k). (b) Smaller eigenvalues.

The N ×N correlation matrix for a given bin k would be given by

Cαβ(k) = 〈x̂α(k, t)x̂β(k, t)〉 − 〈x̂α(k, t)〉 〈x̂β(k, t)〉
σα(k)σβ(k) .

In Fig. VII.5(a) we show the average correlation between stocks (blue) and top eigenvalue
λ1/N (green) for the CAC 40. As can be seen the largest eigenvalue is a measure of the av-
erage correlation between stocks [99, 269–272]. This average correlation increases during the
day from a value around 0.35 to a value around 0.45 when the market closes. For the case of
smaller eigenvalues, what we can see is that the amplitude of risk factors decreases during the
day (Fig. VII.5(b)), as more and more risk is carried by the market factor (Fig. VII.5(a)) [99].

In order to simplify the computation of the N2 correlation matrices for each bin k in
the case of the S&P 500, we computed the correlation matrix Cαβ for 4 different sets of
stocks: r0: composed by the 100 first stocks of the S&P 500; r1,2: composed by 100 stocks
randomly picked; and r3: composed by 200 stocks randomly picked. Figure VII.6(a) shows
λ1
N as function of the bins. Although the values of the eigenvalues seem to be out of scale, it
can be seen clearly that the average correlation increases during the day. This scale conflict
is solved by normalizing the value of the top eigenvalue not by N but by the sample size N0
(i.e., 100 or 200) (Fig. VII.6(b)). As can be seen the average correlation of the index can
be computed by taking a subset of it which means that actually just the more capitalized
stocks in the index drive the rest of stocks.
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Figure VII.6: (a) Top eigenvalue λ1/N and (b) λ1/N0 for the S&P 500 for 4 different sets
of stocks: r0 (blue), r1 (green), r2 (red) and r3(clear blue). T = 5 minute bin.

VII.4 Intra-day Seasonalities for Relative Prices

In this section, we will report the results we found for the S&P 500. Similar results were
found also for the CAC 40. We will see how in the case of the relative prices these intra-day
seasonalities are independent of the size of the bin, also independent of the index we consider
(but characteristic for each index) however this is not the case for the returns.

VII.4.1 Single Stock Intra-day Seasonalities

Each path in Fig. VII.7 represents the evolution of a particular moment of one of the stocks
that compose the S&P 500 (i.e., one path, one stock moment). The stock average of the
single stock mean [µα(k)], volatility [σα(k)], skewness [ζα(k)] and kurtosis [κα(k)] of the S&P
500 are shown in black. The stock average of the single stock mean varies around zero. The
average volatility increases logarithmically with time. The skewness varies between [−3, 3]
with an average value of zero. The single stock kurtosis takes values between [−2, 6] with an
average value of one and its stock average starts from a value around 2 in the very beginning
of the day and decreases quickly to the mean value 1 in the first minutes of the day.

VII.4.2 Cross-Sectional Intra-day Seasonalities

Each path in Fig. VII.8 represents the evolution of a particular index moment during a
particular day (i.e., one path, one day moment). As in the case of the single stock volatil-
ity, the cross-sectional dispersion 〈σd(k)〉 increases logarithmically with respect to the time
(Fig. VII.8(b)). The cross-sectional skewness 〈ζd(k)〉 takes values in the interval [−1, 1] with
an average value of zero (Fig. VII.8(c)). The average kurtosis 〈κd(k)〉 starts from a value
around 2.5 in the very beginning of the day and decreases quickly to the mean value 2 in
the first minutes of the day (Fig. VII.8(d)).



VII.4 Intra-day Seasonalities for Relative Prices 85

0 50 100 150 200 250 300 350

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

(a) MEAN

0 50 100 150 200 250 300 350

0.005

0.01

0.015

0.02

0.025

0.03

(b) VOLATILITY

0 50 100 150 200 250 300 350

−3

−2

−1

0

1

2

3

4

(c) SKEWNESS

0 50 100 150 200 250 300 350

−4

−2

0

2

4

6

8

10

12

14

(d) KURTOSIS

Figure VII.7: Single Stock Intra-day Seasonalities: Stock average of the single stock mean,
volatility, skewness and kurtosis for the S&P 500 (black). T = 1 minute bin.

