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Abstract

We present a classification of differential Galois groups over Laurent series fields,

where the base field is of characteristic 0 and algebraically closed. We use the deriva-

tive z′ = z d
dz
.We start with an introduction to differential algebra, Picard-Vessiot

theory, and differential Galois theory. We then go into formal local theory, construct-

ing the Universal Picard-Vessiot ring of our field and show that the only possible

groups that arise are Ga, Gn
m, Z/mZ and their direct products.
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1 Introduction

1.1 Contents of the Thesis

We start here in Section 1 with an introduction to the theory of differential algebra.

We first introduce some motivation and then define what types of maps are derivations

in arbitrary rings. We then talk about the types of differential equations we will study,

their solutions, and the relationships between them. This follows the treatment in

the book by Singer and Van der Put [Van03], which will also be our main source for

most of the expository material, the one by Magid [Mag91], and the lecture notes of

Kovacic [Kov06].

In the next Section, we delve into Picard-Vessiot theory. We give the definition

of Picard-Vessiot rings, show their uniqueness and existence, and examples of how to

compute them. We then define the differential Galois group and prove that it is a

linear algebraic group. We show how for finite extensions, classical and differential

Galois groups agree. We demonstrate an analog of the classical Galois correspondence,

and we introduce the concept of Liouvillian extensions.

For the final Section we focus on differential equations with their coefficients being

Laurent series over algebraically closed fields of characteristic 0. We construct the

universal Picard-Vessiot ring for these fields, which is the analog of the algebraic

closure. For this, we first show how we compute all finite extensions using Hensel’s

lemma based on the proof given by Voelklein [Voel96]. We finish this section by
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showing that the only potential Galois groups over these fields are Ga, Gn
m, Z/mZ,

and their direct products by altering the arguments of Kovacic [Kov69]. This is with

respect to the derivative δ(z) = z d
dz
.

1.2 Differential Algebra

Differential Galois Theory first originated in the search for an analog of Galois the-

ory. Sophus Lie thought that Lie groups generated by solutions to linear differential

equations could be studied to determine whether said equation could be solved with

”quadrature”, that is, with what we now consider elementary functions. While Lie

wasn’t successful, Picard was able to show that symmetries in the equations formed

a group, and then Vessiot proved that if this group was connected and solvable, then

the equation could be solved with quadratures. In 1908 Plemelj proved that all linear

algebraic groups occurred as s differential Galois group of C(z). Kolchin later for-

malized the theory, basing it on the previous contributions of Picard and Vessiot and

Ritt’s work on the development of differential algebra [Bor01].

We now begin the exposition of the basic concepts of differential algebra. All rings

in this thesis will be assumed to contain Q and be commutative.

Definition 1.1. A derivation δ on a ring R is a map δ : R → R such that for all

r, s ∈ R:

1. δ(r + s) = δ(r) + δ(s),

2. δ(rs) = δ(r)s+ rδ(s).
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We will often abbreviate δ(r) with r′. Notice how the requirements above are

the usual sum and product rule of the usual derivative used in calculus. A simple

induction shows that δ(xm) = mx′xm−1, which should give intuition as to why we

require R to be of characteristic 0. We can extend the usual definitions we use

in classical rings to the differential setting: a differential homomorphism is a ring

homomorphism that commutes with the derivation, a differential ring extension S of

a differential ring R is a ring extension such that the derivation of S, when restricted

to R, coincides with the original derivation in R, and a differential ideal I is an ideal

such that δ(I) ⊂ I.

Examples 1.2. Some basic examples of differential rings:

• Any ring R with the trivial map δ(r) = 0 for all r ∈ R is a differential ring.

• The ring C[z] equipped with the map δ(p(z)) = znp′(z), where p′(z) denotes

the usual derivative for polynomials and n ∈ N, is a differential ring.

• The ring K((z)) for K any algebraically closed field of characteristic 0 equipped

with the map δ(p(z)) = zp′(z) where p′(z) denotes the usual derivative. We will

focus on this type of ring later on in the paper.

• The only map that is a derivation onQ is the zero map. Suppose δ is a derivation

on Q. Then, since δ is additive, for positive n ∈ Z, δ(n) = nδ(1), and δ(−n) =

nδ(−1), and δ(−1) = −δ(1) + δ(−1), so δ(1) = 0 (and so is δ(−1)). Since

δ(0) = 2δ(0), δ(0) = 0. Thus, δ is the zero map on the integers. Then 0 =
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δ(1) = δ(q · 1/q) = δ(q)1/q + δ(1/q)q so δ(1/q) = −δ(q)/q2 = 0, so by the

product rule δ(a/b) = 0 for any a, b ∈ Z, b ̸= 0.

A natural question to consider is whether the derivation on R induces a derivation

on R/I, which we answer as follows:

Proposition 1.3. Let (R, δ) be a differential ring. Then δ̃(r + I) = δ(r) + I is a

derivation on R/I if and only if I is a differential ideal.

Proof. Suppose I is a differential ideal, and that r+I = s+I. Then, δ̃(r−s+I) = 0,

so δ(r)− δ(s) + I = 0, and δ(r) + I = δ(s) + I, so δ̃ is well defined. To check it is a

derivative is straightforward since δ is.

If I is not differential, then there is some r ∈ I such that δ(r) /∈ I, so δ̃(0+I) = 0,

but δ(r + I) ̸= 0, a so δ̃ is not well defined.

We see that derivations work nicely with localization:

Proposition 1.4. Let (R, δ) be a differential ring, and let S ⊂ R be a multiplicatively

closed set. Then, there is a unique derivation ∆ on S−1R such that ι ◦ δ = ∆ ◦ ι,

where ι is the canonical map R → S−1R.

Proof. For uniqueness, suppose we have such a ∆. Then,

∆
(r
s

)
= ∆

(r
1

) 1

s
+
r

1
∆

(
1

s

)
=
δ(r)

s
+
r

1
∆

(
1

s

)
(1.1)



5

but recall that for any derivation, ∆(1) = 0, and so

0 = ∆
(s
s

)
=
δ(s)

s
+
s

1
∆

(
1

s

)

and hence

∆

(
1

s

)
= −δ(s)

s2

Plugging into (1.1), we get

∆
(r
s

)
=
δ(r)

s
− r

1

δ(s)

s2
=
δ(r)s− rδ(s)

s2

which agrees with our usual quotient rule. To check this is well-defined, we consider

R[ϵ], where ϵ2 = 0. We recall from ring theory that a + bϵ is a unit if and only if a

is a unit in R. Moreover, a map δ : R → R is a derivation if and only if it induces a

ring homomorphism φ : R → R[ϵ] of the form φ(r) = r + δ(r)ϵ. If R is a derivation,

then

φ(1) = 1 + δ(1)ϵ = 1 + 0 = 1

φ(r + s) = r + s+ δ(r + s)ϵ = r + δ(r)ϵ+ s+ δ(s)ϵ = φ(r) + φ(s)

φ(rs) = rs+ δ(rs)ϵ = rs+ δ(r)sϵ+ rδ(s)ϵ+ δ(r)δ(s)ϵ2 = φ(r)φ(s)

and checking the other direction goes similarly. Now, consider one such map φ. Then,

we can compose this map with the canonical map ι : R[ϵ] → S−1R[ϵ]. Notice that for

s ∈ S, ι ◦φ(s) = s/1 + δ(d)ϵ/1. Since s/1 is a unit, we have ι ◦φ(s) is also a unit, so

we can extend ι◦φ to a ring homomorphism φ̃ : S−1R → S−1R[ϵ] which has the form
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φ̃(x) = x + ∆(x)ϵ, so ∆ is an extension of δ on S−1R, so we can conclude that our

previously calculated map is well defined. A cumbersome manipulation shows that

this map is indeed a derivative.