VII.4.3 C-Pattern Volatilities

Similarly as we did in Sec. VII.3.3 for returns, in Fig. VII.9 we show a comparative plot
between the stock average of the single stock volatility [σα(k)], the time average of the
cross-sectional volatility 〈σd(k, t)〉 and the average absolute value of the cross-sectional mean
〈|µd|〉 for the relative prices of the S&P 500, and for T = 1 and T = 5 minute bin. As
can be seen, these three measures exhibit the same kind of intra-day pattern (as it did
in the case of the returns). But the most important fact is to notice that this intra-day
seasonality is independent of the size of the bin, also independent of the index we consider,
but characteristic for each index (see inset Fig. VII.9).
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Figure VII.8: Cross-Sectional Intra-day Seasonalities: Time average of the cross-sectional
mean, volatility, skewness and kurtosis for the S&P 500 (black). T = 1 minute bin.

VII.5 Intra-day Patterns and Bin Size

As we saw in the last section, the volatilities for the relative prices exhibit the same kind
of intra-day pattern (Fig. VII.9). This intra-day seasonality is independent of the size of
the bin, and the index we consider, but characteristic for each index. Actually, this is not
true in the case of the returns as we already suggested in Sec. VII.3.3 from Fig. VII.4. If
we consider the odd moments (mean and skewness) of the returns, the behavior is basically
the same (noisy around zero) and without any particular pattern, independently of the bin
size (as can be seen in Figs. VII.2, VII.3 and VII.10). But for the case of the even moments
of returns, although they exhibit the well known U and inverted U-patterns, these patterns
depend on the bin size. This fact is well illustrated through Figs. VII.11 and VII.12 where
we have chosen 5 different values of bin size from T = 0.5 to T = 10 minutes. In these figures
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Figure VII.9: C-Pattern Volatilities: Stock average of the single stock volatility [σα(k)],
time average of the cross-sectional volatility 〈σd(k, t)〉 and the average absolute value of the
cross-sectional mean 〈|µd|〉 for the relative prices of the S&P 500. T = 1 and T = 5 minute
bin. Inset: CAC 40 (blue) and S&P 500 (black).

we show the time average of the cross-sectional volatility and kurtosis for the S&P 500 but
a similar bin size dependence can be shown for the CAC 40 or any other index and also for
the time average of the single stock volatility and kurtosis. By other hand the kurtosis is
a decreasing function of the size of the bin and the inverted U-pattern is evident just when
we consider “small” bin sizes, in our case this occurs for T = 1 and T = 0.5 minute bin
(Fig. VII.12). This represents a confirmation that on small scales the returns have heavier
tails, and on long time scales they are more Gaussian [96, 102–104].
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Figure VII.10: Time average of the cross-sectional skewness: Comparison of the intra-day
patterns for (a) T = 0.5 and (b) T = 1 against T = 10 minute bin for the S&P 500.
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Figure VII.11: Bin size dependence in the U-pattern volatilities: Time average of the cross-
sectional volatility for the S&P 500 for 5 different values of bin size T .
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Figure VII.12: Bin size dependence in the inverted U-pattern kurtosis: Time average of the
cross-sectional kurtosis for the S&P 500 for 5 different values of bin size T .

VII.6 Intra-day Abnormal Patterns
One of the motivations to explore into the intra-day seasonalities for relative prices was due to
Kaisoji’s previous work [101]. In his work he found that the upper tail of the complementary
cumulative distribution function of the ensemble of the relative prices in the high value of
the price is well described by a power-law distribution which when its exponent approached
two, the Japan’s internet bubble burst. Taking into consideration our recent findings we
suggest the use of the bin size independence for intra-day patterns in relative prices in order
to characterize “atypical days” for indexes and “anomalous behaviors” for stocks.
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Figure VII.13: S&P 500 Atypical Day: Time average of the cross-sectional mean and volatil-
ity (blue), cross-sectional mean and volatility of the S&P 500 during day 11 (red) and during
three days chosen at random (clear blue).

The time average of the cross-sectional moments represents the average behavior of a
particular index moment during an average day. In Fig. VII.8 each path represents the
evolution of a particular index moment for one of the days of the period under analysis (i.e.,
one path, one day moment). If we look directly into the prices of the CAC 40 and S&P 500,
we can observe during day 11 a fall of the prices of the stocks that compose both indexes.
During the days before and following day 11, the (index) moments move along our intra-day
pattern. Moreover, if we pick randomly one day from our period of analysis, in most of the
cases our index during that day will behave as our intra-day seasonality (as in Fig. VII.13),
but the one for day 11 will not. In Fig. VII.13 we show the (cross-sectional) intra-day
seasonalities for the (a) mean and (b) volatility in blue and in clear blue the respective
cross-sectional stock moments for 3 days randomly picked. The average behavior (of the
moments) of our index during these days moves along with our intra-day pattern. This is
not the case of the curve corresponding to the day 11 shown in red which clearly diverges
from the expected behavior. This is what could be called as an “atypical day” for the S&P
500.