Now, we define a useful generalization of the constants of regular calculus:

Definition 1.5. Given a differential ring (R, δ), a constant is an element r ∈ R such

that δ(r) = 0.

This subset has many important properties:

Proposition 1.6. Let (R, δ) be a differential ring and denote its subset of constants

C. Then:

1. C is a subring of R.

2. If R is a field, then so is C.

Proof. Clearly C is non empty.

1. If c, k ∈ C, then δ(k + c) = δ(k) + δ(c) = 0, δ(kc) = δ(k)c+ kδ(c) = 0.

2. Suppose c ∈ C is non zero. Then, δ(cc−1) = δ(c)c−1 + cδ(c−1) = 0, and since

δ(c) = 0, δ(c−1) = 0.

Proposition 1.7. Suppose (F, δ) is a differential field, and K/F is a differential field

extension. Then, if k ∈ K is algebraic over the field of constants of F , then k ∈ CK,

the field of constants of K.
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Proof. Note that by induction, δ(xn) = xδ(xn−1)+x′xn−1 = (n−1)x′xn−1+x′xn−1 =

nx′xn−1. Let P (x) = xn + an−1x
n−1 + · · · + a0, ai ∈ CF be the monic minimal

polynomial of k. Then,

P ′(k) = nk′kn−1 + (n− 1)an−1k
′kn−2 + · · ·+ a1k

′ = 0

k′(nkn−1 + (n− 1)an−1k
n−2 + · · ·+ a1) = 0

and since P is minimal, k′ = 0.

Given a differential field (F, δ), consider elements a1, . . . , an. By a
(n)
1 we mean the

nth derivative of a1. The determinant of the matrix

a1 a2 . . . an

a′1 a′2 . . . a′n

...
...

a
(n−1)
1 a

(n−1)
2 . . . a

(n−1)
n


is called the wronskian, sometimes denoted wr. This is useful to determine the linear

dependency of the elements over FC .

Proposition 1.8. Elements a1, . . . , an ∈ F are linearly dependent over FC if and

only if their wronskian is 0.

Proof. Suppose the ai are linearly dependent over FC . Then for some constants ci,

we have
∑n

i=1 ciai = 0, which implies that
∑n

i=1 cia
(m)
i = 0 for every m. Thus, the

columns of the matrix are linearly dependent so wr(a1, . . . , an)=0.
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Conversely, if the wronskian is 0, there are elements ci ∈ F such that
∑n

i=1 cia
(m)
i =

0 for 0 ≤ m ≤ n − 1. We must show that we can choose the ci ∈ FC . For n = 1,

the assertion is trivial. Suppose it holds for any subset of n − 1 elements of F , and

that we have n elements a1, . . . , an ∈ F . If the columns of the elements a2, . . . , an are

linearly dependent over F , they are also over FC because of the induction hypothesis.

Thus, a1, . . . , an are linearly dependent over FC . Thus, we may assume without loss

of generality that c1 = 1 and that the columns corresponding to a2, . . . , an are linearly

independent over F . For 0 ≤ m ≤ n− 2 we have

0 =

(
n∑
i=1

cia
(m)
i

)′

=
n∑
i=1

cia
(m+1)
i +

n∑
i=1

c′ia
(m)
i = 0 +

n∑
i=1

c′ia
(m)
i

Since c1 = 1, we know c′1 = 0, and by the assumption that a2, . . . , an are linearly

independent, we know c′i = 0 for all i. Thus, all ci are constants.

The objective of Picard-Vessiot Theory is to study differential extensions, and the

following propositions ensure that the derivative behaves well in them as long as the

characteristic of the base field is 0.

Proposition 1.9. Suppose F is a differential field, and F (x)/F is a transcendental

extension. Given an a ∈ F (x), there is a unique derivation on F (x) such that F (x)/F

is a differential field extension and δ(x) = a.

Proof. Let δ and γ be derivations on F (x) that extend the one on F and δ(x) = γ(x) =

a. For any p ∈ F (x), p = bnx
n+ bn−1x

n−1+ · · ·+ bkxk, bi ∈ F (x), so δ(p) = δ(bn)x
n+

bnδ(x
n)+ · · ·+δ(bk)xk+bkδ(xk) = δ(bn)x

n+nbnax
n−1+ · · ·+δ(bx)xk+(k−1)bkax

k−1
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and by our assumptions, this is the same as γ(bn)x
n + bnγ(x

n) + · · · + γ(bk) = γ(p),

so δ = γ.

The following is a very important fact:

Proposition 1.10. Suppose F is a differential ring, and K/F is an algebraic exten-

sion. Then δ has a unique extension to a derivation of K.

Proof. We show uniqueness first. Let a ∈ K and let p(x) =
∑n

i=0 bjx
j be its minimal

polynomial. Then, if ∆ is a derivation,

0 = ∆(p(a)) =
n∑
i=0

∆(bia
i) =

n∑
i=0

b′ja
j +∆(a)

n−1∑
i=0

(i+ 1)bi+1a
i

Since the polynomial on the right end has degree less than p, it must not vanish

at a. Note that ∆ = δ for elements in F . Thus, we can clear the above to get that

∆(a) = −
∑n

i=0 b
′
ja
j∑n−1

i=0 (i+ 1)bi+1ai

To show existence, consider the map ϕ : F [x] → K, ϕ(q) = d(q)(a) + q′(a)∆(a),

where ∆(a) is as above and if q =
∑n

i=0 qix
i, then d(q) =

∑n
i=0 q

′
ix
i. Then, note that

ϕ(t) = δ(t) for all t ∈ F , and ϕ(p) = 0. We also have that

ϕ(gh) = d(gh)(a) + (gh)′(a)∆(a) = ϕ(g)h(a) + ϕ(h)g(a) (1.2)

so ϕ vanishes at all multiples of p, which means it factors through F (a). Thus, we

have a linear map δ̃ : F (a) → K which agrees with δ on F and is a derivation by

(1.2). By Zorn’s Lemma (note extensions are contained in each other bounded by

K), there is a derivation which extends to K.
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A differential ring R is simple if its only differential ideals are (0) and R.

Proposition 1.11. Suppose F is a differential field, and let R be a simple differential

ring extension of F . Then, R is an integral domain.

Proof. Let r ∈ R, r ̸= 0 be non nilpotent, and consider I = {s ∈ R|rns =

0 for some n ≥ 0}. Since 0 ∈ I, it is non-empty. If rns = rmt = 0, rn+m(s + t) = 0,

and if l ∈ R, then rnsl = 0. Thus, I is an ideal. Furthermore, (rn+1s)′ = rns+s′rn+1 =

0 and since rns = 0, rn+1s′ = 0 so s′ ∈ I, so I is a differential ideal. Clearly 1 /∈ I, so

I = (0) by our simplicity assumption. Hence, r is not a zero divisor.

Now, we will show the nilradical NR is trivial. Suppose r ∈ NR, and let n be

minimal such that rn = 0. Then, (rn)′ = r′nrn−1 = 0. Since nrn−1 is not zero, r′

is a zero divisor. By the contrapositive of the conclusion of the previous paragraph,

r′ being a zero divisor implies it is nilpotent, so r′ ∈ NR, so it is a differential ideal.

Since NR ̸= R, NR must be (0), and so there are no nilpotent elements. Thus, R is

an integral domain.

1.3 Linear Differential Equations

When one thinks of a linear ordinary differential equation, something like this is what

most likely comes to mind:

y(n) + an−1y
(n−1) + · · ·+ a0 = 0



11

To formalize this in our algebraic setting, given a differential ring R, we define the

ring of differential polynomials in a single variable, R{{y}} = R[y, y′, y′′, y(3) . . . ], with

(y(n−1))′ = y(n). Note that by Proposition (1.9), there is no ambiguity introduced by

extending our derivation in this way.

Then we can think about ODEs in the following way: the equation is a given element

p ∈ R{{y}}, and b is a solution for p if the evaluation (differential) homomorphism at

b, evb(p) = 0. We will call this type of equations scalar linear differential equations.

Of course, a differential ring may not contain a solution for a particular p.

Given p ∈ R{{y}}, we say it is homogeneous if a0 = 0. This type of equation can be

viewed in terms of matrices. We can construct a matrix M(p) called the companion

matrix of p, and look at the matrix differential equation Y ′ = M(p)Y , where Y =

(y, y′, y′′, . . . , y(n−1))⊤, with the differentiation extended to vectors component-wise,

and

M(p) =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

...
...

...
...

...
...

0 0 0 0 . . . 1

−a1 −a2 −a3 −a4 . . . −an−1


This is just a particular case of a matrix differential equation, in which we replace

M(p) with any arbitrary n×n matrix with entries in R, and the coordinates of Y are

not necessarily related. As with vectors, we extend the derivation on R entry-wise.
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One can check that this extension satisfies both the regular addition and product

rule, and that (A−1)′ = −A−1A′A−1 for invertible A ∈Mn(R).

From now until the end of this section, we will work with a field F with a field of

constants C. It is easy to see that solutions to a particular equation form a C−vector

space. We can study the solution space of matrix differential equations. By the

dimension of the equation, we mean the size of the matrix A.

Proposition 1.12. Let Y ′ = AY be an n-dimensional matrix differential equation

over F , and let v1, v2, . . . vm ∈ F n be solutions to this equation. If the vi are linearly

dependent over F , then they are linearly dependent over C.

Proof. We do this by induction on m, with m = 1 being trivial. Assume the propo-

sition is true for any list of m− 1 solutions and suppose we have linearly dependent

v1, . . . , vm. Without loss of generality v1 =
∑m

i=2 aivi, with ai ∈ F not all 0. We

have v′1 =
∑m

i=2 a
′
ivi +

∑m
i=2 aiv

′
i, and since v1 is a solution, we know that Av1 =∑m

i=2 a
′
ivi+

∑m
i=2 aiv

′
i. Now, we also have that since Av1 = A(

∑m
i=2 aivi) =

∑m
i=2 aiv

′
i.

Plugging back in, we get that
∑m

i=2 aiv
′
i =

∑m
i=2 a

′
ivi +

∑m
i=2 aiv

′
i, so

∑m
i=2 a

′
ivi = 0,

but by the induction hypothesis, any proper subset is linearly independent, so a′i = 0,

so ai ∈ C for all i.

Since any n + 1 vectors in F n are linearly dependent over F , we know that the

dimension of the solution space is ≤ n. A very important definition is the following:

Definition 1.13. Suppose R is a differential ring that contains F , and let Y ′ = AY be
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a matrix differential equation over F . Then, a matrix M ∈ GLn(R) is a fundamental

matrix for Y ′ = AY if M ′ = AM .

Proposition 1.14. Suppose R and Y ′ = AY are as above. Then, given two funda-

mental matrices M,B for Y ′ = AY , M = BP where P ∈ GLn(C).

Proof. Since M and B are invertible, let M = BP . Then,

AM = A′ = (BP )′ = B′P +BP ′ = ABP +BP ′ = AM +BP ′,

so P ′ = 0.

From Proposition (1.12), we know that the dimension of the solution space might

be less than n, in which case no fundamental matrix can be constructed without

extending our field F . These extensions will be the main focus of Picard-Vessiot

theory, but before we finish the chapter, we introduce a third way in which we can

look at differential equations.

Definition 1.15. A differential module (M,γ) is a finite dimensional F -vector space

equipped with a map γ : M → M such that γ(am) = a′m + aγ(m) for all a ∈ F ,

m ∈M , where ′ stands for the derivation in the field.

Clearly, such a map γ is determined by the image of a basis of the vector space.

Given a basis e1, . . . , en, with γ(ei) = −
∑n

j=1 aj,iej. We then define matrix A = (ai,j).

Notice that then for any m =
∑n

i=1 biei ∈ M , we have γ(m) = γ (
∑n

i=1 biei) =∑n
i=1 b

′
iei +

∑n
i=1 biγ(ei). The second sum can be worked on:

n∑
i=1

biγ(ei) = −
n∑
i=1

bi

(
n∑
j=1

aj,iej

)
= −

n∑
i=0

(
n∑
j=0

(ai,jbj)ei

)
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Thus, the equation γ(m) = 0 is equivalent to
∑n

i=1 b
′
iei =

∑n
i=0

(∑n
j=0(ai,jbj)ei

)
,

which we can put in matrix form with Y ′ = AY , with Y = (b1, . . . , bn). Thus, a

choice of basis of a differential module gives rise to a matrix differential equation. We

will call vectors m such that γ(m) = 0 horizontal.

Suppose we decide to change the basis of M . Then, Y = BZ, where B is the

change of basis matrix and Z is a vector with the new basis. We have (BZ)′ =

B′Z + BZ ′, and plugging into Y ′ = AY , we get BZ ′ = (AB − B′)Z, and since B is

invertible, Z ′ = (B−1AB − B−1B′)Z. We will call two matrix differential equations

equivalent if they come from the same differential module, or equivalently, they are

equivalent if they are given by A and Ã, and there is a B ∈ GLn(F ) such that

Ã = B−1AB −B−1B′.

Unlike scalar linear differential equations, any matrix differential equation can

be obtained by a differential module, since we can just take M = F n and pick the

standard basis. This fact will be important, as we will want to exploit the vector

space structure in the last section. Note that a matrix solution B for Y ′ = AY

is fundamental if and only if each of the columns of B satisfies b′ = Ab and they

are linearly independent over the constants of the differential module (Proposition

(1.12)). We get the following corollary:

Corollary 1.16. The equation Y ′ = AY over F has a fundamental matrix B ∈

GLn(F ) if and only if its differential module M has a basis consisting of horizontal

vectors.
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2 Picard-Vessiot Theory

2.1 Picard-Vessiot Rings

This chapter is dedicated to the formalization of ideas of Picard and Vessiot, who,

as previously noted, worked on the solutions of differential equations by quadrature.

Here, we will assume that F is a differential field, and that it has an algebraically

closed field of constants C.

Definition 2.1. Suppose R is a differential extensions of F , and that Y ′ = AY is a

differential equation with A ∈Mn(F ). Then we say R is a Picard-Vessiot ring if:

1. R is a simple differential ring.

2. There exists a matrix B ∈ Mn(R) which is a fundamental solution matrix for

the given equation.