We could used the same reasoning as before in order to characterize “anomalous behav-
iors” in stocks. Each path in Fig. VII.7 represents the average evolution of a particular
moment of one of the stocks that compose the S&P 500. The stock average of those single
stock moments represents the average behavior of that moment for an average stock during
an average day of our period of analysis. Meaning that if we pick randomly one stock from
our set of stocks, in most of the cases (its moments) will behave as the intra-day seasonality.
This is clearly illustrated in Fig. VII.14 where present the intra-day seasonalities for the
(a) mean and (b) volatility in blue and the respective single stock moments for 3 stocks
randomly picked in clear blue. As can be seen, the average behavior of the moments of these
stocks move along with our intra-day patterns. However this is not the case for the curves
shown in red which have been chosen on purpose to illustrate how in this case the stock 228
behaves in an anomalous way with respect to what is expected.
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Figure VII.14: Anomalous Stock Behavior: Stock average of the single stock mean and
volatility (blue), single stock mean and volatility of stock 228 (red) and from three stocks
chosen at random from the S&P 500 (clear blue).

VII.7 Discussion
In this chapter, we have analyzed the intra-day seasonalities of the single and cross-sectional
(or collective) stock dynamics by the evolution of the moments of its returns (and relative
prices) during a typical day. What we have called “single stock intra-day seasonalities”
is the average behavior of the moments of the returns (and relative prices) of an average
stock in an average day. In the same way, the cross-sectional intra-day seasonality is not
more than the average day behavior of an index moment. We presented these intra-day
seasonalities for returns (Figs. VII.2 and VII.3) and relative prices (Figs. VII.7 and VII.8)
and compared the stock average of single stock volatility [σα(k)], the time average of the
cross-sectional volatility 〈σd(k, t)〉 and the average absolute value of the equi-weighted index
〈|µd|〉 (Figs. VII.4 and VII.9).

Notably, in the case of the returns, is that these “patterns” actually depend on the size of
the bin. This fact was well illustrated with 5 different values of bin size through Fig. VII.11
for volatilities and Fig. VII.12 for kurtosis in which its inverted U-pattern is evident just
when we consider “small” bin sizes.

In the case of relative prices, the volatilities also exhibit the same kind of intra-day
pattern (Fig. VII.9), but contrary with the returns, it is independent of the size of the bin,
and the index we consider, but characteristic for each index. We suggested in Sec. VII.6
how this bin size independence of intra-day patterns in relative prices could be used in order
to characterize “atypical days” for indexes and “anomalous behaviors” in stocks. This was
presented in Figs. VII.13 and VII.14 where we presented our intra-day seasonalities for the
(a) mean and (b) volatility in blue and the respective the cross-sectional moments for 3 days
(and the single stock moments for 3 stocks) randomly picked in clear blue and we saw how
the average behavior of their moments move along with our intra-day patterns which was
not the case for the day 11 and the stock 228.



VIII – Conclusion

In this thesis, we studied issues that arise from the evaluation of the large deviation function
(LDF) from population dynamics algorithms. Different versions of the cloning algorithm
were used which differ among them in crucial aspects as the way in which the selection
mechanism is performed or on the restriction in the growth of the total population of copies
of the system. The LDF behaviour for these different versions and its related features were
analyzed. We gave particular attention to the dependence of the estimator with number
of clones Nc and the simulation time t (the two parameters introduced by the method) by
studying the finite-t and finite-Nc effects, its convergence in the infinite-t and infinite-Nc

limit as well as its behavior in the large system size L limit. Moreover, different ways and
methods to improve the LDF estimation were proposed.

In chapter II [P1] using a non-constant population approach of the cloning algorithm, we
analyzed the discreteness effects at initial times in population dynamics. We show how these
effects play an important role in the determination of the large deviation function which
may be obtained from the growth rate of an average log-population. Fluctuations at initial
times produce that some populations remain in their initial states for much longer than
others, producing a gap in their individual evolution. This induces a relative shift between
populations that lasts forever which supplemented with a short-time evolution affect strongly
the average population and thus the LDF estimation. We argue in Sec. II.4.1 that these lags
between populations could be compensated by performing a time translation (Eq. (II.2))
over populations in order to emphasize the effects of the exponential growth regime. This
along with a discarding of initial regimes in the evolution of the population surpasses the
influence of initial discreteness effects.