3. R is generated by F , the entries of B, and 1/ det(B).

Here we work out some examples, all of them over (F, δ) unless otherwise stated.

Example 2.2.

Y ′ =

0 t

0 0

Y
We check that if B is a fundamental matrix for the equation, then we have:a′ b′

c′ d′

 =

0 t

0 0


a b

c d


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Thus, a′ = tc, b′ = td, c′ = 0, d′ = 0. If there is an element α ∈ F such that δ(α) = t,

we can just set a = α, b = α+ 3, c = d = 1 to get a fundamental matrix. Thus, F is

already a Picard-Vessiot Ring.

However, if there is no such element, then we consider F [α], extending the deriva-

tion so that δ(α) = t. Then, we can construct the same fundamental matrix as

before. Clearly, F [α] is generated by F and α, so we only need to check that it

is simple. Let I be a non trivial ideal of F [α]. Since F is a field, F [α] is a prin-

cipal ideal domain, and thus I must be generated by some element of the form

αn + . . . b1α + b0, n > 0 and bi ∈ F for all i. If we differentiate this generator,

we get (na + b′n−1)α
n−1 + (b′n−2 + (n − 1)t)αn−2 + . . . b1. If I is a differential ideal,

then this expression must equal 0 because of its degree, and so we have that each

coefficient is 0. Thus, nt + b′n−1 = 0, so −b′n−1/n = t, which is a contradiction since

we assumed that F had no such element. Thus, F [α] is simple and a Picard-Vessiot

ring for our equation.

The following example is slightly more complicated but uses the same technique:

Example 2.3. Y ′ = [a]Y for a ̸= 0.

Suppose this is not solvable in F . Then, we consider F [α, α−1], with the derivation

extended to δ(α) = a. We have now two cases:

If F doesn’t contain any solution for the equation y′ = may for any non zero

integer m, we claim that F [α, α−1] is a Picard-Vessiot ring (note that det[a] = a). We

can use the same technique as before to show this ring is simple. Namely, suppose I
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is a non trivial ideal of F [α, α−1]. Then, I is generated by some element of the form

T = αn + . . . b1α+ b0, n > 0 and bi ∈ F . If I is differential, then T ′ is in I. However,

notice that (αn)′ = naαn, so it must be the case that T ′ = naT , which means that

b′0 = nab0, contradicting our assumption that y′ = may didn’t have solutions in the

field. Thus, F [α, α−1] is a Picard-Vessiot ring. C[x] with the usual derivation and

the equation y′ = y exhibit the behavior of this case, and the Picard-Vessiot ring is

C[x, ex, e−x].

Without the above assumption, we see that the ideal can be non trivial for the

m that do have solutions. Namely, we pick the least positive m such that this is the

case, and we consider F [α, α−1]/(αm − y0) = F [β, β−1], where y′0 = may0 and β is

the image of α. Note that β′ = aβ and that βm = y0. We check that this ring is

simple. Let I be a non trivial ideal. Then, consider the minimum d for which there

is an element p = td + · · · + c0. As before, we must have that p′ = adp, and so

c′0 = adc0. Note that d < m, contradiciting the minimality of m. Thus, F [β, β−1] is

a Picard-Vessiot ring for this equation.

From our examples, the following should be intuitive:

Proposition 2.4. Given F and a matrix differential equation Y ′ = AY over F ,

there exists a differential ring extension of F such that it is a Picard-Vessiot Ring for

Y ′ = AY .

Proof. Define an element Xij for every entry of A and consider the ring extension

F [Xij, 1/ det], where 1/det is the inverse of the determinant of the matrix formed by
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the Xij. Extend the derivation so that (Xij) is a solution to the equation. Then, if

we take the quotient by a maximal differential ideal, we will have a Picard-Vessiot

Ring for the equation.

Proposition 2.5. Suppose R1 and R2 are Picard-Vessiot rings over F for the same

differential equation Y ′ = AY . Then, they are isomorphic.

Proof. Consider R1 ⊗F R2. One can check that there is an induced differentiation

(r ⊗ s)′ = r′ ⊗ s + r ⊗ s′, making the tensor product a differential ring. Let I be

a maximal differential ideal of the tensor product, and let R = R1 ⊗F R2/I, so R

is simple. Given c ∈ CR, the ideal (c) is differential since (kc)′ = k′c ∈ (c) for all

k ∈ R. Since (c) is non-zero, it must be all of R, so c is a unit. Thus, CR is a

field. Moreover, since CF is algebraically closed, this means that CR = CF . There are

canonical differential homomorphisms φi : Ri → R, and by simplicity of the Ri, each

φi is an isomorphism to its image. Given B1 ∈ GLn(R1) and B2 ∈ GLn(R2) respective

fundamental matrices, we have that φ(Ri) is generated over F by the entries of φ(Bi)

and φ(1/ det(Bi)). Now, the φ(Bi) are fundamental matrices for the equation over R,

so φ(B1) = φ(B2)P where P is a constant matrix. However, this means that φ(R1)

and φ(R2) are the same (generators differ by constants which have inverses), so R1 is

isomorphic to R2.

Remark 2.6. The kernel of a differential homomorphism is a differential ideal: If

r ∈ ker(φ), the φ(r′) = φ(r)′ = 0. Thus, simple differntial rings are isomorphic to

their homomorphic images.
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There is an equivalent definition for Picard-Vessiot rings as seen from the differ-

ential module perspective.

Definition 2.7. Suppose (M,γ) is an F -differential module of finite dimension. Then

R is a Picard-Vessiot Extension for F if:

1. R is simple differential.

2. The vector space V defined as the kernel of γ over R ⊗F M is of dimension n

over FC .

3. If e1, . . . , en is a basis of M over F , then R is generated by the coefficients of

all v ∈ V with respect to the basis e1, . . . , en of R⊗F M over F .

It is easy to see this definitions are equivalent by realizing that Condition 2 of

(2.7) is equivalent to saying that there are n linearly independent vectors which are

solutions to the matrix differential equation induced by the differential module, thus

allowing for a fundamental matrix to be created. The third conditions in both of the

definitions are also analogous, since coefficients will correspond to the matrix entries.

If we have two equivalent matrix differential equations, then one’s Picard-Vessiot

extension will also be one for the other. If the fundamental matrix is P and the base

change matrix is B, then B−1P = ÃB−1P where Ã is as in the previous section.

The reader might notice that in contrast with regular Galois theory, our extensions

are ring extensions and not field extensions. One can define the Picard-Vessiot field

of an extension as the field of fractions of its Picard-Vessiot Ring, which we have used
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in some of the propositions above. A field K is a Picard-Vessiot field if and only if

it adds no new constants, there is a matrix with entries in K that is a fundamental

matrix for the given differential equation, and K is generated by the entries of this

fundamental matrix over the base field F . For a proof of this equivalence, we refer the

reader to [Van03], Proposition 1.22. It turns out it is sufficient to study Picard-Vessiot

rings, since it turns out that the differential Galois groups of the Picard-Vessiot ring

and its field of fractions are isomorphic. This fact will be shown in the next chapter.

We end this subsection by showing that finite Galois extensions are Picard-Vessiot

extensions. Thus, we will be able to conclude that for these extensions, the differential

and the usual Galois group are the same. In the last section we will show that all

the finite Galois extensions of a Laurent series field correspond to adjoining roots,

which will allow us to determine that all finite differential Galois groups are of the

form Z/mZ.

Proposition 2.8. Suppose K is a finite Galois extension of the differential field F

and that G is its Galois group. Then there is a matrix B ∈ Mn(F ) for which K is a

Picard-Vessiot extension.

Proof. By (1.10), there is a unique extension of the derivation of F to one in K.

We first show that σ ∈ G are not only automorphisms, but also differential ones.

Consider the map ψ(k) = σ−1(σ(k)′) for k ∈ K. We have

ψ(k + l) = σ−1(σ(k + l)′) = σ−1(σ(k)′) + σ−1(σ(l)′) = ψ(k) + ψ(l)
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and

ψ(kl) = σ−1(σ(kl)′) = σ−1((σ(k)(σ(l))′)) = σ−1(σ(k)′σ(l) + σ(k)σ(l)′)

= lσ−1(σ(k)′) + kσ−1(σ(l)′) = lψ(k) + kψ(l)

so ψ is a derivation extending that on F , but since ′ is unique, we must have

σ−1(σ(k)′) = k′, so σ(k)′ = σ(k′).

Since K is Galois, we can write K = F (w1, . . . , wm). Note that if c is a constant,

for σ ∈ G, σ(c)′ = σ(c′) = 0, so the C-span of the wi is invariant under the action of

G. We will call this C-space V , and write a basis v1, . . . , vm for it. Given a σ ∈ G,

note that if we apply it to the basis vi we will get a basis ti =
∑n

j=1 cjivj. But then, we

also have that σ(v′i) = t′i =
∑n

j=0 cjiv
′
i. Thus, for every σ, we can arrange the cij into

a matrix Aσ ∈ Gln(C), for which σ(W ) = WAσ, where W is the wronskian matrix of

the vi. Since the vi are a basis, Proposition (1.8) ensures that W is invertible.

Finally, consider the matrix B = W ′W−1. Then

σ(B) = σ(W ′W−1) = σ(W )′σ(W )−1 = (WAσ)
′(WAσ)

−1 = W ′AσA
−1
σ W−1 = W ′W−1

So B ∈ Mn(F ). Clearly, W ′ = BW , so W is a fundamental matrix to the equation

Y ′ = BY . Note that the wi are in V , so K is generated over F by the entries of

B, and since K is a field, it is simple. Thus, K is a Picard-Vessiot extension for the

equation Y ′ = BY over F .
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2.2 The Differential Galois Group

Here we begin the study of the differential analogue of the Galois group. We maintain

the previously made assumptions on F and C.

Definition 2.9. Let R be a Picard-Vessiot ring of F . We call the group of differen-

tial F -algebra automorphims of R the differential Galois group of R, and denote it

Gal(R/F ).

We can view Gal(R/F ) as a subgroup of Gln(C): suppose R is a Picard-Vessiot

ring with respect to the equation Y ′ = AY . If B is a fundamental solution, we

have σ(B)′ = σ(B′) = σ(AB) = Aσ(B), so σ(B) = BCσ for some constant matrix

Cσ. Since R is generated by the entries of B and 1/ det(B) the map σ → Cσ is an

injective group homomorphism. Viewed as a subgroup of GLn(C), it turns out that

these groups are actually linear algebraic groups. But first, we show that the Galois

group of R is the same as the one of its field of fractions.

Proposition 2.10. Let L be the field of fractions of the Picard-Vessiot ring R. Then,

if we denote by Gal(L/F ) the F -algebra differential automorphisms of L, Gal(L/F ) ∼=

Gal(R/F ) as groups.

Proof. Since σ ∈ Gal(R/F ) can be uniquely extended to an element of Gal(L/F ),

we have an injective group homomorphism Gal(R/F ) → Gal(L/F ). The Picard-

Vessiot ring R is generated by the entries and the inverse of the determinant of a

fundamental matrix B, while for any ψ ∈ Gal(L/F ), we know that ψ(B) is also
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going to be a fundamental matrix, so ψ(B) = BCψ for a constant matrix Cψ. Thus,

ψ(R) = R, so ψ can be restricted to R, giving us that the above homomorphism is

surjective, and thus an isomorphism.

We refer the reader to [Van03] Proposition 1.24 and Proposition 1.27 for a proof of

the next two propositions. The first asserts that differential Galois groups are linear

algebraic groups. That is, they can be endowed with the Zariski topology and be

identified with an affine variety, with the group multiplication and inverse map given

by polynomials. Two of the most important linear algebraic groups are (F,+), often

denoted Ga, and (F, ·), often denoted Gm and called an algebraic torus. The second

proposition is the analogue of the Galois correspondence from classical Galois theory.

Proposition 2.11. Let L be a Picard-Vessiot field extension of F with differential

Galois group G. Then G is a linear algebraic group when seen as a subgroup of

GLn(C).

Proposition 2.12. Let L be the Picard-Vessiot field of the equation Y ′ = AY over

F . Let G be its differential Galois group. Consider the two sets S, the closed subsets

of G, and L, the differential fields M with F ⊂ M ⊂ L. Let α : S → L and

β : L → S be the maps defined by α(H) = LH and β(M) = δAut(L/M), the

differential automorphisms of L with fixed field M . Then:

1. The maps α and β are inverses of each other.

2. The subgroup H ∈ S is a normal subgroup of G if and only if M = LH is
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invariant under all elements of G. Moreover, M is a Picard-Vessiot field for

some linear differential equation over F .

3. Let G0 denote the identity component of G. Then LG0 ⊃ F is a finite Galois

extension with Galois Group G/G0 and is the algebraic closure of F in L.

3 Formal Local Theory

In this section, we will define the field of Laurent series over an algebraically closed

field of characteristic 0. First, we will compute all of its finite Galois groups via

Hensel’s lemma. By (2.8), these will also be our finite differential Galois groups. We

will construct the equivalent of the algebraic closure, the universal Picard-Vessiot

ring. We will not use the usual derivative however, instead opting for δ(z) = zd/dz.

After making sure it has the right properties, we will show that the only possible

differential Galois groups that come from Picard-Vessiot rings of equations over our

Laurent series field are Gn
m, Ga, finite cyclic groups, and their direct products.

3.1 The Finite Case

This exposition follows the one in [Voel96]. We begin by formally defining the field of

formal Laurent series. We will do this as the field of fractions of the power series ring,

which means that there is a minimal degree among the non-zero terms. Throughout

this section, let K be an algebraically closed field of characteristic 0. We begin with
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the following definition:

Definition 3.1. Let Λ be the set of sequences (ai)i∈Z of elements of K indexed by Z

such that such that there is an N for which i < N =⇒ ai = 0. That is, they have a

”starting point”.

We can turn this into an abelian group by introducing the operation of term by

term addition, that is, (ai)i∈Z+(bi)i∈Z = (ai+ bi)i∈Z Furthermore, we can turn it into

a field by introducing the operation (ai)i∈Z · (bj)i∈Z = (ci)i∈Z, where cn =
∑

i+j=n aibj.

We can embedK intoΛ by setting k ∈ K to be the sequence which is 0 everywhere

except (possibly) at a0 = k. We can also consider the polynomial ring K[t] as a

subfield of Λ by letting t be the sequence which is 0 everywhere except at a1 = 1. Note

that by how we defined multiplication, tn will be the sequence which is 0 everywhere

except at an = 1. More generally, we can see that Λ contains the ring K[[t]] (the ring

of formal power series), K(t) (the field of fractions of K[t]), and K((t)) (the field of

fractions of K[[t]]). K((t)) is the field of formal Laurent series.