The finite-t and finite-Nc scalings in the evaluation of large deviation functions were stud-
ied in chapters III [P2], IV [P3] and V [P3] following two different approaches: an analytical
one, in chapter III, using a discrete-time version of the population dynamics algorithm [18],
and a numerical one, in chapters IV and V, using a continuous-time version [17, 19]. In
both cases, we derived that the deviations of large deviation estimator from the desired
value (which we called systematic errors) were small and behaved as 1/t and 1/Nc in the
large-t and large-Nc asymptotics respectively. Importantly, in chapter IV [P3] we showed
the validity of these results in more complex systems. Such scalings also provided a conver-
gence criterion to the asymptotic regimes of the algorithm: In order to ensure a correct LDF
evaluation, one has to confirm that the LDF estimator does present corrections (first) in 1/t
and (second) in 1/Nc with respect to an asymptotic value. We discussed in Secs. III.2.4.2
and IV.5 how these two versions differ on a crucial point which makes that an extension of the
analysis developed in chapter III cannot be done straightforwardly in order to comprehend
the continuous-time case in chapter IV and thus the observation of these scalings themselves
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is also non-trivial. This finite-t and finite-Nc scaling behavior was used in chapter IV [P3] in
order interpolate the large-t and large-Nc asymptotic value of the LDF estimator from the
measured values for finite and small t and Nc. This allowed us to propose an improved ver-
sion of the continuous-time cloning algorithm in Sec. IV.4.1 providing more reliable results,
less affected by finite-t and -Nc effects. We demonstrated numerically that the interpolation
technique is very efficient, by a direct comparison of the resulting LDF estimation with the
analytical value, which can be determined in the studied system. However, the validity of
the method and of these scalings were proved only for a simple one-site annihilation-creation
dynamics and for a contact process with L = 6 sites, leaving an analysis of the dependence
with the system size (number of sites) L pending.

In order to prove whether the finite-t and -Nc scalings observed in small (number of sites
L) systems are also valid in the large-L limit, we redefined these scalings in a more general
way in chapter VI [P4]. We assumed a t−γt (VI.1) and a N−γNcc (VI.2) -scaling behavior for
the LDF estimator. This redefinition allowed us to verify in large-L systems if effectively
γt ≈ 1 and γNc ≈ 1 and whether the extracted quantities from the application of the scaling
method represented the limits in t → ∞ and Nc → ∞. First, we considered a contact
process with L = 100 sites and two representative values of the parameter s. Although the
t−1-scaling and N−1

c -scaling were proved to hold for s < 0, this was not the case for s > 0,
being this fact valid in general for large-L systems. As the scaling method relied on the
validity of the t−1- and N−1

c -scalings, in Sec. VI.3.3 we showed how the determination of
the infinite-t and infinite-Nc limit of the LDF estimator is affected. In order to have a clear
picture of the change in the scalings of the LDF estimator, the analysis was extended to the
plane s− L where the exponents γt and γNc were computed and characterized for a grid of
values of the parameters (s, L). Moreover, we discussed how this breakdown in the scalings
in the large-L limit could be related to the dynamical phase transition of the contact process.

Although our study on the cloning algorithm is closed in chapter VI [P4], the study of
rare events is complemented with chapter VII [P0] using a completely different approach.
This is the empirical study of the patterns that hide behind financial time series, known as
stylized facts. We analyzed the intra-day seasonalities of the single and cross-sectional (or
collective) stock dynamics by characterizing the dynamics of a stock (or a set of stocks) by
the evolution of the moments of its returns (and relative prices) during a typical day. We
showed how these patterns actually depend on the size of the bin in the case of the returns.
However, in the case of relative prices, these patterns are independent of the size of the bin,
and the index we consider, but characteristic for each index. We suggested in Sec. VII.6 how
this bin size independence of intra-day patterns in relative prices could be used in order to
characterize “atypical days” for indexes and “anomalous behaviours” in stocks.



IX – Perspectives

Below we mention some questions that arose from our study which remain open and may
constitute possible directions for future research.