Consider the polynomial ring K[[t]][y], that is, polynomials in y whose coefficients

are power series over K. If we have a polynomial P ∈ K[[t]][y] in the aforementioned

ring, we call the result of applying ev0, the evaluation map at 0, to each of its

coefficients its associated polynomial P0. With this terminology, we can prove a

special case of Hensel’s Lemma:

Proposition 3.2. Let P ∈ K[[t]][y] be monic, and P0 ∈ K[y] its associated polyno-
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mial. Suppose P0 = f · g, with f, g ∈ K[y] coprime. Then there are F,G ∈ K[[t]][y]

coprime such that P = F ·G and F0 = f , G0 = g.

Proof. Since P =
∑m

i=0Riy
i where each Ri is a power series in t, we can rearrange

the polynomial by considering the variable to be t, so we have P =
∑∞

i=0 Pit
i where

each Pi is a polynomial in y. Note that m is also the degree of P0. For i > 0, the

degree of Pi is less than m since P is monic. Let r =deg(f) and s =deg(g). We want

to find the polynomials F and G, which when written as power series with respect to

t, must satisfy that Pn =
∑

i+j=n FiGj, F0 = f , G0 = g, and the degrees of Fi and Gi

must be less than r and s respectively. We can use induction to solve the system of

equations given by the P ′
ns.

For the base case, we use the case n = 0, where we can just define F0 = f and

G0 = g to satisfy P0 = G0H0. Now, assume that this is true for every index k < n.

We have that F0Gn+FnG0 = Un where Un = Pn−
∑n−1

i=0 FiGn−j, so we need to show

we can solve for Fn, Gn. Since F0, G0 are assumed to be coprime, the ideal generated

by the set {F0, G0} generates all of k[y], so there are A,B such that F0A+BG0 = Un.

By the division algorithm, we can write A = G0S + X, with the degree of X less

than s. Set Gn = X and Fn = B + F0S to get what we need. Note that since

G0Fn = Un − F0Gn. G0Fn has degree less than m, so Fn has degree less than r.

From here we obtain the following corollary:

Corollary 3.3. Let F be a monic polynomial in y of degree n ≥ 2 with coefficients in

K[[t]]. Suppose the coefficient of yn−1 in F0 is 0, F0 ̸= yn. Then F = GH for monic



27

non constant polynomials G,H ∈ K[[t]][y].

Proof. Since K is algebraically closed, F0 factors as a product of monic linear polyno-

mials. If these are not all equal, then we can write F0 = gh for two nonconstant monic

polynomials f, g which are coprime, and thus G,H exist by the previous lemma.

If all linear factors are equal, say F0 = (y − a)n, then the yn−1 coefficient is −na,

but since we assumed this coefficient was 0, a = 0. However, this implies that F0 = yn,

contradicting our hypothesis. Thus, we have ruled out the case where all the linear

factors are equal.

Given a positive integer e, let e−1Z be the additive group of rational numbers of

the form i/e for some i ∈ Z. Clearly, this group is isomorphic to Z by the map i
e
→ i,

and contains Z as a subgroup (. . . , 0
e
, e
e
, 2e
e
, . . . ) of index e. We can then define Λe

to be the set of integer indexed sequences (aj)j∈Ze−1 for which aj = 0 for almost all

j < 0. Defining addition and multiplication exactly as we did with Λ, we obtain a

field isomorphic to Λ by the map that sends the coordinate aj/e → bj, where where

bj = aj/e for all j.

Recall we had an element t ∈ Λ which was 0 everywhere except at a1 = 1.

This element corresponds then to τ ∈ Λe which is 0 everywhere except at b1/e = 1.

Additionally, we can identify Λ with the subfield of Λe which is 0 everywhere but

at the integer valued coordinates , (. . . ,−1/e, 0/e, e/e, 2e/e, . . . ). Then, it is clear

that τ e = t ∈ Λe (it is 0 everywhere except at the coordinate e/e). We can thus

identify (bj) ∈ Λe as
∑

j∈Ze−1 bjt
j =

∑
i∈Z bi/eτ

i =
∑

i∈Z aiτ
i, so we have that Λe =
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K((t1/e)) = K((τ)).

We first check that cyclic groups indeed appear as Galois groups over the Laurent

series field:

Lemma 3.4. Suppose K contains ζ, a primitive eth root of unity. Then, Λe is

Galois over Λ of degree e. The Galois group is cyclic generated by the automorphism

ω :
∑

i∈Z biτ
i →

∑
i∈Z biζ

iτ i. Further, Λe = Λ(τ).

Proof. It is easy to check ω is an automorphism and that multiplication of the co-

efficients by ζ i is necessary so that the terms containing τ raised to multiples of e

remain the same, giving us Λ as the fixed field. Thus, Λe is Galois over Λ by Artin’s

Theorem, it is generated by ω, and [Λe : Λ] = e. To sum up, Gal(Λe/Λ) = Z/eZ.

Note that since ωn(τ) = ζne τ , no non trivial element of the Galois group fixes τ ,

so we can write Λe = Λ(τ).

We want to show these are the only finite extensions. We can first prove the

following lemma:

Lemma 3.5. Suppose K is a field as above, and let F be a nonconstant monic

polynomial in y with coefficients in K[[t]]. Then F has a root in some Λe.

Proof. Suppose F is of minimal degree violating the claim, that is, doesn’t have a

root in any Λe. Then clearly it must have degree ≥ 2 as otherwise its root will just

be an element of K[[t]]. We write F (y) = yn+λn−1y
n−1 +λn−2y

n−2 + · · ·+λ0, where
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each λi ∈ K[[t]]. We will replace F by F = F (y − λn−1

n
), which after expanding we

can see has zero coefficient in yn−1.

If F0(y) ̸= yn, then we have the conditions to apply Corollary (3.3), which means

that F factors, and thus we have violated its minimal degree. Thus, we must have

that F0 = yn, meaning that every constant term in the λi is equal to 0. Note that

some λν ̸= 0 for 0 ≤ ν ≤ n−2, or else we would have F (y) = yn which has 0 as a root.

We will consider only those non-zero λν for the remainder of the proof. Now, let mν

be the lowest degree of t with a non-zero coefficient in λν . As we had F0 = yn, mν > 0.

Let u = min{ mν

n−ν}. Note u > 0 and let us denote it by d/e, with d, e ∈ Z. Embed

Λ ↪→ Λe, and consider the polynomial F ∗(y)τ−ndF (τ dy) = yn +
∑n−2

ν=0 λντ
d(n−ν)yν .

The coefficients of this polynomial are of the form aτEν plus higher order terms,

where

Eν = e(n− ν)(
mν

n− ν
− u),

so the coefficients are Laurent series in τ . Additionally, Eν = 0 for at least one ν, so

at least one yν has a power series with a nonzero constant coefficient. We can thus

apply Corollary (3.3) to F ∗(y) and find polynomials G,H with coefficients in K[[τ ]],

so H has a degree strictly less than n, and so by assumption has a root in Λe(τ
1/e′),

so F ∗ has a root in Λee′ , so F also has a root in this extension, contradicting our

main assumption.

We are now ready to prove the main result of this subsection:
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Theorem 3.6. Let K be an algebraically closed field of characteristic 0. Let ∆ be a

finite extension of Λ. Then ∆ = Λ(δ) where δe = t for some e.