The analysis of the discreteness effects at initial times in population dynamics developed
in chapter II [P1] (using a non-constant population approach of the cloning algorithm), was
performed only on a simple system: a one-site annihilation-creation dynamics (Sec. I.8.1).
However we hope it can be extended to more complex phenomena so that our results can
be verified or else, more interesting features can be found. Nevertheless even for that simple
system there remain pending issues. Some of them related to the fact that the duration of
the initial discrete-population regime could be understood from an analytical study of the
population dynamics itself. On the other hand, the results presented support a power-law
behaviour in time of the variance of the delays. Additionally, the distribution of the delays
was found to take an universal form, after rescaling the variance. Both of which could be
explored deeply.

From a constant population approach, as the one used in chapters III, IV, V and VI,
is still possible to reconstruct the evolution in time of the population of clones. Thus, it
would result interesting to compare both approaches but importantly, the properties of the
reconstructed populations in contrast with actual populations (obtained from a non-constant
population as in chapter II).

From the analytical study of the finite-t and -Nc scalings of the LDF estimator developed
in chapter III [P2], we mention two open questions. The first is related to the precise estimate
of the error due to a non-infinitesimal time interval ∆t between cloning steps: As explained in
Sec. III.2.4.1 and Sec. III.2.4.2, taking the ∆t→ 0 limit is important in our analysis, in order
to make the estimator converge to the correct LDF. From a practical point of view, taking
this limit can however be problematic, since it requires infinitely many cloning procedures
per unit time (as ∆t→ 0). Interestingly, most of existing algorithms do not take such a limit
(for instance the original version of the algorithm, Ref. [18]). Empirically, one thus expects
that the error goes to zero as Nc →∞ while keeping ∆t finite. Within the method developed
in chapter III [P2] the analytical estimation of this error is challenging (see Sec. III.2.4.2)
and remains an open problem.

The second question is related with possible extensions of the formulation developed in
chapter III [P2]. As the cloning procedure is performed for a fixed time interval, the formu-
lation cannot cover the case of algorithms where ∆t itself is statistically distributed, as in
continuous-time cloning algorithms [19]. Moreover, the formulation is limited to Markov sys-
tems, although population dynamics algorithms are applied to chaotic deterministic dynam-
ics [33, 70] or to non-Markovian evolutions [273]. Once one removes the Markov condition in
the dynamics, developing analytical approaches becomes more challenging. However, as the
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physics of those systems are important scientifically and industrially [274], the understanding
of such dynamics cannot be avoided for the further development of population algorithms.

Results evident to question whether the numerical study developed in (specially) chap-
ter IV [P3] can be extended to systems presenting dynamical phase transition (DPT) in the
form of a non-analyticity of the LDF. In particular, in this context, it would be useful to
understand how the dynamical phase transition of the original system translates into anoma-
lous features of the distribution of the LDF estimator in the cloning algorithm. Although
the system used in chapter IV [P3] (the contact process, Sec. I.8.2) is know to exhibit a
DPT in the L→∞ limit [19, 35, 74, 252], the finite-t and -Nc scalings of the LDF estimator
were studied on a small system with L = 6 sites, for which the effects of the DPT cannot be
observed. In chapter VI [P4] we extended our analysis to a large-L contact process (L = 100
sites, where DPT manifests [19, 258]) showing evidence of a changing in the LDF scalings
with the size of the system L which could be related to a DPT. However, a study of the
DPT effects would require a large-Nc and -t configuration, which under our approach was a
task not possible to fulfill (as the main objective in chapters IV [P3] and VI [P4] was the
possibility of extracting the infinite-Nc infinite-t limit of the LDF estimator from data for a
small number of clones Nc and time t).

Taking in consideration that is well know that the existing methods [12, 13, 18, 265, 266]
perform poorly in the vicinity of a dynamical phase transition, or they are numerically expen-
sive in order to obtain accurate estimations [266–268] developing if not important finite-size
effects [22], the analysis of this problem in the large-t and -Nc limits is not necessarily the
best option. Recently has been proposed a promising method [85, 259] which combines the
existing cloning algorithm [7, 12, 13, 17–19, 265, 266] with a modification of the dynam-
ics [88–91, 275–277] resulting in a significant improvement of its computational efficiency.
The method was successfully applied to the study of the dynamical phase transition of 1D FA
model [42] using a relatively small Nc and L. The implementation of this method will pro-
vide in a next stage a clear contrast between the results obtained following the two different
approaches and a better understanding of their limitations and advantages.
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