Proof. Let ∆ be a finite extension of Λ = K((t)) of degree e. Write ∆ = Λ(θ). Let

F ∈ Λ[y] be an irreducible polynomial with root θ. If F =
∑n

i=0 aiy
i, we can write

g(y) = yn +
∑n−1

i=0 aia
n−i−1yi with g(anθ) = 0, and Λ(θ) = Λ(anθ), so we can use

Lemma (3.5) to conclude that F has a root θ′ in some Λ′
e, so we can assume ∆ ⊆ Λ′

e.

Since Gal(Λ′
e/Λ) is cyclic of degree e′, there is a unique field in between with degree

e. Thus, ∆ = Λe = Λ(t
1
e ).

3.2 The Universal Picard-Vessiot Ring

From now on, K̂ will denote K((z)). We will use the derivation δ = z d
dz
, where d

dz

represents the usual formal derivative, and K̂m := K̂(z1/m) for m ∈ Z. The field of

constants of (K̂, δ) is K, and the extensions we will consider have the same one. The

aim of this subsection is to construct an extension of K̂ that will be an analogue to

the usual algebraic closure in Galois theory. We want this extension to preserve many

of the properties that regular Picard-Vessiot rings have, so we introduce the following

definition:

Definition 3.7. The ring extension UnivRK̂ of K̂ is a universal Picard-Vessiot ring

if:

1. UnivRK̂ is a simple differential ring.
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2. For any matrix differential equation Y ′ = AY , A ∈ Mn(K̂), there exists a

matrix F ∈ GLn(UnivRK̂) which is a fundamental matrix for the equation.

3. UnivRK̂ is generated over K̂ by the entries of B and 1/ det(B), where B ranges

over all fundamental matrices for some equation Y ′ = AY , with A ∈ Mn(K̂).

One can construct a universal Picard-Vessiot ring for any differential field whose

field of constants is algebraically closed and of characteristic zero by taking the direct

limit of the Picard-Vessiot rings. However, we can explicitly construct it in our case.

First, we need the following lemma, which is part 2 of Theorem 3.1 in [Van03].

Lemma 3.8. Given a differential equation of the form Y ′ = AY , A ∈ Mn(K̂) with

derivation δ = z d
dz
, we can find an equivalent equation V ′ = BV , where B can be

decomposed into block matrices Bi, i = 1, . . . , s of the form:

bi 0 0 . . . 0 0 0

1 bi 0 . . . 0 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 1 bi


,

where bi are elements of K[z
−1
m ] and for i ̸= j, bi − bj /∈ Q.

Now, we can show the following:

Theorem 3.9. Let R be a differential ring extension of K̂ containing:

1. all fields K̂m,
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2. for any m and any non zero b ∈ K̂m, a non zero solution of y′ = by,

3. a solution of y′ = 1.

Then, R contains a fundamental matrix for any equation Y ′ = AY with A ∈Mn(K̂).

Proof Sketch. Given any matrix differential equation Y ′ = AY , we use the previous

lemma to find an equivalent equation Z ′ = BZ where B is as above. Consider

T ′ = B1T , where B1 is one of the block matrices described in the previous lemma.

Assume for simplicity that B1 is a 3× 3 matrix. We have:
t′11 t′12 t′13

t′21 t′22 t′23

t′31 t′32 t′33

 =


b1 0 0

1 b1 0

0 1 b1




t11 t12 t13

t21 t22 t23

t31 t32 t33


We have t′11 = b1t11. By assumption, this equation has a solution in R, call it α.

Note that t12 and t13 satisfy the same equation. Then, we have t′21 = t11 + b1t21.

If l′ = 1, then we have (lα)′ = α + l(b1α), so lα solves t′21 = t11 + b1t21. Finally,

t′31 = t21+ b1t31. The antiderivative of the previous solution with respect to l, (1
2
αl2),

solves the equation. Thus, we have a fundamental matrix

Fi =


α 0 0

αl α 0

1
2
αl2 αl α


where we have made sure the columns are linearly independent over K̂. Note that

a simple induction allows us to conclude that a continuous process of antiderivation
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will solve this type of matrix differential equation of any size. Finally, we have:

F ′
1 0 . . . 0

0 F ′
2 . . . 0

...
...

. . .
...

0 0 . . . F ′
n


=



B1 0 . . . 0

0 B2 . . . 0

...
...

. . .
...

0 0 . . . Bn





F1 0 . . . 0

0 F2 . . . 0

...
...

. . .
...

0 0 . . . Fn



With this in mind, we are ready to construct the universal Picard-Vessiot ring

of K̂. First, since we need all K̂m, we will take the algebraic closure, K̂. We also

need a solution to y′ = 1, which we call l. Since the algebraic closure ensures we

have solutions to the equations of the form y′ = n
m
y for n,m ∈ Z, we take A to be

a complement of Q in K, i.e., A ⊕ Q = K, and define (za)a∈A so that (za)′ = aza,

zazb = za+b, z0 = 1. Finally, we take Q :=
⋃
i≥1 z

−1/mK[z−1/m] and define (e(q))q∈Q,

so that e(q)′ = qe(q), e(q)e(p) = e(q + p), e(0) = 1. Now, we see that UnivRK̂ =

K̂[(za)a∈A , (e(q))q∈Q, l]. By construction it is clear that it satisfies the first two parts

of Definition (3.7), so we only need the following:

Proposition 3.10. UnivRK̂ is a simple integral domain.

Proof. Take elements a1, . . . , as, ai ∈ A and q1, . . . , qt, qi ∈ Q which are linearly

independent over Q. Consider the differential subring

R = K̂[za1 , z−a1 , . . . , zas , z−as , e(q1), e(−q1), . . . , e(qt), e(−qt), l]
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We are going to show it is simple. Clearly, it has no zero divisors. Let a monomial m

be an element zae(q), where a is an integral combination of the ai and q is an integral

combination of the qi. Note that m′ = α(m)m, where α(m) ∈ K̂
∗
.

Suppose J ̸= (0) is a differential ideal of the smaller differential ring

R̃ := K̂[za1 , z−a1 , . . . , zas , z−as , e(q1), e(−q1), . . . , e(qt), e(−qt)]

Choose g ∈ J not equal to 0, and let g =
∑N

i=1 gim(i), where the m(i) are monomials,

and N is minimal. Without loss of generality, take g1 = 1 and m(1) = 1. If N = 1,

then J is the whole ring, so suppose N > 1. The derivative b′ ∈ J by assumption,

and moreover it has to be zero by the minimality of N . Then, b′N + α(m(N))bN =

0, or α(m(N)) = −b′N/bN . However, this quotient has no negative z powers and

its constant coefficient is a rational number, contradicting the fact that A is the

complement of Q and Q has only rational polynomials with negative coefficient.

Now let’s go back to our original subring R. Suppose I ̸= (0) is a differential ideal

of R, and let n0 ≥ 0 be the minimal degree of elements with respect to l, is minimal.

If n0 = 0, then I restricted to R̃ in the previous case is a differential ideal, so we would

be done. Suppose n0 > 0. Then any element of degree n0 must have a non trivial

term with degree n0 − 1, for if not, we would have (ln0 +L)′ = n0l
n0−1 +L′, where L

are lower degree terms, giving a non zero element with degree less than n0. Suppose

ln0 +mln0−1 + L is one of the elements of minimal l degree, since I is assumed to be

differential, its derivative must also be in I, but by minimality, it has to be 0. Thus,

we would have n0 +m′ = 0. However, m doesn’t contain any power of l, making it
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impossible for m′ to have a non-zero field element as a derivative (note our derivation

preserves the degree of the z’s and q’s). Thus, no such ideal can exist.

Since UnivRK̂ is the union of subrings of the form R, we are done.

Remark 3.11. It is possible to show that UnivRK̂ is unique up to isomorphism by the

way it was constructed, and that its field of fractions also has C as a set of constants,

just like a regular Picard-Vessiot ring.

3.3 Local Differentiable Galois Groups

For this final part we retain the assumptions that K is algebraically closed and of

characteristic 0. We will construct all possible differential Galois groups over K̂,

which we call local. We will denote differential Galois groups by δGal(R/K̂), where

R is a ring extension of K̂.

We begin by doing some useful calculations. Recall l is the element adjoined to K̂

with l′ = 1, and that (za)′ = aza for a in a complement of Q in K, and e(q)′ = qe(q)

for q ∈
⋃
m≥1 z

−1/mK[z−1/m].

Lemma 3.12. δGal(K̂
[
l
]
/K̂) = Ga.

Proof. Suppose ϕ ∈ δGal(K̂
[
l
]
/K̂). Then ϕ is completely determined by ϕ(l). Since

ϕ is a differential automorphism, ϕ(l) must be a solution to the equation y′ = 1.

Thus, ϕ(l) = l + k for some k ∈ K. Since K̂
[
l
]
behaves like a usual polynomial ring,

all the ϕ of this form are automorphisms, so δGal(K̂
[
l
]
/K̂) = Ga.
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Lemma 3.13. δGal(K̂[za, z−a]/K̂) = Gm for a ∈ a

Proof. Suppose ϕ ∈ δGal(K̂[za, z−a]/K̂). Since ϕ is a differential automorphism,

ϕ(za) must be a solution of y′ = ay. It follows that ϕ(za) = kza is the only acceptable

form for the automorphisms. Thus, δGal(K̂[za, z−a]/K̂) = Gm.

Since the derivative of e(q) is defined in a similar way, we get:

Lemma 3.14. δGal(K̂[e(q), e(−q)]/K̂) = Gm.

We are now in an position to state our main theorem.

Theorem 3.15. Given a matrix differential equation Y ′ = AY over K̂, its differential

Galois Group is either trivial or isomorphic to one of the following:

1. Ga,

2. Gn
m for some n ≥ 1,

3. Z/mZ for some m ≥ 2,

4. Ga ×Gn
m for some n ≥ 1,

5. Ga × Z/mZ for some m ≥ 2,

6. Gn
m × Z/mZ for some n ≥ 1 and m ≥ 2,

7. Ga ×Gn
m × Z/mZ for some n ≥ 1 and m ≥ 2.

.
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Proof. Using Lemma (3.8), we get the block form of A, call it B. We will view Picard-

Vessiot rings as embedded into UnivRK̂ . The diagonal entries of B will determine

the diagonal entries of a fundamental matrix F , that is, if b is in the diagonal of B,

then the element that solves y′ = by is going to be in the diagonal of F .

If 0 is the only eigenvalue of B, and it has multiplicity ≥ 2, we will get Ga as

the differential Galois group. For simplicity suppose that 0 has multiplicity 2. If this

matrix is the 0 matrix, we can make a fundamental matrix out of constant elements in

K, making sure the columns are linearly independent. Thus, no extension is necessary

and the Galois group is trivial. If B is not trivial, then our matrix equation looks like

this: a′ b′

c′ d′

 =

0 0

1 0


a b

c d

 =

0 0

a 0


Since a′ = 0, we must have a ∈ K, so c = al. Choosing any other elements b, d ∈ K

which are not both zero gives us a fundamental matrix. Because det(F ) ∈ K, our

extension is of the form K̂
[
l
]
. Thus, our extension is of the form K̂

[
l
]
, and so has

Ga as its differential Galois group.

If b is rational and non-zero, we will get a rational power of z as a diagonal

element. If B has multiple blocks with rational entries, it is clear that the Picard-

Vessiot ring resulting from solving all of the blocks will be K̂m, with m the lcm of

their denominators. If B only has different rational eigenvalues, then it will have

differential Galois group δGal(K̂m/K̂) = Z/mZ as shown in (3.4). If there are

repeated eigenvalues, we consider the case of multiplicity 2 with a 1 below the main
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diagonal to understand the general behavior. Using the algorithm developed in the

proof of Theorem (3.9), we get a fundamental matrix z
m
n 0

z
m
n l z

m
n


This matrix introduced the variable l as an entry, and since we are taking the inverse

of the determinant to generate our Picard-Vessiot ring, we have the extension K̂m

[
l
]
.

Any automorphisms will be determined by the image of z
1
m and l, but since we have

differential automorphisms, the images are as the ones analyzed before. Moreover,

elements of our Galois group commute. Suppose φ, ψ ∈ δGal
(
K̂m

[
l
])

, so

φ(z
1
m ) = ζnmz

1
m

φ(l) = l + k

for some positive n < m and k ∈ K, while

ψ(z
1
m ) = ζtmz

1
m

ψ(l) = l + h

for some positive t < m and h ∈ K. We have φ(ψ(z
1
m )) = ζt+nm z

1
m = ψ(φ(z

1
m )),

and φ(ψ(l)) = l + k + h = ψ(φ(l)), so our group is commutative. We conclude then

that our resulting differential Galois group is Ga × Z/mZ. Note that having more

rational eigenvalues will change m, but multiple rational eigenvalues having higher

multiplicity than 1 doesn’t affect the group.

The same reasoning shows that if the eigenvalues of B are either in A or in Q,

and there is only one with multiplicity one, the differential Galois group will be Gm;
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and if there is an eigenvalue in A of Q with multiplicity n ≥ 1 (an 1 below the main

diagonal), our group will become Gm×Ga as l will be introduced in our fundamental

matrix as a result of having a 1 the diagonal of B. If the eigenvalue is a combination

of an element in a and one in Q, then we will have the equation y′ = (a+ q)y, which

is solved by zae(q). Having only this eigenvalue will result in Gm, while having both

(or one of) za and e(q) in addition will give G2
m. If there are t other eigenvalues from

A or Q which are not sums of the previous ones, we end up with the group Gt
m. If any

of these eigenvalues has multiplicity greater than 1 (and 1 below the main diagonal),

we have Gt
m ×Ga.

If one of the eigenvalues is a non-zero rational and one is in A or Q, we get the

group Gm × Z/mZ. If any of these has multiplicity bigger than 1 with a 1 below the

main diagonal, or 0 is also an eigenvalue, we get Gm ×Ga × Z/mZ. Finally, if there

is more than one eigenvalue in A or Q, we can get Gn
m ×Ga × Z/mZ. These are all

possible cases, and thus we have finished our proof.

Remark 3.16. We could have proven the main theorem in a different way. It is clear

that any of the Picard-Vessiot rings is a Liouvillian extension, and so the connected

component of the differential Galois groups is solvable. By slightly modifying the

proof of Proposition 20 in [Kov69] by making a similar statement for our derivative,

we could conclude that all the connected components had to be commutative, with

unipotent part of dimension less than or equal to 1. The conclusion would then follow

by realizing we only need direct products of these with finite groups, which we know
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from previous sections are all cyclic groups.
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